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Abstract

In this note, we give an alternative proof of the following result. Let
p,q = 2 be two multiplicatively independent integers. If an infinite set of
integers is bottp- andg-recognizable, then it is syndetic. Notice that this
result is needed in the classical proof of the celebrated Cobham’s theorem.
Therefore the aim of this paper is to completel[13] and [1] to obtain an
accessible proof of Cobham’s theorem.

1 Introduction

Cobham’s theorem is related to numeration systems and can be considered as
a classical result in formal languages theory. It is formulated as follows. Let
p,q > 2 be two multiplicatively independent integers (i.e., the only integers sat-
isfying p* = o arek = ¢ = 0). If a subsetX C N of integers is bothp- and
g-recognizable then it is a finite union of arithmetic progressions K.& anulti-
mately periodicset). Recall thaX c N is said to bep-recognizabléf the language
pp(X) of the p-ary representations (without leading zeroes) of the elemeixssn
a regular language accepted by a finite automaton (see for instance [7, Chap. 5]).
This famous result has been widely studied from various points of view (we give
here just a few references): extension to non-standard numeration systems [6, 10]
or to the framework ok-regular sequences![2], study of the multidimensional
case (known as Cobham-Semenov’s theoréim) [4, 14], alternative proofs using the
formalism of the first order logic [3,12], ....

The original proof due to Cobham is widely considered as rattgcult [5].
In his book, S. Eilenberg proposed as a challenge to find an easier proof [7]. The
major improvements in the simplification of the proof of Cobham’s theorem were
made by G. Hansel in_[8] where he makes use of the notion of syndeticity and
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sketches the key-points leading to the result. Recall that an infinite set of integers
X = {X < X, < ---}is said to besyndeticif there existsC > 0 such that for all
n>1, X — X_1 < C. (Notice that Hansel's ideas about syndeticity also hold in a
wider framework tharp-ary numeration systems|[9].)

Afterwards, a great work of presentation relying on the main ideas found in [8]
was made by several authors|[1] 13]. Unfortunately, in these last two documents
a same mistake can be found (Statenjént 1 below is not correct and EXgmple 2
is a counter-example). In this note, our modest contribution is to correct this
error using as simple arguments as possible. In the spirit, we are naturally close
to [5] and [8] but new ideas appear in our reasoning. Finally, we hope that this
erratum added td [13] or [1] will now give a complete presentation of the proof of
Cobham’s theorem.

Let us se&, := {0,..., p— 1} as the alphabet of thg-ary digits. In[1,13],
the following result is presented.

Statement 1.1f an infinite p-recognizable set ¥ N is such thaO*p(X) is right
dense, i.e., for all ke X} there exists \€ X}, such that uve 0°pp(X), then X is
syndetic.

Example 2. As stated above, Statemght 1 is not correct. An easy counter-example
is given by the following set X of integers

X = U[ZZ’ 22+1]
>0

Indeed, this set i2-recognizable ;p,(X) = 1{00,01, 10, 11}*, and trivially right
dense but not syndetic.

In the literature, Statemefi 1 is generally presented to obtain the following
proposition.

Proposition 3. [8) Prop. 5] Let pg > 2 be two multiplicatively independent
integers. If an infinite set of integers if both p- and g-recognizable, then it is
syndetic.

In substance, this latter result can naturally be found in Cobham’s work (see
[5, Lemma 3]). In this note, our aim is to give an alternative proof of Proposition 3
not using Statemeft 1. Our approach relies on five easy lemmas.

2 Proof of the result

We assume that the reader has some basic knowledge in automata theory (see for
instancel[V]). IfX C N is a set of integers, we define a mapping (or a right-infinite
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word) 1x : N — {0, 1} such thatlx(n) = 1 if and only ifn € X. If wis a finite
word, |w| denotes its length.
This first lemma will be useful in the proof of Lemrpp 6 drd 7.

Lemma 4. Let A = (Q,qo, F,Z, ) be a DFA (Deterministic Finite Automaton)
with§ : Q x £* — Q as transition function. For any statessQ, the set

Ls:={W eN:weZX,ssw)eF}

is such thatl, _ is ultimately periodic, i.e., there exist N 0 and P> 0 such that
foralln >N, 1. (n)=1_(n+P).

Proof. For any states € Q, we define a mapping
fs:N—->PQ):n {o(sw) :we X

SinceP(Q) is finite, there exists andbs such thatag < bs and fs(as) = fs(bs).
Obviously, for anyu, v € X*, 6(s, uv) = 6(6(s, u), v). Consequently for ath > 0,

fas+m) = [ ] fm= ) f(n)=fubs+n)

refs(as) refs(bs)

In other words,fs is ultimately periodic: fs(n) = fs(n+ bs—ag) if n > as. To
conclude the proof, observe tifat = 1, whereFs = {ne N : f(n)NnF # 0}. O

Lemmab. Letmn,a b,c,d € N\ {0} be arbitrary integers such that &« m and
p, q be two multiplicatively independent integers. Then there exist integées k
such that nff% < m@* < (m+ 1)p**°k < (n + 1)g°+.

Proof. It is enough to find integets ¢ satisfying
et _ (P _ (n+ 1)
mpt = (o) T (m+1)p*

This is a direct consequence of Kronecker’s theorem (becgiiaadq® are still
multiplicatively independent hence I@j/ logq® is irrational) [11]. O

Lemma 6. Let p> 2 and X C N be an infinite p-recognizable set. Then there
exist integers g, b > 1 such that for all ke N, the set X0 [mpk, (m+ 1)p?*PK
is nonempty. Moreover, the integer m can be chosen arbitrarily large.

Proof. Let A = (Q, qo, F, Z,6) be a DFA recognizing,(X). SinceX is infinite,
there existsn > O arbitrarily large such that,(m) is prefix of an infinite number
of elements inpy(X). Lets = 5(do, pp(M)). By Lemmd 4, there exist > 0 and
b > 0 such thatl, (n) = 1, (n+ b) foralln > «.
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For anyt > 0, the interval ing, (m+ 1)p'[ contains all the integers havingpa
ary representation of the form(m)w with |w| = t. Since the sefol,(M)Z}) Npp(X)
is infinite, there exists a wordsuch thajp(m)v is the p-ary representation of an
element inX with |v| > a. Takea = |v|. Consequently, the intervahip?, (m+1)p?[
contains an element belongingXo The conclusion follows from the periodicity
of1,.: 1. (a) =1 (a+kb) =1, forallk > 0. |

Recall that a stateis said to beaccessibldresp.coaccessiblgif there exists
a wordw such thats(gg,w) = s (resp. 6(ssw) € F). Thetrimmedminimal
automaton of a languagdeis obtained by taking only states which are accessible
and coaccessible.

Lemma 7. Let p > 2 and X € N be an infinite p-recognizable set such that
A = (Q, to, F, Zp, 0) is the trimmed minimal automaton pf(X). If there exists a
state s such tha¥l \ L is infinite, then there exist integers apb > 1 such that for
allk € N, the set X0 [m@*P% (m+ 1)p*PX is empty.

Proof. Let s be a state such th&i \ Ls is infinite. Without loss of generality,

we may assume that # qo and there existsn > 0 such that(go, pp(mM)) = S.
(Indeed, ifN \ Lg, is infinite then the same property holds for some other state

We use the same reasoning as in the previous proof. Thanks to LEjnma 4, there
exista > 0 andb > 0 such thatl, (n) = 1, (n+ b) for all n > @. SinceN \ Lgis
infinite, there exista > a such that no word of lengtha is such that(s,v) € F.

In other words, ifivi = athenp,(m)v ¢ py(X) and the intervalh @, (m + 1)p?[

does not contain any element ¥f Once again, the conclusion follows from the
periodicity of1, .. O

The last lemma is a simple consequence of the three previous ones.

Lemma 8. Let > p > 2 be two multiplicatively independent integers ang XY
be an infinite p- and g-recognizable set of integers Alf= (Q, do, F, Zp, 0) is
trimmed minimal automaton gf,(X), then for any state re Q, the set L is
cofinite.

Proof. Assume to the contrary th&l \ L, is infinite. By Lemmd ]/, there exist
n,c,d > 1 such that for alf € N, X n [ncf*%, (n + 1)gc9[ is empty.

By Lemma[ 6, there also exish,a,b > 1 such that for alk € N, X n
[ME*PK (m+ 1)p*PX is nonempty anan > n.

To obtain a contradiction, simply observe that as a consequence of Lemma 5,
there exisK, L > 1 such thahcf*?- < m@*P < (m+ 1)p** < (n+ 1)t o

We now have at our disposal all the necessary material to conclude this short
note.



Proof of Propositiof B.Assume thaty > p. Let A = (Q,qo, F, X, 06) be the
trimmed minimal automaton gf,(X). For alln > 0, we writeq, := 6(do, pq(N)).
Thanks to LemmA]8,, is cofinite. This means that for ail> 0, there existE,
such that for alk > C,,, k belongs ta_,,. Clearly,C,, depends only on the statg
and there are a finite number of such states.@ et maxC,}. Consequently, for
anyn > 0, there exists a word, of lengthC such thajpq(n)w, € pg(X). In other
words, for anyn > 0, there exist, € [0, o[ such thang® + t, € X. We conclude
that any interval of lengthd® contains at least an element belongingto o
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