Extensions and restrictions of Wythoff’s game preserving Wythoff’s sequence as set of P positions

Eric Duchêne (Institut Fourier, Grenoble)
Aviezri S. Fraenkel (Weizmann Institute, Rehovot)
Richard J. Nowakowski (Dalhousie University, Halifax)
Michel Rigo (University of Liège)

http://www.discmath.ulg.ac.be/

Wythoff’s game or “catching the queen”

Rules of the game

- Two players play alternatively
- Two piles of tokens
- Remove
 - any positive number of tokens from one pile or,
 - the same positive number from the two piles.
- The one who takes the last token wins the game (**last move wins**).

Set of moves: \(\{(i, 0), \ i > 0\} \cup \{(0, j), \ j > 0\} \cup \{(k, k), \ k > 0\} \)
Wythoff’s game or “catching the queen”
Wythoff’s game or “catching the queen”

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
Wythoff’s game or “catching the queen”
Wythoff’s Game or “Catching the Queen”

\[(0, 0), (1, 2), (3, 5), (4, 7), (6, 10), \ldots\]

P-position

A **P-position** is a position \(q \) from which the previous player (moving to \(q \)) can force a win.

N-position

A **N-position** is a position \(p \) from which the actual player has an option leading ultimately to win the game.

Question: Are all positions \(N \) or \(P \)?
GAME GRAPH

Initial position \((i_0, j_0)\), by symmetry, take only \((i \geq j)\)

- **Vertices**: \(\{(i, j), \ i \leq i_0, \ j \leq j_0\}\)
- **Edges**: from each position to all its options:

\[
\begin{align*}
 i > 0 & \quad (i, j) \to (i-k, j) \quad k = 1, \ldots, i \\
 j > 0 & \quad (i, j) \to (i, j-k) \quad k = 1, \ldots, j \\
 i, j > 0 & \quad (i, j) \to (i-k, j-k) \quad k = 1, \ldots, \min(i, j)
\end{align*}
\]
Remark

Due to the rules, the game graph for Wythoff’s game is acyclic.

Theorem [Berge]

Any finite acyclic digraph has a unique kernel. Moreover, this kernel can be obtained efficiently.

Reminder/Definition of a Kernel

A kernel in a graph $G = (V, E)$ is a subset $W \subseteq V$

- **stable**: $\forall x, y \in W$, $(x, y) \notin E$
- **absorbing**: $\forall x \in V \setminus W$, $\exists y \in W : (x, y) \in E$.
Remark

Due to the rules, the game graph for Wythoff’s game is **acyclic**.

Theorem [Berge]

Any finite **acyclic** digraph has a **unique kernel**.
Moreover, this kernel can be obtained efficiently.

Reminder/Definition of a Kernel

A **kernel** in a graph $G = (V, E)$ is a subset $W \subseteq V$

- **stable**: $\forall x, y \in W, (x, y) \notin E$
- **absorbing**: $\forall x \in V \setminus W, \exists y \in W : (x, y) \in E$.
Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
GAME GRAPH

Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
GAME GRAPH

Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
For Wythoff’s game, its game graph has a unique kernel K.

- **stable**: from a position in K, you always play out of K,
- **absorbing**: from a position outside K, you can play into K,
- $(0, 0)$ has to belong to K, otherwise K won’t be absorbing.

Corollary

The set of \mathcal{P}-positions is exactly the kernel K and all the other positions are \mathcal{N}-positions.

$$\{\mathcal{P}\text{-positions}\} \supseteq K$$

If p is a position in K, then it is a \mathcal{P}-position because there is a *winning strategy* outside K.

$$\{\mathcal{P}\text{-positions}\} \subseteq K$$

If p is a \mathcal{P}-position not in K, then there is a move from p to K, thus p is a \mathcal{N}-position!
GAME GRAPH

For Wythoff’s game, its game graph has a unique kernel K.

- **stable**: from a position in K, you always play out of K,
- **absorbing**: from a position outside K, you can play into K,
- $(0, 0)$ has to belong to K, otherwise K won’t be absorbing.

COROLLARY

The set of \mathcal{P}-positions is exactly the kernel K and all the other positions are \mathcal{N}-positions.

\[\{\text{\mathcal{P}-positions}\} \supseteq K \]

If p is a position in K, then it is a \mathcal{P}-position because there is a winning strategy outside K.

\[\{\text{\mathcal{P}-positions}\} \subseteq K \]

If p is a \mathcal{P}-position not in K, then there is a move from p to K, thus p is a \mathcal{N}-position!
P-position of the Wythoff’s game I

\((A_n, B_n)_{n \geq 0} = (0, 0), (1, 2), (3, 5), (4, 7), \ldots\)

\[
\forall n \geq 0, \quad \begin{cases}
A_n = \text{Mex}\{A_i, B_i \mid i < n\} \\
B_n = A_n + n
\end{cases}
\]

P-position of the Wythoff’s game II

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | \ldots |
|---|---|---|---|---|---|---|---|---|-----|-----|-----|-----|-----|
| F | a | b | a | a | b | a | b | a | a | b | a | a | b | a |

P-positions of the Wythoff’s game III

\((A_n, B_n)_{n \geq 0} = ([n \tau], [n \tau^2]).\)
Many variations of the Wythoff’s game

Different sets of moves / more piles

\[\downarrow \]

Different sets of \(P \)-positions to characterize...
Consider extensions or restrictions of Wythoff’s game that keep the set of \(P \)-positions of Wythoff’s game invariant.

Characterize the different sets of moves...

\[\downarrow \]

Same set of \(P \)-positions as Wythoff’s game
Canonical construction [Cobham’72]: morphisms \rightarrow automata

$$\varphi : a \mapsto abc, \ b \mapsto ac, \ c \mapsto b$$

Consider the language $L = L\left(\mathcal{M}\right) \setminus \{0, 1, 2\}^*$.

Remark: Positions in $\varphi^\omega(a)$ are counted from 1.
Take the words of L in genealogical order (abstract system)

<table>
<thead>
<tr>
<th>n</th>
<th>w_n</th>
<th>n</th>
<th>w_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>12</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>13</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>14</td>
<td>1002</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>15</td>
<td>1010</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>16</td>
<td>1011</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>17</td>
<td>1020</td>
</tr>
<tr>
<td>8</td>
<td>102</td>
<td>18</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>19</td>
<td>1101</td>
</tr>
</tbody>
</table>

Not a “positional” system, no sequence behind.

Example:

The 4th letter is a, it corresponds to $w_3 = 10$.

Since $\varphi(a) = abc$, we consider $w_3 0 = 100 = w_i$

$w_3 1 = 101 = w_{i+1}$

$w_3 2 = 102 = w_{i+2}$

then the $(i + 1)$st, $(i + 2)$st, $(i + 3)$st letters are a, b, c.
\[\text{rep}_L(i) := w_i, \quad \text{val}_L(w_i) := i \]

Proposition

Let the \(n \)th letter of \(\varphi^\omega(a) \) be \(\sigma \) and \(w_{n-1} \) be the \(n \)th word in \(L \). If \(\varphi(\sigma) = x_1 \cdots x_r \), then \(x_1 \cdots x_r \) appears in \(\varphi^\omega(a) \) in positions \(\text{val}_L(w_{n-1}x_1) + 1, \ldots, \text{val}_L(w_{n-1}x_r) + 1 \).

For Wythoff’s game: Fibonacci word \(\mathcal{F} \), \(L = 1\{01, 0\}^* \cup \{\varepsilon\} \) and we get the usual Fibonacci system \(\rho_\mathcal{F} : \mathbb{N} \to L \), \(\pi_\mathcal{F} : L \to \mathbb{N} \).

Corollary

- If the \(n \)th letter in \(\mathcal{F} \) is \(a \) (\(n \geq 1 \)), then this \(a \) produces through \(\varphi \) a factor \(ab \) occupying positions \(\pi_\mathcal{F}(\rho_\mathcal{F}(n-1)0) + 1 \) and \(\pi_\mathcal{F}(\rho_\mathcal{F}(n-1)1) + 1 \).

- If the \(n \)th letter in \(\mathcal{F} \) is \(b \) (\(n \geq 1 \)), then this \(b \) produces through \(\varphi \) a letter \(a \) occupying position \(\pi_\mathcal{F}(\rho_\mathcal{F}(n - 1)0) + 1 \).
\[\text{rep}_L(i) := w_i, \quad \text{val}_L(w_i) := i \]

Proposition

Let the \(n \)th letter of \(\varphi^\omega(a) \) be \(\sigma \) and \(w_{n-1} \) be the \(n \)th word in \(L \). If \(\varphi(\sigma) = x_1 \cdots x_r \), then \(x_1 \cdots x_r \) appears in \(\varphi^\omega(a) \) in positions \(\text{val}_L(w_{n-1}x_1)+1, \ldots, \text{val}_L(w_{n-1}x_r)+1 \).

For Wythoff’s game: Fibonacci word \(\mathcal{F} \), \(L = 1\{01, 0\}^* \cup \{\varepsilon\} \) and we get the usual Fibonacci system \(\rho_F : \mathbb{N} \to L \), \(\pi_F : L \to \mathbb{N} \).

Corollary

- If the \(n \)th letter in \(\mathcal{F} \) is \(a \) \((n \geq 1) \), then this \(a \) produces through \(\varphi \) a factor \(ab \) occupying positions \(\pi_F(\rho_F(n-1)0)+1 \) and \(\pi_F(\rho_F(n-1)1)+1 \).
- If the \(n \)th letter in \(\mathcal{F} \) is \(b \) \((n \geq 1) \), then this \(b \) produces through \(\varphi \) a letter \(a \) occupying position \(\pi_F(\rho_F(n-1)0)+1 \).
Reminder on Fibonacci numeration system

Fibonacci sequence: \(F_{i+2} = F_{i+1} + F_i, \ F_0 = 1, \ F_1 = 2 \)

Use greedy expansion, \(\ldots, 21, 13, 8, 5, 3, 2, 1 \)

\[
\begin{array}{c|c|c|c|c}
 n & \rho_F(n) & n & \rho_F(n) & n & \rho_F(n) \\
 1 & 1 & 8 & 10000 & 15 & 100010 \\
 2 & 10 & 9 & 10001 & 16 & 100100 \\
 3 & 100 & 10 & 10010 & 17 & 100101 \\
 4 & 101 & 11 & 10100 & 18 & 101000 \\
 5 & 1000 & 12 & 10101 & 19 & 101001 \\
 6 & 1001 & 13 & 100000 & 20 & 101010 \\
 7 & 1010 & 14 & 100001 & 21 & 1000000 \\
\end{array}
\]

In fact, this is a special case of the following result.

Theorem [A. Maes, M.R. ’02]

The set of S-automatic sequences is exactly the set of morphic words.

Take any regular language genealogically ordered \oplus DFAO

$$
\begin{array}{c|cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\hline
 \text{rep}_S(i) & \varepsilon & a & b & aa & ab & bb & aaa & aab & abb & bbb & \cdots \\
\end{array}
$$

01023031200231010123023031203120231002310123010123\cdots
For all $n \geq 1$, we have

$$A_n = \pi_F(\rho_F(n - 1)0) + 1$$

$$B_n = \pi_F(\rho_F(A_n - 1)1) + 1.$$
More?

Can we get a “morphic characterization” of the Wythoff’s matrix?

\[(P_{i,j})_{i,j \geq 0} = \]

\[
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \\
\vdots & & & & & & & & & & & \vdots
\end{array}
\]
Let’s try something...

$$\varphi : a \mapsto \begin{array}{cc} a & b \\ c & d \end{array}, \quad b \mapsto \begin{array}{c} i \\ e \end{array}, \quad c \mapsto \begin{array}{cc} i & j \end{array}, \quad d \mapsto \begin{array}{c} i \\ e \mapsto \begin{array}{cc} f & b \end{array} \end{array}$$

$$f \mapsto \begin{array}{cc} g & b \\ h & d \end{array}, \quad g \mapsto \begin{array}{cc} f & b \\ h & d \end{array}, \quad h \mapsto \begin{array}{cc} i & m \end{array}, \quad i \mapsto \begin{array}{cc} i & m \\ h & d \end{array}$$

$$j \mapsto \begin{array}{c} k \\ c \end{array}, \quad k \mapsto \begin{array}{cc} l & m \end{array}, \quad l \mapsto \begin{array}{cc} k & m \end{array}, \quad m \mapsto \begin{array}{c} i \\ h \end{array}$$

and the coding

$$\mu : e, g, j, l \mapsto 1, \quad a, b, c, d, f, h, i, k, m \mapsto 0$$
SHAPE-SYMMETRIC MORPHISM [A. MAES ’99]

If \(P \) is the infinite bidimensional picture that is the fixpoint of \(\varphi \), then for all \(i, j \in \mathbb{N} \), if \(\varphi(P_{i,j}) \) is a block of size \(k \times \ell \) then \(\varphi(P_{j,i}) \) is of size \(\ell \times k \)
sizes : 1, 2, 3, 5
```
\begin{array}{cccccc}
  a & b & i & i & m & i \\
  c & d & e & h & d & h \\
  i & j & i & f & b & i \\
  i & m & k & i & m & g \\
  i & m & i & l & m & i \\
  h & d & h & c & d & h \\
  i & m & i & i & j & i \\
\end{array}
```

size : 8, ...
We can do the same as for the unidimensional case: Automaton with input alphabet

\[\{ (0,0), (1,0), (0,1), (1,1) \} \]

\[\varphi(r) = \begin{array}{c|c}
 s & t \\
 u & v
 \end{array}, \quad \begin{array}{c|c}
 s & t \\
 u & \
 \end{array}, \quad \begin{array}{c|c}
 s & \\
 u & \
 \end{array} \quad \text{or} \quad \begin{array}{c|c}
 s & \\
 & \
 \end{array} \]

we have transitions like

\[r \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow s, \quad r \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow t, \quad r \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow u, \quad r \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow v. \]
We get (after trimming useless part with four states)

This automaton accepts the words

\[
\begin{pmatrix}
0w_1 \cdots w_\ell \\
w_1 \cdots w_\ell 0
\end{pmatrix}
\] and

\[
\begin{pmatrix}
w_1 \cdots w_\ell 0 \\
0w_1 \cdots w_\ell
\end{pmatrix}
\]

where \(w_1 \cdots w_\ell\) is a valid \(F\)-representation ending with an even number of zeroes.
Such a characterization is well-known, but differs from the one we get previously...

Reminder

For all $n \geq 1$, we have

\[
A_n = \pi_F(\rho_F(n-1)0) + 1 \\
B_n = \pi_F(\rho_F(A_n - 1)1) + 1.
\]

It is hopefully the same, but **why** ?
• First case: \(\rho_F(n - 1) = u0 \)

\[
\rho_F(A_n) = \rho_F(\pi_F(\rho_F(n - 1)0) + 1) = u01 \text{ no zero}
\]

\(\rho_F(A_n - 1) = u00 \) and

\[
\rho_F(B_n) = \rho_F(\pi_F(\rho_F(A_n - 1)1) + 1) = u010 \text{ one zero}
\]

• Second case: \(\rho_F(n - 1) = u01 \)

\[
\rho_F(A_n) = \rho_F(\pi_F(\rho_F(n - 1)0) + 1) = "u011" \ldots
\]

Normalize \(u011 \) or look for the successor of \(u010 \)
Use the transducer (R to L) computing the successor [Frougny’97]

\[10 \rightarrow 100, \quad 2 \text{ zeroes} \]

\[x10(01)^n010 \rightarrow x101(00)^n00 \quad 2n + 2 \text{ zeroes}, \quad n \geq 0 \]

\[1(01)^n010 \rightarrow 100(00)^n00 \quad 2n + 4 \text{ zeroes}, \quad n \geq 0 \]
\(\rho_F(A_n - 1) = u010 \) and

\[
\rho_F(B_n) = \rho_F(\pi_F(\rho_F(A_n - 1)1) + 1) = "u0102" \ldots
\]

101 → 1000, 3 zeroes

\[
x10(01)^n 0101 \rightarrow x101(00)^n000 \quad 2n + 3 \text{ zeroes, } n \geq 0
\]

\[
1(01)^n 0101 \rightarrow 100(00)^n000 \quad 2n + 5 \text{ zeroes, } n \geq 0
\]

Conclusion: “\(A_n \) even number of zeroes, \(B_n \) one more”, OK
EXTENSION PRESERVING SET OF \mathcal{P}-POSITIONS

To decide whether or not a move can be adjoined to Wythoff’s game without changing the set K of \mathcal{P}-positions, it suffices to check that it does not change the stability property K.

Remark: absorbing property holds true whatever the adjoined move is.

CONSEQUENCE

A move (i, j) can be added IFF it prevents to move from a \mathcal{P}-position to another \mathcal{P}-position.

In other words, a necessary and sufficient condition for a move $(i, j)_{i<j}$ to be adjoined is that it does not belong to

$\{(A_n-A_m, B_n-B_m) : n > m \geq 0\} \cup \{(A_n-B_m, B_n-A_m) : n > m \geq 0\}$
Thanks to the previous characterizations of A_n, B_m,

Proposition

A move $(i, j)_{i<j}$ can be adjoined to without changing the set of P-positions IFF

$$(i, j) \neq ([n\tau] - [m\tau], [n\tau^2] - [m\tau^2]) \quad \forall n > m \geq 0$$

and

$$(i, j) \neq ([n\tau] - [m\tau^2], [n\tau^2] - [m\tau]) \quad \forall n > m \geq 0$$
For all $i, j \geq 0$, $W_{i,j} = 1$ IFF Wythoff’s game with the adjoined move (i, j) has Wythoff’s sequence as set of \mathcal{P}-positions,

\[
(W_{i,j})_{i,j \geq 0} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
\vdots & \vdots \\
\end{bmatrix}
\]
COROLLARY

Let $I \subseteq \mathbb{N}$. Wythoff’s game with adjoined moves

$$\{(x_i, y_i) : i \in I, x_i, y_i \in \mathbb{N}\}$$

has the same sequence (A_n, B_n) as set of \mathcal{P}-positions

IFF

$W_{x_i,y_i} \neq 1$ for all $i \in I$.
Complexity issue

We investigate tractable extensions of Wythoff’s game, we also need to test these conditions in polynomial time. And the winner can consummate a win in at most an exponential number of moves.

Many “efforts” lead to this

For any pair (i, j) of positive integers, we have $W_{i,j} = 1$ if and only if one the three following properties is satisfied:

1. $(\rho_F(i - 1), \rho_F(j - 1)) = (u0, u01)$ for any valid F-representation u in $\{0, 1\}^*$.
2. $(\rho_F(i - 2), \rho_F(j - 2)) = (u0, u01)$ for any valid F-representation u in $\{0, 1\}^*$.
3. $(\rho_F(j - A_i - 2), \rho_F(j - A_i - 2 + i)) = (u1, u'0)$ for any two valid F-representations u and u' in $\{0, 1\}^*$.
Morphic characterization of \mathcal{W}... in progress

<table>
<thead>
<tr>
<th>ψ: $a \mapsto$</th>
<th>$b \mapsto$</th>
<th>$c \mapsto$</th>
<th>$d \mapsto$</th>
<th>$e \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>j</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>e</td>
<td>h</td>
<td>k</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>b</td>
<td>i</td>
<td>l</td>
</tr>
<tr>
<td>h</td>
<td>i</td>
<td>o</td>
<td>m</td>
<td>n</td>
</tr>
<tr>
<td>j</td>
<td>k</td>
<td>l</td>
<td>m</td>
<td>o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f \mapsto$</th>
<th>$g \mapsto$</th>
<th>$h \mapsto$</th>
<th>$i \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>b</td>
<td>c</td>
<td>i</td>
</tr>
<tr>
<td>b</td>
<td>i</td>
<td>c</td>
<td>n</td>
</tr>
<tr>
<td>b</td>
<td>i</td>
<td>c</td>
<td>n</td>
</tr>
<tr>
<td>b</td>
<td>i</td>
<td>c</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$j \mapsto$</th>
<th>$k \mapsto$</th>
<th>$l \mapsto$</th>
<th>$m \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>p</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>p</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>p</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>p</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n \mapsto$</th>
<th>$o \mapsto$</th>
<th>$p \mapsto$</th>
<th>$q \mapsto$</th>
<th>$r \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>n</td>
<td>e</td>
<td>p</td>
<td>e</td>
</tr>
<tr>
<td>n</td>
<td>i</td>
<td>e</td>
<td>p</td>
<td>e</td>
</tr>
<tr>
<td>n</td>
<td>i</td>
<td>e</td>
<td>p</td>
<td>e</td>
</tr>
<tr>
<td>n</td>
<td>i</td>
<td>e</td>
<td>p</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$s \mapsto$</th>
<th>$t \mapsto$</th>
<th>$u \mapsto$</th>
<th>$v \mapsto$</th>
<th>$w \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>k</td>
<td>i</td>
<td>w</td>
<td>p</td>
</tr>
<tr>
<td>k</td>
<td>v</td>
<td>i</td>
<td>w</td>
<td>p</td>
</tr>
<tr>
<td>k</td>
<td>v</td>
<td>i</td>
<td>w</td>
<td>p</td>
</tr>
<tr>
<td>k</td>
<td>v</td>
<td>i</td>
<td>w</td>
<td>p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$x \mapsto$</th>
<th>$y \mapsto$</th>
<th>$z \mapsto$</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>n</td>
<td>x</td>
</tr>
<tr>
<td>n</td>
<td>z</td>
<td>x</td>
</tr>
<tr>
<td>z</td>
<td>n</td>
<td>x</td>
</tr>
</tbody>
</table>
and the coding \(\nu : a, b, c, d, e, i, j, k, l, n, o, p, q, r \mapsto 0 \)
\(f, g, h, m, s, t, u, v, w, x, y, z \mapsto 1. \)
Corresponding automaton
SOME OF THE MACHINERY BEHIND
Lemma

Let F_n be the prefix of F of length n. For any finite factor bua occurring in F with $|u| = n$, we have $|u|_a = |F_n|_a$ and $|u|_b = |F_n|_b$.

Example

Take $u = aabaab$, bua of length 8 starts in F from position 7. $F_6 = abaaba$ is a permutation of u.

\[F = \begin{array}{c}
abaaba b aabaab a baababaaba \cdots \\
F_6 & u
\end{array} \]

Proof: algebraic
Lemma

Let $n \geq 1$ be such that $B_{n+1} - B_n = 2$. Then $\rho_F(B_n - 1)$ ends with 101.

Proof: Morphic structure of \mathcal{F}

Proposition

$$\{(A_j - A_i, B_j - B_i) \mid j > i \geq 0\} = \{(A_n, B_n) \mid n > 0\}$$

$$\cup \{(A_n + 1, B_n + 1) \mid n > 0\}$$

Proof: Density of the $\{n\tau\}$'s in $[0, 1]$
Lemma

Let $u_1 \in \{0, 1\}^*$ be a valid F-representation. If $\rho_F(\pi_F(u_1) + n)1$ is also a valid F-representation, then

$$\pi_F(\rho_F(\pi_F(u_1) + n)1) = \pi_F(u00) + \pi_F(\rho_F(n - 1)0) + 4.$$

Otherwise, $\rho_F(\pi_F(u_1) + n)1$ is not a valid F-representation and

$$\pi_F(\rho_F(\pi_F(u_1) + n)0) = \pi_F(u00) + \pi_F(\rho_F(n)0) + 2.$$

Proof: Morphic structure of \mathcal{F}

Theorem

Let i, j be such that $A_j - B_i = n > 0$. We have

$$B_j - A_i = B_i + A_n + 1.$$
CONCLUDING RESULT

THEOREM

There is no redundant move in Wythoff’s game. In particular, if any move is removed, then the set of P-positions changes.