Some properties of the Thue-Morse word
Elise Vandomme

Seminar of PhD candidates & co in mathematics
University of Liège – Thursday 20 February

The Thue-Morse word, also known as the Prouhet-Thue-Morse sequence, was first considered by Prouhet in 1851. This is an infinite word on the alphabet \{0, 1\}. There are many different (and yet equivalent) ways to define the Thue-Morse word. One of them is using morphisms between alphabets with the operation of concatenation, i.e., applications \(f : A \to B \) such that, for all finite words \(u, v \) on \(A \), \(f(uv) = f(u)f(v) \) and \(f(\varepsilon) = \varepsilon \) where \(\varepsilon \) denotes the empty word.

The Thue-Morse word \(t \) is the fixed point \(\lim_{n \to \infty} \varphi^n(0) \) of the morphism \(\varphi : \{0, 1\} \to \{0, 1\} \) defined by \(\varphi(0) = 01 \), \(\varphi(1) = 10 \). Hence,

\[
t = 011010011001011010011001101001 \ldots
\]

Despite the simplicity of the terms in the sequence, its properties are anything but trivial. For example, it is overlap-free. This means that there are no factor of the type \(auaua \), with \(a \in A \) and \(u \) a finite word on \(A \), appearing in the Thue-Morse word.

We will consider different complexity function of the Thue-Morse word
- factor complexity: the function counting the numbers of distinct factors,
- abelian complexity: the function counting the numbers of distinct factors up to a permutation of letters,
- \(k \)-abelian complexity: a generalization of the abelian complexity.

In particular, we will concentrate on the 2-abelian complexity of \(t \) and conjecture it is “regular” in some sense.