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Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence
Q numeration basis
R substitutive

Gaussian int. abstract
C Ostrowski system

Fq[X] factorial system
β-expansions

vectors continued fractions
of these canonical number sys.

...
...



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A2 = {0, 1}
Q numeration basis
R substitutive rep2(n), n ∈ N, is a

Gaussian int. abstract finite word
C Ostrowski system

Fq[X] factorial system with X ⊆ N,
β-expansions rep2(X) is a

vectors continued fractions language over A2

of these canonical number sys.
...

...

Integer base, e.g., k = 2

rep2 : N → {0, 1}∗, n =
∑ℓ

i=0 di 2i, rep2(n) = dℓ · · · d0

rep2(37) = 100101 and val2(100101) = 37



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A2 = {0, 1}
Q numeration basis
R substitutive rep2(r), r ∈ R, is an

Gaussian int. abstract infinite word
C Ostrowski system

Fq[X] factorial system with X ⊆ R,
β-expansions rep2(X) is an

vectors continued fractions ω-language over Ak

of these canonical number sys.
...

... maybe several rep.

Integer base, e.g., k = 2 (base-complement for neg. numbers)

rep2 : R → {0, 1}∗ ⋆ {0, 1}ω , {r} =
∑

+∞
i=1 di 2−i.

The set of representations of 3/2 is 0+1 ⋆ 10ω ∪ 0+1 ⋆ 01ω.



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base AF = {0, 1}
Z linear recurrence
Q numeration basis greedy choice
R substitutive repF(n), n ∈ N, is a

Gaussian int. abstract finite word
C Ostrowski system

Fq[X] factorial system with X ⊆ N,
β-expansions rep2(X) is a

vectors continued fractions language over AF

of these canonical number sys.
...

... maybe several rep.

Fibonacci numeration system (Zeckendorf 1972)

. . . , 34, 21, 13, 8, 5, 3, 2, 1 = (Fn)n≥0 and repF(11) = 10100

but valF(10100) = valF(10011) = valF(1111) Un+2 = Un+1 + Un.



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence Aβ = {0, 1}
Q numeration basis
R substitutive β-expansions are

Gaussian int. abstract infinite words
C Ostrowski system

Fq[X] factorial system maybe several rep.
β-expansions

vectors continued fractions β-development is
of these canonical number sys. the lexico. largest

...
...

β-expansions (Rényi 1957, Parry 1960), e.g., β = (1 +
√

5)/2

r ∈ (0, 1), r =
∑

+∞
i=1 ci β

−i β2 = β + 1

dβ(π − 3) = 00001010100100010101010· · · .



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A = N

Q numeration basis
R substitutive rep(n), n ∈ N, is a

Gaussian int. abstract finite word
C Ostrowski system over an

Fq[X] factorial system infinite alphabet
β-expansions

vectors continued fractions
of these canonical number sys.

...
...

Factorial numeration system

. . . , 720, 120, 24, 6, 2, 1 = (j!)j≥0, n =
∑ℓ

i=0 di i!,
rep(719) = 54321.

H. Lenstra, Profinite Fibonacci numbers, EMS Newsletter ’06



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A = {0, 1, X, X + 1}
Q numeration basis finite alphabet
R substitutive

Gaussian int. abstract repB(P), P ∈ F2[X] is
C Ostrowski system a finite word

Fq[X] factorial system
β-expansions with T ⊆ F2[X]

vectors continued fractions repB(T ) is a
of these canonical number sys. language over A

...
...

“Polynomial base”, e.g., B = X2 + 1, F2 = Z/2Z

P =
∑ℓ

i=0 Ci Bi with degCi < degB,

X6 + X5 + 1 = 1.B3 + (X + 1).B2 + 1.B + X.B0



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence
Q numeration basis
R substitutive

Gaussian int. abstract
C Ostrowski system

Fq[X] factorial system
β-expansions

vectors continued fractions
of these canonical number sys.

...
...

numbers formal languages
arithmetic/ ⇔ theory
algebraic syntactical
properties properties
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OUTLINE OF THIS TALK

◮ Sets of integers with an integer base
◮ Multidimensional setting
◮ Sets of reals with an integer base
◮ Moving to non-standard systems

——————————————————————
◮ Transcendence of real numbers
◮ Some results about primes
◮ Adamczewski’s positive view on k-recognizable sets



SETS OF INTEGERS WITH AN INTEGER BASE1/10

Sets of integers having a somehow simple description

DEFINITION

A set X ⊂ N is k-recognizable, if repk(X) is a regular language.

A 2-RECOGNIZABLE SET

X = {n ∈ N | ∃i, j ≥ 0 : n = 2i + 2j} ∪ {1}

A B C D

0 0 0 0, 1

1 1 1

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, . . .

1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 10000, 10001, . . .



SETS OF INTEGERS WITH AN INTEGER BASE2/10

PROUHET–THUE–MORSE SET

{n ∈ N | s2(n) ≡ 0 mod 2}
1

1

0 0

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, . . .

ε, 11, 101, 110, 1001, 1010, 1100, 1111, 10001, 10010, . . .

THE SET OF POWERS OF2

rep2({2i | i ≥ 0}) = 10∗

1, 2, 4, 8, 16, 32, 64, . . .



SETS OF INTEGERS WITH AN INTEGER BASE3/10

AN ULTIMATELY PERIODIC SET, E.G., 4N + 3

0

1

2 3
0

1 0
1

0

1

0

1

3, 7, 11, 15, 19, 23, 27, 31, . . .

EXERCISE

Let k ≥ 2. Show that any arithmetic progression pN + q is
k-recognizable (and consequently any ultimately periodic set).

B. Alexeev, Minimal dfas for testing divisibility, JCSS’04



SETS OF INTEGERS WITH AN INTEGER BASE4/10

QUESTION

Does recognizability depends on the choice of the base ?
Is a 2-recognizable set also 3-recognizable or 4-recognizable ?

EXERCISE

Let k, t ≥ 2. Show that X ⊂ N is k-recognizable
IFF it is kt-recognizable. 0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11

Powers of 2 in base 3 :

2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221,

2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021,

20122210112, 111022121001, 222122012002, 1222021101011,

10221112202022, 21220002111121, 120210012000012, . . .



SETS OF INTEGERS WITH AN INTEGER BASE5/10

Two integers k, ℓ ≥ 2 are multiplicatively independent
if km = ℓn ⇒ m = n = 0, i.e., if logk/ log ℓ is irrational.

COBHAM ’ S THEOREM (1969)

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is ultimately periodic.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS ’94.



SETS OF INTEGERS WITH AN INTEGER BASE6/10

Some consequences of Cobham’s theorem from 1969:

◮ k-recognizable sets are easy to describe but non-trivial,
◮ motivates characterizations of k-recognizability,
◮ motivates the study of “exotic” numeration systems,
◮ generalizations of Cobham’s result to various contexts:

multidimensional setting, logical framework, extension to
Pisot systems, substitutive systems, fractals and tilings,
simpler proofs, . . .

B. Adamczewski, J. Bell, G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès,
J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, M.-I. Cortez, . . .



SETS OF INTEGERS WITH AN INTEGER BASE7/10

A POSSIBLE APPLICATION

The set of powers of 2 or the Thue–Morse set are
2-recognizable but NOT 3-recognizable.

X = {x0 < x1 < x2 < · · · } ⊆ N

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞

(xi+1 − xi).

Following G. Hansel, first part of the proof of Cobham’s
theorem is to show that X is syndetic, i.e., DX < +∞.

GAP THEOREM (COBHAM ’72)

Let k ≥ 2. If X ⊆ N is a k-recognizable infinite subset of N,
then either RX > 1 or DX < +∞.

For instance, {nt | n ≥ 0} is k-recognizable for no k ≥ 2.
S. Eilenberg, Automata, Languages, and Machines, 1974.



SETS OF INTEGERS WITH AN INTEGER BASE8/10

• Logical characterization of k-recognizable sets

BÜCHI–BRUYÈRE THEOREM

A set X ⊂ Nd is k-recognizable IFF it is definable by a first order
formula in the extended Presburger arithmetic 〈N,+, Vk〉.

Vk(n) is the largest power of k dividing n ≥ 1, Vk(0) = 1.

ϕ1(x) ≡ V2(x) = x

ϕ2(x) ≡ (∃y)(V2(y) = y) ∧ (∃z)(V2(z) = z) ∧ x = y + z

ϕ3(x) ≡ (∃y)(x = y + y + y + y + 3)

RESTATEMENT OFCOBHAM ’ S THM.

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is definable in 〈N,+〉.



SETS OF INTEGERS WITH AN INTEGER BASE9/10

• Automatic characterization of k-recognizable sets

THEOREM (COBHAM 1972) – UNIFORM TAG SEQUENCES

A set X is k-recognizable / k-automatic IFF its characteristic
sequence is generated through a k-uniform morphism
+ a coding.

g :















A 7→ AB
B 7→ BC
C 7→ CD
D 7→ DD

f :















A 7→ 0
B 7→ 1
C 7→ 1
D 7→ 0

g(A) = AB, g2(A) = ABBC, g3(A) = ABBCBCCD, . . .

gω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·
w = f (gω(A)) = 01111110111010001110100010000000· · ·
feed a DFAO with k-ary rep. ,∀n ≥ 0, wn = τ(q0 · repk(n))



SETS OF INTEGERS WITH AN INTEGER BASE10/10

ANOTHER EXAMPLE (THUE–MORSE)

T = {n ∈ N | s2(n) ≡ 0 mod 2} A B
1

1

0 0

g : A 7→ AB, B 7→ BA, f : A 7→ 1, B 7→ 0

f (gω(A)) = 10010110011010010110100110010110· · ·

J.-P. Allouche, J. Shallit, Cambridge Univ. Press, 2003.



MULTIDIMENSIONAL SETTING 1/2

k = 2, d = 2

rep2

(

5
35

)

=

(

000101
100011

)

, Alphabet {
(

0
0

)

,

(

0
1

)

,

(

1
0

)

,

(

1
1

)

}

One can easily define k-recognizable subsets of Nd.

COBHAM–SEMENOV’ T HEOREM (1977)

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ Nd is k-rec. AND ℓ-rec. IFF X is definable in 〈N,+〉

Natural extension of ultimate periodicity :
◮ definability in 〈N,+〉,
◮ semi-linear sets,
◮ Muchnik’s local periodicity (TCS’03)



MULTIDIMENSIONAL SETTING 2/2

A 2-recognizable/2-automatic set in N2

O. Salon, Suites automatiques à multi-indices, Sém TN Bord. , 1986–1987.



SETS OF REALS WITH AN INTEGER BASE1/2

rep2(π) = 11⋆ 0010010000111111011010101000100010000· · ·

THEOREM (BOIGELOT–JODOGNE–WOLPER’05)

If X ⊆ Rd is first-order definable in 〈R, Z,+, 0, <〉, then X written
in base k ≥ 2 is recognizable by a weak deterministic RVA
(Büchi automaton accepting all the encodings).

THEOREM (BOIGELOT–BRUSTEN’09)

Let k, ℓ ≥ 2 be multiplicatively independent integers. If X ⊆ R is
both k- and ℓ-recognizable by two weak deterministic RVA, then
it is definable in 〈R, Z,+, 0, <〉

Extension to Rd : B. Boigelot, J. Brusten, J. Leroux, CADE’09, LNCS 5663.

Also see B. Adamczewski, J. P. Bell, An analogue of Cobham’s thm. for fractals, to appear TAMS.



SETS OF REALS WITH AN INTEGER BASE2/2

A BÜCHI AUTOMATON ACCEPTING {2n + (0, 4/3) | n ∈ Z}

1

3

2 4

5

6

7

0

1

0

1

⋆

⋆

1
0

1 0

0

1

0

0, 1

For instance 3/2 is encoded by 0+1 ⋆ 10ω ∪ 0+1 ⋆ 01ω.
3

⋆−→ 6 : odd integer part 2
⋆−→ 4 : even integer part

∑

+∞
i=1 4−i = 1/3 corresponds to the cycle {5, 6}.



MOVING TO NON-STANDARD SYSTEMS1/9

Recap: a set X is k-recognizable IFF its characteristic word is
generated using a k-uniform morphism.

From k-automatic words to . . . morphic/substitutive words
{automatic words} ( {morphic words}

TRIBONACCI WORD

g :







A 7→ AB
B 7→ AC
C 7→ A

f :







A 7→ 0
B 7→ 1
C 7→ 0

g(A) = AB, g2(A) = ABAC, g3(A) = ABACABA, . . .

gω(A) = ABACABAABACABABACABAABAC · · ·
f (gω(A)) = 010001001000101000100100· · ·

B. Tan, Z.-Y. Wen, Some properties of the Tribonacci sequence, Europ. J. Combin. ’07



MOVING TO NON-STANDARD SYSTEMS2/9

Rauzy fractal

G. Rauzy, Nombres algébriques et substitutions, BSMF’82
V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, INTEGERS’05
V. Berthé, A. Siegel, J. Thuswaldner, Substitutions, Rauzy fractals and tilings, Chap. 4 in Combinatorics, Automata
and Number Theory, CUP 2010.



MOVING TO NON-STANDARD SYSTEMS3/9

SOMETHING MORE NASTY ?

g :







A 7→ ABCC
B 7→ ε
C 7→ BA

f :







A 7→ 010
B 7→ 1
C 7→ ε

REMARK

We can always assume that f is a coding (letter-to-letter) and
g is a non-erasing morphism

A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, ’68
J.-P. Allouche, J. Shallit, CUP’03
J. Honkala, On the simplification of infinite morphic words, TCS’09



MOVING TO NON-STANDARD SYSTEMS4/9

From k-automatic words to . . . morphic/substitutive words
From k-recognizable subsets of N to . . . substitutive sets

f (gω(A)) = 010001001000101000100100· · ·
Easy to generate the characteristic sequence of
the substitutive set {1, 5, 8, 12, 14, 18, 21, . . .}

We still have a notion of “automaticity”:

MAES–R. (JALC 2002)

An infinite word w is morphic IFF there exists an abstract
numeration system S such that w is S-automatic.

P. Lecomte, R., Numeration systems on a regular language, TOCS’01.
P. Lecomte, R., Abstract numeration systems, Chap. 3 in Combinatorics, Automata and Number Theory, CUP 2010.



MOVING TO NON-STANDARD SYSTEMS5/9

An abstract numeration system is a regular language L ⊂ A∗

genealogically ordered where the alphabet A is totally ordered.

L = a∗b∗, a < b

ε a b aa ab bb aaa aab abb · · ·
0 1 2 3 4 5 6 7 8 · · · �

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

#b

#a

valS(apbq) =
1
2
(p + q)(p + q + 1) + q =

(

p + q + 1
2

)

+

(

q
1

)

Katona, Lehmer, Fraenkel, Charlier, R., Steiner,. . .

feed a DFAO with k-ary rep. ,∀n ≥ 0, wn = τ(q0 · repS(n))

Two complementary formalisms:
morphisms and numeration systems



MOVING TO NON-STANDARD SYSTEMS6/9

val(apbq) modulo 8



MOVING TO NON-STANDARD SYSTEMS7/9

THEOREM (P. LECOMTE, M.R.)

Let S be an abstract numeration system.
Any ultimately periodic set is S-recognizable.

THEOREM (D. KRIEGER et al. TCS’09)

Let L be a genealogically ordered regular language.
Any periodic decimation in L gives a regular language.
This result does not hold anymore if regular is replaced by
context-free.



MOVING TO NON-STANDARD SYSTEMS8/9

Matrix associated with a morphism
(≡ adjacency matrix of the associated automaton)

TRIBONACCI MORPHISM

g : A 7→ AB, B 7→ AC, C 7→ A
g2 : A 7→ ABAC, B 7→ ABA, C 7→ AB
g3 : A 7→ ABACABA, B 7→ ABACAB, C 7→ ABAC

M =





1 1 1
1 0 0
0 1 0



 , M2 =





2 2 1
1 1 1
1 0 0



 , M3 =





4 3 2
2 2 1
1 1 1





αT ≃ 1.83929

Note: all letters have an occurrence in gω(A).

Primitive (or irreducible, i.e., strongly connected) components
→ Perron–Frobenius theory → dominating eigenvalue



MOVING TO NON-STANDARD SYSTEMS9/9

f (gω(A)) = 010001001000101000100100· · ·
the set {1, 5, 8, 12, 14, 18, 21, . . .} is αT -substitutive (αT ≃ 1.839).

“M ETA-THEOREM” F. DURAND

Let α, β > 1 be two multiplicatively independent Perron
numbers. An infinite word is both α-substitutive and
β-substitutive IFF it is ultimately periodic.

A good substitution has a primitive sub-substitution having the
same dominating eigenvalue.

F. Durand, Sur les ensembles d’entiers reconnaissables, JTNB ’98.
F. Durand, A generalization of Cobham’s theorem, TOCS’98.
F. Durand, A thm. of Cobham for non primitive substitutions, Acta Arith .’02.
F. Durand, R., On Cobham’s theorem, to appear Handbook (AutoMathA project).



TRANSCENDENCE OF REAL NUMBERS1/6

r ∈ (0, 1), k ∈ N \ {0, 1}

r =

+∞
∑

i=1

ci k−i c1c2c3 · · ·

Factor (or subword) complexity function : pw(n) is the number of
distinct factors of length n occurring in w.

1 ≤ pw(n) ≤ (#A)n and pw(n) ≤ pw(n + 1)

MORSE–HEDLUND THEOREM

The following conditions are equivalent:
◮ The word w is ultimately periodic, i.e., w = xyω .
◮ The complexity function pw is bounded by a constant,
◮ There exists m ∈ N such that pw(m) = pw(m + 1).



TRANSCENDENCE OF REAL NUMBERS2/6

COBHAM 1972

If w is k-automatic, then pw is O(n).

PANSIOT (LNCS 172, 1984)

If w is pure morphic (no coding) and not ultimately periodic,
then there exist constants C1, C2 such that
C1f (n) ≤ pw(n) ≤ C2f (n) where f (n) ∈ {n, n log n, n log logn, n2}.

J.-P. Allouche, Sur la complexité des suites infinies, BBMS ’94,
J. Cassaigne, F. Nicolas, Factor complexity, Chap. 4 in Combinatorics, Automata and Number Theory, CUP 2010.



TRANSCENDENCE OF REAL NUMBERS3/6

THUE–MORSE WORD

t = 10010110011010010110100110010110· · ·

pt(n) =























1 if n = 0
2 if n = 1
4 if n = 2

4n − 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m

1000 2000 3000 4000

2000

4000

6000

8000

10000

12000

S. Brlek, Enumeration of factors in the Thue-Morse word, DAM’89
A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL’88



TRANSCENDENCE OF REAL NUMBERS4/6

COBHAM ’ S CONJECTURE

Let α be an algebraic irrational real number. Then the k-ary
expansion of α cannot be generated by a finite automaton.

Following this question :

HARTMANIS–STEARNS (TRANS. AMS’65)

Does it exist an algebraic irrational real number computable in
linear time by a (multi-tape) Turing machine? i.e., the first n
digits of the representation computable in O(n) operations.



TRANSCENDENCE OF REAL NUMBERS5/6

J. P. Bell, B. Adamczewski, Automata in Number Theory, to appear Handbook (AutoMathA project).

ADAMCZEWSKI–BUGEAUD’07

Let k ∈ N \ {0, 1}. The factor complexity of the k-ary expansion
w of an algebraic irrational real number satisfies

lim
n→+∞

pw(n)

n
= +∞.

Let k ≥ 2 be an integer.
If α is an irrational real number whose k-ary expansion w has
factor complexity in O(n), then α is transcendental.
So in particular, if w is k-automatic.



TRANSCENDENCE OF REAL NUMBERS6/6

BUGEAUD–EVERTSE’08

Let k ≥ 2 be an integer and ξ be an algebraic irrational real
number with 0 < ξ < 1. Then for any real number η < 1/11, the
factor complexity p(n) of the k-ary expansion of ξ satisfies

lim
n→+∞

p(n)

n(logn)η
= +∞.



SOME RESULTS ABOUT PRIMES1/2

The following slides are based on a talk given by B. Adamczewski in Leiden (Numeration, June 2010)

M INSKY–PAPERT 1966

The set P of prime numbers is not k-recognizable.

Since n! + 2, . . . , n! + n are composite numbers, DP = +∞
Since pn ∈ (n ln n, n ln n + n ln ln n), RP = 1
E. Bach, J. Shallit, Algorithmic number theory, MIT Press

SCHÜTZENBERGER1968

No infinite subset of the set of prime numbers can be
recognized by a finite automaton.



SOME RESULTS ABOUT PRIMES2/2

FOUVRY–MAUDUIT 1996

Given a non-empty automatic set X associated with a strongly
connected automaton, there exists r > 0 such that X contains
infinitely many r-almost primes (product of at most r primes).

In 1968, Gelfond asked about the collection of prime numbers
that belong to the Thue–Morse set

MAUDUIT–RIVAT (ANNALS OF MATH . 2010)

lim
N→+∞

#{n ∈ P | n ≤ N and s2(n) ≡ 0 mod 2}
#{n ∈ P | n ≤ N} =

1
2
.



Negative answers :-(
◮ expansions of algebraic irrational real numbers

are not automatic,
◮ the set P is not k-recognizable.



POSITIVE VIEW ON k-RECOGNIZABLE SETS1/5

Let K be a field, a(n) ∈ KN be a K-valued sequence and
k1, . . . , kd ∈ K. The sequence a(n) satisfies a linear recurrence
over K if

a(n) = k1a(n − 1) + · · · + kd a(n − d), ∀n >>

SKOLEM–MAHLER–LECH THEOREM

Let a(n) be a linear recurrence over a field of characteristic 0.
Then the zero set

Z(a) = {n ∈ N | a(n) = 0} is ultimately periodic.

REMARK

If K is a finite field, a(n) (and so Z(a)) is trivially ultimately
periodic.

T. Tao, Effective Skolem–Mahler–Lech theorem in Structure and Randomness, AMS’08.



POSITIVE VIEW ON k-RECOGNIZABLE SETS2/5

If K is an infinite field of positive characteristic. . .

LECH’ S EXAMPLE

a(n) := (1 + t)n − tn − 1 ∈ Fp(t).

The sequence a satisfies a linear recurrence, for n > 3

a(n) = (2 + 2t) a(n − 1) + (1 + 3t + t2) a(n − 2)− (t + t2) a(n − 3).

We have
a(pj) = (1 + t)pj − tpj − 1 = 0

while a(n) 6= 0 if n is not a power of p, and so we obtain that

Z(a) = {1, p, p2, p3, . . .}.
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DERKSEN’ S EXAMPLE

Consider the sequence a(n) in Fp(x, y, z) defined by

a(n) := (x + y + z)n − (x + y)n − (x + z)n − (y + z)n + xn + yn + zn.

It can be proved that :
◮ The sequence a(n) satisfies a linear recurrence.
◮ The zero set is given by

Z(a) = {pn | n ∈ N} ∪ {pn + pm | n, m ∈ N}.

Z(a) can be more pathological than in characteristic zero
but. . . think about p-recognizable sets !
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THEOREM (H. DERKSEN’07)

Let a(n) be a linear recurrence over a field of characteristic p.
Then the set Z(a) is a p-recognizable set.

Derksen gave a further refinement of this result:
not all p-recognizable sets are zero sets of linear recurrences
defined over fields of characteristic p.
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THEOREM (ADAMCZEWSKI–BELL’2010)

Let K be a field and Γ be a finitely generated subgroup of K∗.
Consider the linear equations

a1X1 + · · · + adXd = 1

where a1, . . . , ad ∈ K and look for solutions in Γd.
The set of solutions is a “p-automatic subset of Γd”
(not defined here).

If K is a field of characteristic 0, many contributions due to
Beukers, Evertse, Lang, Mahler, van der Poorten, Schlickewei
and Schmidt.

J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group,
Annals of Math. 2002.
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◮ Connection with combinatorial game theory
◮ Abridged bibliographic notes
◮ A list of open problems
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How many times did the name Cobham appear in this talk ?
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