
A   ,   
C’  

Michel Rigo, Laurent Waxweiler∗

Abstract

In this note, we give an alternative proof of the following result. Let
p,q ≥ 2 be two multiplicatively independent integers. If an infinite set of
integers is bothp- andq-recognizable, then it is syndetic. Notice that this
result is needed in the classical proof of the celebrated Cobham’s theorem.
Therefore the aim of this paper is to complete [13] and [1] to obtain an
accessible proof of Cobham’s theorem.

1 Introduction

Cobham’s theorem is related to numeration systems and can be considered as
a classical result in formal languages theory. It is formulated as follows. Let
p,q ≥ 2 be two multiplicatively independent integers (i.e., the only integers sat-
isfying pk = q` arek = ` = 0). If a subsetX ⊆ N of integers is bothp- and
q-recognizable then it is a finite union of arithmetic progressions (i.e.,X is anulti-
mately periodicset). Recall thatX ⊂ N is said to bep-recognizableif the language
ρp(X) of thep-ary representations (without leading zeroes) of the elements inX is
a regular language accepted by a finite automaton (see for instance [7, Chap. 5]).
This famous result has been widely studied from various points of view (we give
here just a few references): extension to non-standard numeration systems [6, 10]
or to the framework ofk-regular sequences [2], study of the multidimensional
case (known as Cobham-Semenov’s theorem) [4, 14], alternative proofs using the
formalism of the first order logic [3, 12], . . . .

The original proof due to Cobham is widely considered as rather difficult [5].
In his book, S. Eilenberg proposed as a challenge to find an easier proof [7]. The
major improvements in the simplification of the proof of Cobham’s theorem were
made by G. Hansel in [8] where he makes use of the notion of syndeticity and
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sketches the key-points leading to the result. Recall that an infinite set of integers
X = {x0 < x1 < · · · } is said to besyndeticif there existsC > 0 such that for all
n ≥ 1, xn − xn−1 ≤ C. (Notice that Hansel’s ideas about syndeticity also hold in a
wider framework thanp-ary numeration systems [9].)

Afterwards, a great work of presentation relying on the main ideas found in [8]
was made by several authors [1, 13]. Unfortunately, in these last two documents
a same mistake can be found (Statement 1 below is not correct and Example 2
is a counter-example). In this note, our modest contribution is to correct this
error using as simple arguments as possible. In the spirit, we are naturally close
to [5] and [8] but new ideas appear in our reasoning. Finally, we hope that this
erratum added to [13] or [1] will now give a complete presentation of the proof of
Cobham’s theorem.

Let us setΣp := {0, . . . , p − 1} as the alphabet of thep-ary digits. In [1, 13],
the following result is presented.

Statement 1. If an infinite p-recognizable set X⊆ N is such that0∗ρp(X) is right
dense, i.e., for all u∈ Σ∗p there exists v∈ Σ∗p such that uv∈ 0∗ρp(X), then X is
syndetic.

Example 2. As stated above, Statement 1 is not correct. An easy counter-example
is given by the following set X of integers

X =
⋃
i≥0

[22i ,22i+1[.

Indeed, this set is2-recognizable :ρ2(X) = 1{00,01,10,11}∗, and trivially right
dense but not syndetic.

In the literature, Statement 1 is generally presented to obtain the following
proposition.

Proposition 3. [8, Prop. 5] Let p,q ≥ 2 be two multiplicatively independent
integers. If an infinite set of integers if both p- and q-recognizable, then it is
syndetic.

In substance, this latter result can naturally be found in Cobham’s work (see
[5, Lemma 3]). In this note, our aim is to give an alternative proof of Proposition 3
not using Statement 1. Our approach relies on five easy lemmas.

2 Proof of the result

We assume that the reader has some basic knowledge in automata theory (see for
instance [7]). IfX ⊆ N is a set of integers, we define a mapping (or a right-infinite
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word) 1X : N → {0,1} such that1X(n) = 1 if and only if n ∈ X. If w is a finite
word, |w| denotes its length.

This first lemma will be useful in the proof of Lemma 6 and 7.

Lemma 4. LetA = (Q,q0, F,Σ, δ) be a DFA (Deterministic Finite Automaton)
with δ : Q× Σ∗ → Q as transition function. For any state s∈ Q, the set

Ls := {|w| ∈ N : w ∈ Σ∗, δ(s,w) ∈ F}

is such that1Ls is ultimately periodic, i.e., there exist N≥ 0 and P> 0 such that
for all n ≥ N, 1Ls(n) = 1Ls(n+ P).

Proof. For any states ∈ Q, we define a mapping

fs : N→ P(Q) : n 7→ {δ(s,w) : w ∈ Σn}.

SinceP(Q) is finite, there existas andbs such thatas < bs and fs(as) = fs(bs).
Obviously, for anyu, v ∈ Σ∗, δ(s,uv) = δ(δ(s,u), v). Consequently for alln ≥ 0,

fs(as+ n) =
⋃

r∈ fs(as)

fr(n) =
⋃

r∈ fs(bs)

fr(n) = fs(bs+ n).

In other words,fs is ultimately periodic: fs(n) = fs(n + bs − as) if n ≥ as. To
conclude the proof, observe that1Ls = 1Fs whereFs = {n ∈ N : fs(n)∩F , ∅}. �

Lemma 5. Let m,n,a,b, c,d ∈ N \ {0} be arbitrary integers such that n< m and
p,q be two multiplicatively independent integers. Then there exist integers k, ` ≥ 1
such that nqc+d` ≤ mpa+bk < (m+ 1)pa+bk ≤ (n+ 1)qc+d`.

Proof. It is enough to find integersk, ` satisfying

nqc

mpa
≤

(pb)k

(qd)`
≤

(n+ 1)qc

(m+ 1)pa
.

This is a direct consequence of Kronecker’s theorem (becausepb andqd are still
multiplicatively independent hence logpb/ logqd is irrational) [11]. �

Lemma 6. Let p ≥ 2 and X ⊆ N be an infinite p-recognizable set. Then there
exist integers m,a,b ≥ 1 such that for all k∈ N, the set X∩ [mpa+bk, (m+ 1)pa+bk[
is nonempty. Moreover, the integer m can be chosen arbitrarily large.

Proof. LetA = (Q,q0, F,Σ, δ) be a DFA recognizingρp(X). SinceX is infinite,
there existsm > 0 arbitrarily large such thatρp(m) is prefix of an infinite number
of elements inρp(X). Let s = δ(q0, ρp(m)). By Lemma 4, there existα ≥ 0 and
b > 0 such that1Ls(n) = 1Ls(n+ b) for all n ≥ α.
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For anyt ≥ 0, the interval [mpt, (m+1)pt[ contains all the integers having ap-
ary representation of the formρp(m)w with |w| = t. Since the set (ρp(m)Σ∗p)∩ρp(X)
is infinite, there exists a wordv such thatρp(m)v is thep-ary representation of an
element inX with |v| > α. Takea = |v|. Consequently, the interval [mpa, (m+1)pa[
contains an element belonging toX. The conclusion follows from the periodicity
of 1Ls: 1Ls(a) = 1Ls(a+ kb) = 1, for all k ≥ 0. �

Recall that a states is said to beaccessible(resp.coaccessible) if there exists
a word w such thatδ(q0,w) = s (resp. δ(s,w) ∈ F). The trimmedminimal
automaton of a languageL is obtained by taking only states which are accessible
and coaccessible.

Lemma 7. Let p ≥ 2 and X ⊆ N be an infinite p-recognizable set such that
A = (Q,q0, F,Σp, δ) is the trimmed minimal automaton ofρp(X). If there exists a
state s such thatN \ Ls is infinite, then there exist integers m,a,b ≥ 1 such that for
all k ∈ N, the set X∩ [mpa+bk, (m+ 1)pa+bk[ is empty.

Proof. Let s be a state such thatN \ Ls is infinite. Without loss of generality,
we may assume thats , q0 and there existsm > 0 such thatδ(q0, ρp(m)) = s.
(Indeed, ifN \ Lq0 is infinite then the same property holds for some other states.)
We use the same reasoning as in the previous proof. Thanks to Lemma 4, there
existα ≥ 0 andb > 0 such that1Ls(n) = 1Ls(n+ b) for all n ≥ α. SinceN \ Ls is
infinite, there existsa > α such that no wordv of lengtha is such thatδ(s, v) ∈ F.
In other words, if|v| = a thenρp(m)v < ρp(X) and the interval [mpa, (m+ 1)pa[
does not contain any element ofX. Once again, the conclusion follows from the
periodicity of1Ls. �

The last lemma is a simple consequence of the three previous ones.

Lemma 8. Let q> p ≥ 2 be two multiplicatively independent integers and X⊆ N
be an infinite p- and q-recognizable set of integers. IfA = (Q,q0, F,Σp, δ) is
trimmed minimal automaton ofρq(X), then for any state r∈ Q, the set Lr is
cofinite.

Proof. Assume to the contrary thatN \ Lr is infinite. By Lemma 7, there exist
n, c,d ≥ 1 such that for all̀ ∈ N, X ∩ [nqc+d`, (n+ 1)qc+d`[ is empty.

By Lemma 6, there also existm,a,b ≥ 1 such that for allk ∈ N, X ∩
[mpa+bk, (m+ 1)pa+bk[ is nonempty andm> n.

To obtain a contradiction, simply observe that as a consequence of Lemma 5,
there existK, L ≥ 1 such thatnqc+dL ≤ mpa+bK < (m+ 1)pa+bK ≤ (n+ 1)qc+dL. �

We now have at our disposal all the necessary material to conclude this short
note.
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Proof of Proposition 3.Assume thatq > p. Let A = (Q,q0, F,Σ, δ) be the
trimmed minimal automaton ofρq(X). For all n > 0, we writeqn := δ(q0, ρq(n)).
Thanks to Lemma 8,Lqn is cofinite. This means that for alln ≥ 0, there existsCn

such that for allk ≥ Cn, k belongs toLqn. Clearly,Cn depends only on the stateqn

and there are a finite number of such states. LetC = max{Cn}. Consequently, for
anyn > 0, there exists a wordwn of lengthC such thatρq(n)wn ∈ ρq(X). In other
words, for anyn > 0, there existtn ∈ [0,qC[ such thatnqC + tn ∈ X. We conclude
that any interval of length 2qC contains at least an element belonging toX. �
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