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Résumé

Cette thèse concerne la Conjecture S-adique qui stipule l’existence d’une ver-
sion forte de S-adicité dans les suites qui serait équivalente à une complexité
p (en facteurs) sous-linéaire. Une suite w à valeurs dans un alphabet fini
A est dite S-adique si S est un ensemble de morphismes permettant de dé-
substituer indéfiniment w. Sans condition supplémentaire, la complexité en
facteurs d’une suite S-adique peut être arbitrairement grande. Cependant, de
nombreuses familles de suites bien connues admettent des développements S-
adiques avec Card(S) < +∞ et sont également de complexité sous-linéaire.
La conjecture S-adique apparaît alors naturellement comme une tentative de
relier ces deux notions.

Dans cette thèse, nous étudions en détails une méthode constructive basée
sur les graphes de Rauzy et qui produit un développement S-adique des suites
uniformément récurrentes de complexité sous-linéaire. Par ce biais, nous exhi-
bons certaines propriétés nécessaires (mais pas suffisantes) du développement
obtenu. Dans le cas particulier des suites uniformément récurrentes dont la
différence première de complexité est majorée par deux, cette méthode est
poussée à l’extrême, si bien que les conditions nécessaires obtenues en de-
viennent suffisantes.

Mots-clés : S-adique, complexité, système dynamique symbolique, sous-
shift, graphe de Rauzy
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Abstract

This thesis is about the S-adic conjecture which suppose the existence of a
stronger notion of S-adicity that would be equivalent to having a sub-linear
factor complexity. A sequence w over a finite alphabet A is said to be S-adic
if S is a set of morphisms that allows to indefinitely de-substitute w. Without
additional condition, the factor complexity of an S-adic sequence might be
arbitrarily large. However, many well-known families of sequences have a sub-
linear complexity and admit some S-adic expansions with Card(S) < +∞.
The S-adic conjecture is therefore a natural attempt to link these two notions.

In this thesis, we study in detail a method based on Rauzy graphs that
provides an S-adic expansion of uniformly recurrent sequences with sub-linear
complexity. By this way we are able to determine some necessary (but not
sufficient) conditions of these expansions. In the particular case of uniformly
recurrent sequences with first difference of complexity bounded by two, the
method is studied with even much more details, which makes the necessary
conditions sufficient.

Keywords: S-adic, factor complexity, symbolic dynamical system, sub-
shift, Rauzy graph
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Introduction (version française)

Un outil classique dans l’étude des suites (ou mots infinis) à valeurs dans un
ensemble fini A (généralement appelé alphabet) est la fonction de complexité
p qui compte le nombre p(n) de blocs (généralement appelés facteurs) de
longueur n qui apparaissent dans la suite. Cette fonction permet de mesurer
le désordre de la suite. Par exemple, elle permet de caractériser l’ensemble
des suites ultimement périodiques, celles-ci étant exactement celles pour les-
quelles p(n) ≤ n pour une longueur n (voir [MH40]). Par extension, cette fonc-
tion peut évidemment se définir pour n’importe quel ensemble de mots (géné-
ralement appelé langage) ou n’importe quel système dynamique symbolique
(ou encore sous-shift). Pour des survols sur la complexité, voir [All94, Fer99]
ou le Chapitre 4 de [BR10].

La fonction de complexité permet également de définir la classe des suites
sturmiennes comme étant l’ensemble des suites apériodiques de complexité
minimale p(n) = n+1 pour toute longueur n ; il s’agit donc de suites binaires
(p(1) = 2). Celles-ci apparaissent dans divers domaines des mathématiques
et une grande littérature leur est consacrée (voir le Chapitre 1 de [Lot02]
et le Chapitre 6 de [Fog02] pour des survols). Elles possèdent notamment
plusieurs définitions équivalentes : elles sont par exemple les suites obtenues
par un codage naturel de rotations d’angle irrationnel ou encore les suites
apériodiques équilibrées. Par ailleurs, il est bien connu que les sous-shifts
qu’elles engendrent peuvent être obtenus par itérations successives des deux
morphismes (ou substitutions) R0 et R1 définis, si l’alphabet A est {0, 1},
par R0(0) = 0, R0(1) = 10, R1(0) = 01 et R1(1) = 1 (voir [MH40]). Pour
obtenir non pas les sous-shifts, mais les suites elles-mêmes, il est nécessaire de
considérer les deux morphismes supplémentaires L0 et L1 définis par L0(0) =
0, L0(1) = 01, L1(0) = 10 et L1(1) = 1 (voir [MS93, BHZ06]). De manière
générale, une suite (resp. un sous-shift) obtenue par un tel procédé, c’est-à-
dire par itérations successives de morphismes appartenant à un ensemble S,
est appelée suite (resp. sous-shift) S-adique, en rapport avec la terminologie
des systèmes adiques introduite par Vershik (voir par exemple [VL92]).

L’utilisation de morphismes dans l’étude des suites ou, plus générale-
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2 Introduction (version française)

ment, en combinatoire des mots n’est pas nouvelle. Au début du 20ème siècle,
A. Thue utilisait déjà ce procédé, principalement afin d’étudier les répéti-
tions dans les mots (voir [Thu06, Thu12]). Par ailleurs, le cas où S contient
un unique morphisme (auquel cas on parle de suite purement substitutive
ou de suite purement morphique) a été largement étudié, aussi bien par
rapport aux propriétés combinatoires des suites ainsi obtenues (voir entre
autres [Cas97, Cas03, CN03, Dev08, Dur98a, Dur98b, Dur02, ELR75, ER81,
ER83, Fer95, NP09, Sie05, Pan84, RW02, Hon10]) que par rapport aux
propriétés ergodiques et topologiques des sous-shifts engendrés (voir entre
autres [DL06, Dur00, DHS99, Hos86, HP89, Hos00, Que87]. Par exemple,
J.-J. Pansiot [Pan84] a complétement caractérisé les comportements asymp-
totiques de la complexité de ces suites. J. Cassaigne a également développé
des techniques plus fines basées sur certains facteurs (appelés facteurs spé-
ciaux) et permettant de calculer leur complexité exacte (voir [Cas97, Klo11]).

À propos de la conjecture S-adique

Il existe bien d’autres catégories de suites qui sont classiquement étudiées.
Parmi celles-ci, on trouve des généralisations des suites sturmiennes, telles
que les codages de rotations (voir par exemple [Ada02, Ada05, AS07, AB98,
Did98a, Did98b, Rot94]), les codages d’échanges d’intervalles (voir par exem-
ple [Daj02, Did97, FHZ01, FHZ03, FHZ04, FZ08, FZ10, GMP03, KBC10,
LN98, LN00, LN01, Rau79, Vui07]), les suites d’Arnoux-Rauzy (voir par
exemple [AR91, CFZ00, CC06, CFM08, Che09, MZ02]) ou encore les suites
épisturmiennes (voir par exemple [Ber07, BdLDLZ08, GJ09, GLR09, JP02,
JV00, PV07, Ric03, Ric07]). On peut également rencontrer des suites au-
tomatiques (voir entre autres [AS03, ARS09, Mos96, NR07, RM02, Sha88,
Tap94, Tap96]), liées à la théorie des automates et aux morphismes ou en-
core des codages de rotations sur d’autres groupes compacts que R/Z (voir
par exemple [AB92, CK97, JK69, KP11, Kos98, RA96, Wil84]) ou encore des
suites de Kolakoski (voir [Dek97]). Un point intéressant est qu’une grande
partie de ces suites ont une complexité sous-linéaire, i.e., il existe une cons-
tante D telle que pour tout n ≥ 1, p(n) ≤ Dn. De plus, pour ces dernières,
on peut trouver un ensemble (généralement fini) S de morphismes tel que
la suite est S-adique (voir le Chapitre 2 pour plus de détails). Il est alors
naturel de se demander s’il existe un lien entre le fait d’être S-adique et le
fait d’avoir une complexité sous-linéaire. Ces deux notions ne peuvent claire-
ment pas être équivalentes puisque, grâce au travail de Pansiot, on sait qu’il
existe des suites purement substitutives de complexité quadratique. On peut
cependant imaginer une notion plus forte de S-adicité qui serait équivalente à
la complexité sous-linéaire. En d’autres termes, il faut trouver une condition
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C telle qu’une suite est de complexité sous-linéaire si et seulement si elle est
S-adique satisfaisant la condition C. Il s’agit là de la conjecture S-adique,
conjecture due à B. Host. À l’heure actuelle, nous ignorons totalement la
nature de la condition C. Il peut s’agir d’une condition sur l’ensemble S des
morphismes, ou d’une condition sur la manière dont celles-ci doivent se suc-
céder dans la représentation S-adique. Dans cette thèse, nous donnerons des
exemples étayant l’idée que la réponse est très certainement une combinaison
des deux (voir aussi [DLR]), confirmant ainsi la difficulté intrinsèque de la
conjecture.

Le but de cette thèse est précisément l’étude de cette conjecture. La
conjecture S-adique est étayée par l’existence de représentations S-adiques
de certaines suites bien connues (notamment pour les suites sturmiennes,
codages de rotations, codages d’échanges d’intervalles, etc.). Cependant, ces
dernières dépendent fortement de la nature des suites initiales et il est donc
difficile d’extraire des propriétés générales à partir de celles-ci. De plus, la
caractérisation des suites de complexité sous-linéaire qui sont purement sub-
stitutives (obtenue par Pansiot) ne se généralise qu’en une condition suffisante
pour les suites S-adiques (voir [Dur00, Dur03]) et bon nombre de conditions
qu’on voudrait naturelles ne sont mêmes pas des conditions suffisantes à ga-
rantir une complexité sous-linéaire (voir la Section 2.3.2 pour plus de détails).
Néanmoins, il existe un résultat dû à S. Ferenczi fournissant une méthode
générale qui, étant donnée une suite uniformément récurrente de complexité
sous-linéaire, permet de construire successivement les morphismes apparais-
sant dans la représentation S-adique (voir [Fer96]). Hormis le fait que le
nombre de morphismes ainsi créés est fini, nous ne savons presque rien de
ceux-ci. L’objectif premier de cette thèse était, dans le but de mieux cer-
ner la condition C, l’étude de ces morphismes et un de nos résultats est la
détermination de certaines de leurs propriétés (voir Chapitre 3).

L’algorithme produisant les morphismes est basé sur une utilisation mas-
sive des graphes de Rauzy. Ceux-ci sont des outils puissants pour étudier la
combinatoire des suites ou des sous-shifts. Par exemple, ils sont à la base
d’un puissant résultat de Cassaigne prouvant qu’une suite est de complexité
sous-linéaire si et seulement si la différence première de sa complexité est
borné (voir [Cas96]). Ils ont également permis à T. Monteil d’améliorer un
résultat de M. Boshernitzan (voir [Bos85]) en donnant une meilleur borne sur
le nombre de mesures ergodiques invariantes du système (voir le Chapitre 5
de [Mon05] ou le chapitre 7 de [BR10]). Cependant, ces graphes sont souvent
difficiles à décrire dès que la complexité dépasse un niveau vraiment bas. Pour
cette raison, l’extraction de propriétés générales se révèle être un problème
des plus complexes. En appliquant ces mêmes méthodes pour les sous-shifts
dont la différence première de complexité p(n + 1) − p(n) est inférieure à 2
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pour tout n, Ferenczi a tout de même prouvé que le nombre de morphismes
ainsi créés était inférieur à 327.

Grâce à une étude détaillée des graphes de Rauzy possibles pour ces com-
plexités, nous améliorons cette borne et montrons l’existence d’un ensemble
S de 5 morphismes tels que tout sous-shift minimal dont la différence pre-
mière de complexité est majoré par 2 est S-adique (voir Chapitre 4). Plus
précisément, nous donnons une condition nécessaire et suffisante sur les com-
positions d’éléments de S pour obtenir un tel sous-shift (voir Chapitre 5).
Cette caractérisation contient celle des sous-shifts minimaux de complexité
2n, dont certains avaient été étudié par G. Rote [Rot94].

Au delà de la conjecture

Un des grands intérêts des représentations S-adiques est qu’elles fournissent
une interprétation arithmétique des suites étudiées et, dans de nombreux cas,
un développement généralisé en fractions continues. Par exemple, la suite de
morphismes qui apparaît dans le cas des suites sturmiennes dépend du déve-
loppement en fractions continues classique de l’angle de la rotation correspon-
dante. Ainsi, cela permet par exemple de caractériser les suites sturmiennes
primitives morphiques (voir Definition 1.3.2) comme étant exactement celles
codant des rotations d’angles quadratiques α de points de Q(α) (voir [Par99]).
Ce développement en fractions continues permet également de calculer, par
exemple, la fréquences des facteurs de la suite (voir [AB98]) ou encore l’expo-
sant critique de celle-ci, i.e., la plus grande puissance fractionnaire qui peut
apparaître dans la suite (voir [Van00]).

Dans le cas d’une rotation d’angle α dont le codage est réalisé par rap-
port à la partition [0, 1 − β), [1 − β, 1) de [0, 1), la représentation S-adique
dépend également d’un développement généralisé en fractions continues de
(α, β) (voir [Did98a]). Par ailleurs, comme expliqué dans [BCF99] (voir éga-
lement [Ada02]), ces suites sont intimement liées aux codages d’échanges
de trois intervalles. Ces suites dépendent de deux paramètres α et β (la
longueur de deux des intervalles) qui peuvent être approximés simultané-
ment via un algorithme basé sur l’induction de Rauzy (voir [Rau79, Rau77]).
Dans [FHZ01, FHZ03, FHZ04], les auteurs développent également un autre
algorithme permettant, par exemple, de donner une caractérisation combina-
toire des suites de complexité 2n+1 qui sont des codages naturels d’échanges
de trois intervalles. Comme dans le cas des codages de rotations, cet algo-
rithme est ultimement périodique si et seulement si les deux paramètres de
l’échange appartiennent au même corps quadratique.

Les suites dites d’Arnoux-Rauzy sont un autre exemple de suites de com-
plexité 2n+1. Celles-ci jouissent de propriétés combinatoires supplémentaires
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généralisant celles des suites sturmiennes. La plus célèbre suite d’Arnoux-
Rauzy est sans aucun doute la suite de Tribonacci, point fixe du morphisme
τ défini par τ(0) = 01, τ(1) = 02 et τ(2) = 0. Cette suite est liéée à une
rotation sur le tore T2 et il a été conjecturé qu’il en était de même pour toute
suite d’Arnoux-Rauzy. Dans [CFZ00], les auteurs donnent un contre-exemple
à cette conjecture. Dans [CFM08], les auteurs exhibent une classe de suites
d’Arnoux-Rauzy dont les sous-shifts associés sont (en mesure) faiblement
mélangeants, ceux-ci ne pouvant alors pas être conjugués à des rotations.
Par contre, il est prouvé dans [AR91] que toutes les suites d’Arnoux-Rauzy
peuvent être interprétées comme des codages d’échanges de 6 intervalles. Par
une étude de leurs graphes de Rauzy, les auteurs ont également obtenu un
développement S-adique de celles-ci (voir aussi [RZ00]). Celui-ci permet par
exemple, comme pour les suites sturmiennes, de calculer les fréquences des
facteurs (voir [WZ01]) de la suite ainsi que la fonction de récurrence quotient
(voir [CC06]).

Une autre classe de suites S-adiques est la classe des suites linéairement
récurrentes dont font partie les suites primitives substitutives (voir [Dur98a,
DHS99]). Ces suites sont de complexité sous-linéaire et F. Durand a mon-
tré dans [Dur00, Dur03] que ces suites correspondent exactement aux suites
S-adiques primitives et propres (voir les Definitions 1.3.10 et 1.3.11). En par-
ticulier, une suite sturmienne est linéairement récurrente si et seulement si
les coefficients de son développement en fraction continue sont bornés.

S-adicité à la Bratteli-Vershik

Dans [Bra72], O. Bratteli a introduit des graphes infinis découpés en niveaux
(désormais appelés diagrammes de Bratteli) permettant l’approximation de
C∗-algèbres. Dans une optique dynamique (transformation adique), A. Ver-
shik eut l’idée dans [Ver82] d’associer à un tel diagramme un ordre lexico-
graphique sur les chemins infinis dans ces diagrammes. Cet ordre est induit
par un ordre partiel sur les arcs entre deux niveaux consécutifs, ce dernier
pouvant alors être décrit par une matrice d’adjacence entre les deux niveaux
considérés, i.e., par un morphisme. Pour plus de détails, voir le Chapitre 6
de [BR10] et voir [War02] pour le lien entre les diagrammes de Bratteli et les
systèmes S-adiques.

Par un raffinement des constructions de Vershik, les auteurs de [HPS92]
ont démontré que tout système de Cantor minimal est topologiquement iso-
morphe à un système de Bratteli-Vershik (résultat déjà obtenu en mesure
par Vershik dans [Ver82]). Ces représentations à la Bratteli-Vershik sont in-
téressantes en dynamique, surtout dans les problèmes liés à la récurrence.
Mais, étant donné un système minimal de Cantor, il est en général diffi-
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cile d’en trouver une représentation de Bratteli-Vershik "canonique" (pour
des exemples, voir [DHS99]). Cependant, Ferenczi a montré que pour les
sous-shifts de complexité sous-linéaire, le nombre de morphismes lus dans le
diagramme de Bratteli correspondant est fini (dans un contexte mesuré à la
Vershik). En particulier, il a obtenu une majoration explicite du rang et dé-
montré l’absence de mélange fort. Par ailleurs, Durand a montré que, dans le
cas des sous-shifts linéairement récurrents, la suite de morphismes apparais-
sant dans la représentation S-adique est exactement la suite de morphismes
lus sur le diagramme de Bratteli. De plus, contrairement au cas sous-linéaire
de Ferenczi, la conjugaison entre le sous-shift et le système de Bratteli-Vershik
se fait de manière topologique.

Organisation de la thèse

Après l’établissement des notations et le rappel des définitions au Chapitre 1,
le Chapitre 2 a pour but de faire un tour d’horizon de la S-adicité en géné-
ral. Ainsi, nous rappelons et comparons les résultats connus pour les suites
purement substitutives, les suites substitutives (c’est-à-dire images par un
morphisme d’une suite purement substitutive) et les suites S-adiques. Nous y
présentons également quelques représentations S-adiques bien connues, ainsi
que des résultats connus fournissant des conditions suffisantes à une com-
plexité sous-linéaire. Nous considérons enfin une liste d’exemple permettant
d’emblée de rejeter certaines idées "naïves" à propos de la conjecture.

Le Chapitre 3 attaque la conjecture dans le cas général. Ainsi, nous y
étudions les morphismes construits sur base des graphes de Rauzy, ce qui nous
permet par exemple de donner une caractérisation S-adique des sous-shifts
minimaux. Par ailleurs, nous y explicitons quelques conditions nécessaires
sur ces morphismes et démontrons à travers des exemples que celles-ci ne pas
suffisantes. La majorité de ce chapitre se trouve également dans [Ler12].

Dans le Chapitre 4, nous étudions en détails les graphes de Rauzy et
leurs évolutions correspondant à une différence première de complexité ma-
jorée par 2. Ceci nous permet de calculer explicitement tous les morphismes
ainsi obtenues et nous montrons en fait que tous peuvent se décomposer en
des produits de morphismes et que seuls 5 morphismes de base sont néces-
saires à ces décompositions. Au Chapitre 5, nous améliorons le résultat obtenu
au Chapitre 4 par une étude encore plus poussée des évolutions de graphes.
Ceci nous permet d’obtenir la caractérisation annoncée. Les développements
S-adiques obtenus permettent également de décrire explicitement leurs repré-
sentations de Bratteli-Vershik. Cependant, le nombre de notions à introduire
pour présenter ce résultat paraît trop important par rapport à la portée du
résultat. Plus de détails pourront être trouvés dans [DL].
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A classical tool in the study of sequences (or infinite words) with values in
a finite set A (generally called alphabet) is the complexity function p which
counts the number p(n) of blocks (generally called factors) of length n that
appear in the sequence. Thus this function allows to measure the regular-
ity in the sequence. For example, it allows to describe all ultimately pe-
riodic sequences as exactly being those for which p(n) ≤ n for a length n
(see [MH40]). By extension, this function can obviously be defined for any
set of words (generally called language) or any symbolic dynamical system
(or subshift). For surveys over the complexity function, see [All94, Fer99] or
Chapter 4 of [BR10].

The complexity function can also be used to define the class of Sturmian
sequences: it is the family of aperiodic sequences with minimal complexity
p(n) = n + 1 for all lengths n. Those sequences are therefore defined over a
binary alphabet (because p(1) = 2) and a large literature is devoted to them
(see Chapter 1 of [Lot02] and Chapter 6 of [Fog02] for surveys). In particular,
these sequences admit several equivalent definitions such as natural codings
of rotations with irrational angle or aperiodic balanced sequences. Moreover,
it is well known that the subshift they generate can be obtained by successive
iterations of two morphisms (or substitutions) R0 and R1 defined (when the
alphabet A is {0, 1}) by R0(0) = 0, R0(1) = 10, R1(0) = 01 and R1(1) =
1 (see [MH40]). To generate not all Sturmian subshifts but all sturmian
sequences it is necessary to consider two additional morphisms L0 and L1

defined by L0(0) = 0, L0(1) = 01, L1(0) = 10 and L1(1) = 1 (see [MS93,
BHZ06]). In general, a sequence (or subshift) obtained by such a method,
that is, obtained by successive iterations of morphisms belonging to a set S,
is called an S-adic sequence (or subshift), accordingly to the terminology of
adic systems introduced by Vershik (see for instance [VL92]).

Using morphisms in the study of sequences, or more generally in combi-
natorics of words, is far from being new. At the beginning of 20th century,
A. Thue already used them, mainly in order to study repetitions in words
(see [Thu06, Thu12]). Moreover, the case where S contains a unique mor-

7
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phism (in which case we talk about purely morphic or purely substitutive
sequence) has been extensively studied both with respect to combinatorial
properties of these sequences (see for instance [Cas97, Cas03, CN03, Dev08,
Dur98a, Dur98b, Dur02, ELR75, ER81, ER83, Fer95, NP09, Sie05, Pan84,
RW02, Hon10]) and with respect to ergodic and topological properties of the
generated subshifts (see for instance [DL06, Dur00, DHS99, Hos86, HP89,
Hos00, Que87]). For example, J.-J. Pansiot [Pan84] completely characterized
all possible asymptotic behaviours of the complexity of these sequences. J.
Cassaigne also developed thinner techniques (based on some particular factors
called special factors) to compute their exact complexity (see [Cas97, Klo11]).

About the S-adic conjecture

There are many other families of sequences which are usually studied in
the literature. Among them one can find generalizations of Sturmian se-
quences, such as codings of rotations (see for instance [Ada02, Ada05, AS07,
AB98, Did98a, Did98b, Rot94]), codings of intervals exchanges (see for in-
stance [Daj02, Did97, FHZ01, FHZ03, FHZ04, FZ08, FZ10, GMP03, KBC10,
LN98, LN00, LN01, Rau79, Vui07]), Arnoux-Rauzy sequences (see for in-
stance [AR91, CFZ00, CC06, CFM08, Che09, MZ02]) or episturmian se-
quences (see for instance [Ber07, BdLDLZ08, GJ09, GLR09, JP02, JV00,
PV07, Ric03, Ric07]). One can also talk about automatic sequences (see
[AS03, ARS09, Mos96, NR07, RM02, Sha88, Tap94, Tap96]) linked to au-
tomata theory and morphisms or about codings of rotations over other com-
pact groups than R/Z (see for instance [AB92, CK97, JK69, KP11, Kos98,
RA96, Wil84]) or also about Kolakoski sequences (see [Dek97]). An interest-
ing point is that much of these sequences have a sub-linear complexity, i.e.,
there exist a constant D such that for all positive integers n, p(n) ≤ Dn. In
addition, we can usually associate a (generally finite) set S of morphisms to
these sequences in such a way that they are S-adic (see Chapter 2 for more
details). It is then natural to ask whether there is a connection between the
fact of being S-adic and the fact of having a sub-linear complexity. Both
notions clearly cannot be equivalents as, thanks to Pansiot’s work, there ex-
ist purely morphic sequences with a quadratic complexity. However, we can
imagine a stronger notion of S-adicity that would be equivalent to having a
sub-linear complexity. In other words, we would like to find a condition C
such that a sequence has a sub-linear complexity if and only if it is S-adic
satisfying the condition C. This problem is called the S-adic conjecture and
is due to B . Host. Up to now, we have no idea about the nature of the
condition C. It may be a condition on the set S of morphisms, or a con-
dition on the way in which they must occur in the sequence of morphisms.



9

In this thesis, we give examples supporting the idea that the answer should
be a combination of both (see also [DLR]), supporting the difficulty of the
conjecture.

The purpose of this thesis is precisely to study this conjecture. This con-
jecture is supported by the existence of S-adic representations of many well-
known sequences (such as Sturmian sequences, codings of rotations, codings
of intervals exchanges, etc.). However, these representations strongly depend
on the nature of the sequences which makes general properties difficult to
extract. In addition, the characterization of purely morphic sequences with
sub-linear complexity (obtained by Pansiot) can only be generalized into a
sufficient condition for S-adic sequences (see [Dur00, Dur03]) and many (a
priori natural) conditions over S-adic sequences are even not sufficient to
guarantee a sub-linear complexity (see Section 2.3.2 for more details). Nev-
ertheless, S. Ferenczi provided a general method that, given any uniformly
recurrent sequence with sub-linear complexity, produces an S-adic represen-
tation (see [Fer96]). Except that the number of morphisms occurring in that
S-adic representation is finite, we know almost nothing about them. The pri-
mary purpose of this thesis was, in order to better understand the condition
C, the study of these morphisms and one of our results is the determination
of some of their properties (see Chapter 3).

The algorithm that produces the morphisms is based on an extensive
use of Rauzy graphs. These graphs are powerful tools to study combinato-
rial properties of sequences or subshifts. For example, they are the basis of a
strong Cassaigne’s result proving that a sequence has a sub-linear complexity
if and only if the first difference of its complexity p(n+1)− p(n) is bounded
(see [Cas96]). They also allowed T. Monteil to improve a result due to M.
Boshernitzan (see [Bos85]) by giving a better bound on the number of er-
godic invariant measures of a subshift (see Chapter 7 of [BR10] or Chapter 5
of [Mon05]). However, these graphs are usually difficult to compute as soon
as the complexity exceeds a very low level. For this reason, the extraction
of properties of the S-adic representation from these graphs is usually hard.
Anyway, applying these methods to subshifts for which the difference of com-
plexity p(n + 1)− p(n) is no more than to 2 for every n, Ferenczi succeeded
to prove that the number of morphisms built in such a way is less than 327.

By analysing all possible Rauzy graphs, we managed to strongly improve
this bound and show the existence of a set S of 5 morphisms such that any
minimal subshift with first difference of complexity bounded by 2 is S-adic
(see Chapter 4). More precisely, we give a necessary and sufficient condition
on sequences in SN to be an S-adic representation of such a subshift (see
Chapter 5). This characterization contains the subshifts with complexity 2n,
some of which were studied by G. Rote [Rot94].
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Beyond conjecture

An interesting point of S-adic representations is that they provide an arith-
metical interpretation of the sequences and, in many cases, a generalized con-
tinued fraction development. For example, the sequence of morphisms that
occur in the case of Sturmian sequences is governed by the classical contin-
ued fraction expansion of the angle of the corresponding rotation. Thus, this
allows for example to characterize the Sturmian sequences that are primitive
morphic (see Definition 1.3.2 page 31) as being exactly those coding rotations
of quadratic angle α of points in Q(α) (see [Par99]). This continued fraction
expansion can also be used, for example, to compute frequencies of factors
(see [AB98]) or also the critical exponent of the sequence, i.e., the largest
fractional power that occurs in the sequence (see [Van00]).

In the case of a rotation of angle α whose coding is realized with re-
spect to the partition [0, 1 − β), [1 − β, 1) of [0, 1), the S-adic representa-
tion also depends on a generalized continued fraction development of (α, β)
(see [Did98a]). Moreover, as explained in [BCF99] (see also [Ada02]), these
sequences are intimately linked to codings of three intervals exchanges. These
sequences depend of two parameters α and β (the length of the two intervals)
that can be simultaneously approximated via an algorithm based on Rauzy
induction (see [Rau79, Rau77]). In [FHZ01, FHZ03, FHZ04], the authors
have developed another algorithm that allows for instance to give a combina-
torial characterization of sequences with complexity 2n+ 1 that are natural
codings of three intervals exchanges. As with codings of rotations, this al-
gorithm is ultimately periodic if and only if both parameters of the intervals
exchange belong to the same quadratic field.

Another example of sequences with complexity 2n + 1 are the so-called
Arnoux-Rauzy sequences. They satisfy additional combinatorial properties
generalizing those of Sturmian sequences. There is no doubt that the most
famous Arnoux-Rauzy sequence is the Tribonacci sequence, fixed point of the
morphism τ defined by τ(0) = 01, τ(1) = 02 and τ(2) = 0. This sequence is
linked to a rotation on the torus T2 and it has been conjectured that it was
the case of all Arnoux-Rauzy sequences. In [CFZ00], the authors provide a
counter-example to that conjecture. In [CFM08], the authors exhibit a class
of Arnoux-Rauzy sequences whose associated subshifts are weakly mixing
and so that cannot be conjugated to rotations. By contrary, it is proved
in [AR91] that all Arnoux-Rauzy sequences (over a three letters-alphabet)
can be interpreted as codings of six intervals exchanges. By studying their
Rauzy graphs, the authors also provided an S-adic representation of them
(see also [RZ00]). This allows for instance, as for Sturmian sequences, to
compute the frequencies of factors (see [WZ01]) of the sequence and the
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recurrence quotient of it (see [CC06]).
Another class of S-adic sequences is the class of linearly recurrent se-

quences that includes primitive substitutive sequences (see [Dur98a, DHS99]).
These sequences have a sub-linear complexity and Durand proved in [Dur00,
Dur03] that they exactly correspond to primitive and proper S-adic sequences
with Card(S) < +∞ (see Definitions 1.3.10 and 1.3.11). In particular, a
Sturmian sequence is linearly recurrent if and only if the coefficients of its
continued fraction expansion are bounded.

Bratteli-Vershik S-adicity

In [Bra72] Bratteli introduced infinite graphs (subsequently called Bratteli
diagrams) partitioned in levels in order to approximate C∗-algebras. With
other motivations, Vershik thought in [Ver82] to associate dynamics (adic
transformations) to these diagrams by introducing a lexicographic ordering
on the infinite paths of the diagrams. This ordering is induced by a partial
order on the arcs between two consecutive levels, it can then be defined by an
adjacent matrix between the two considered levels and thus by a morphism.
For more details see Chapter 6 of [BR10] and see [War02] for the link between
Bratteli diagrams and S-adic systems.

By a refinement of Vershik’s constructions, the authors of [HPS92] have
proved that any minimal Cantor system is topologically isomorphic to a
Bratteli-Vershik system (Vershik already obtained this result in [Ver82] in
a measure theoretical context). These Bratteli-Vershik representations are
helpful in dynamics, mainly with problems about recurrence. But, being
given a minimal Cantor system, it is generally difficult to find a "canoni-
cal" Bratteli-Vershik representation (see [DHS99] for examples). However,
Ferenczi proved that for minimal subshift with sub-linear complexity, the
number of morphisms read on the associated Bratteli diagram (in a measure
theoretical context) is finite [Fer96]. In particular, he obtained an upper
bound on the rank of these systems and proved that they cannot be strongly
mixing. In addition, Durand showed that, in the case of linearly recurrent
subshifts, the morphisms appearing in the S-adic representation are exactly
those read on the Bratteli diagram. In addition, unlike in Ferenczi’s result,
the subshift is topologically conjugated to the Bratteli-Vershik system.

Organization of the thesis

Chapter 1 contains all needed definitions and backgrounds. Chapter 2 is
designed to make an overview of S-adicity. Thus, we recall and compare
the well-known results about purely morphic sequences, morphic sequences
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(that are images by a morphism of a purely morphic sequence) and S-adic
sequences. We also give some well-known S-adic representations of some
families of sequences (such as the Sturmian ones) and recall some known
results providing sufficient conditions to a sub-linear complexity. We finally
give examples of S-adic sequences that allow us to reject some "naive" ideas
about the S-adic conjecture.

Chapter 3 attack the conjecture in the general case. We study the mor-
phisms constructed on the basis of Rauzy graphs which, in particular, allows
us to give an S-adic characterization of minimal subshifts. In addition, we
give some necessary conditions on these morphisms and prove through exam-
ples that they do not suffice. The majority of this chapter can also be found
in [Ler12].

In Chapter 4, we start a detailed description of Rauzy graphs correspond-
ing to minimal subshifts with first difference of complexity bounded by 2.
This allows us to explicitly compute all needed morphisms and we show that
they all can be decomposed into compositions of only five morphisms. In
Chapter 5, we improve the result obtained in Chapter 4 by studying even
more the sequences of possible evolutions of Rauzy graphs. This allows us to
obtain an S-adic characterization, hence the condition C of the conjecture for
this particular case. The obtained S-adic representations can also be used to
explicitly give the Bratteli-Vershik representations of the systems. However,
the amount of notions that would be needed to that aim seems to be too big
compared to the importance of the result. More details will be found in [DL].



Résumé en français

Chapitre 1 : préliminaires

Nous supposons le lecteur familier avec les notions de base de combinatoire
des mots et de systèmes dynamiques symboliques. Rappelons simplement que
si S est un ensemble de morphismes, une suite w est S-adique s’il existe une
suite de morphismes (σn : A∗

n+1 → A∗
n) telle que mina∈An+1 |σ0 · · ·σn(an+1)|

converge vers l’infini lorsque n augmente et telle que

w = lim
n→+∞

σ0 · · ·σn(aωn+1).

Chapitre 2 : tour d’horizon

Le but de ce chapitre est de recenser les résultats connus sur la S-adicité.

Suites (purement) morphiques et suites S-adiques

Dans un premier temps, nous comparons les suites purement morphiques, les
suites morphiques et les suites S-adiques, les deux premières familles étant
des cas particuliers de la troisième puisque les suites purement morphiques
sont des suites S-adiques avec Card(S) = 1 et les suites morphiques sont les
images morphiques de suites purement morphiques.

Depuis le travail de Pansiot [Pan84], il est bien connu que la complexité
des suites purement morphiques est extrêmement contrainte. En effet, pour
des morphismes non-effaçant, celle-ci ne peut prendre que cinq comporte-
ments asymptotiques, ceux-ci étant Θ(1), Θ(n), Θ(n log log n), Θ(n logn) et
Θ(n2) (voir Théorème 2.1.2 page 42) et ces différents comportements dé-
pendent uniquement de la longueur des images des itérés du morphisme. Par
ailleurs, il existe certains critères combinatoires qui contraignent encore plus
la complexité de ces suites. Par exemple, il est également bien connu que si
une suite purement morphique est uniformément récurrente, alors sa com-
plexité est forcément sous-linéaire (voir Proposition 2.1.4 page 43).

13



14 Résumé

En ce qui concerne la complexité des suites morphiques, il n’existe à
l’heure actuelle aucune caractérisation similaire à celle obtenue par Pansiot.
Il est cependant clair que les cinq comportements asymptotiques ne suffisent
plus puisqu’il existe des suites de complexité p(n) ∈ Θ(n k

√
n) pour tout en-

tier k ≥ 1. Le nombre de comportements asymptotiques possibles devient
donc infini dénombrable. R. Deviatov a récemment conjecturé que ces com-
portements asymptotiques supplémentaires étaient les seuls possibles (voir
Théorème 2.1.10 page 45).

Pour les suites S-adiques en général, le problème devient bien plus com-
plexe. En effet, Cassaigne a démontré que toute suite pouvait être obtenue
de manière S-adique (voir Proposition 2.1.15 page 46). Par conséquent, un
autre résultat de Cassaigne (voir Proposition 2.1.17 page 47) implique que
le nombre de comportements asymptotiques pour la complexité des suites
S-adiques est indénombrable.

Résultats partiels pour la sous-linéarité de la complexité

En observant les représentations S-adiques des familles bien connues de suites
de complexité sous-linéaire (suites sturmiennes, codages de rotations, codages
d’échanges d’intervalles, etc.), on s’aperçoit que la longueur de toutes les
images σ0σ1 · · ·σn(a) croissent indéfiniment lorsque n tend vers l’infini. Un
morphisme jouissant de cette propriété est appelée morphisme partout crois-
sant (voir Definition 1.3.5 page 31). Par extension, nous dirons qu’une suite
de morphismes (σn : A∗

n+1 → A∗
n)n∈N est croissante partout1 si la longueur

minimale de σ0σ1 · · ·σn(a) pour a dans An+1 croît à l’infini lorsque n tend
vers l’infini.

Comme mentionné plus haut, la croissance des images joue un rôle capital
dans la complexité des suites purement morphiques. En effet, pour un mor-
phisme croissant partout, la complexité de ses points fixes est de complexité
sous-linéaire si et seulement si toutes les images σn(a) ont le même ordre de
croissance.

Dans [Fer96], Ferenczi a démontré que pour toute suite w uniformément
récurrente de complexité sous-linéaire, il existe une représentation S-adique
croissante partout de w (voir Théorème 2.3.5 page 63). Cependant, la condi-
tion sur l’ordre de croissance des images obtenue par Pansiot dans le cas des
suites purement morphiques ne se généralise qu’en une condition suffisante
(voir Proposition 2.3.1 page 62) puisqu’il existe même des suites sturmiennes
ne satisfaisant pas cette condition (celles pour lesquelles la suite (ak)k≥1 du

1Dans l’article [Ler12], cette propriété porte le nom de ω-growth property car croissant

partout a déjà une autre signification dans le cadre des DT0L (voir [ELR76]) qui, ici,
correspond à la notion d’expansivité (voir Définition 1.3.12 page 33).
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Théorème 2.2.1 page 50 est non-bornée). Cette condition suffisante permet
néanmoins de déterminer certaines familles d’ensembles S pour lesquels toute
suite S-adique est de complexité sous-linéaire (voir Corollaire 2.3.2 et Corol-
laire 2.3.4 page 63).

Fausses bonnes idées sur la conjecture

Une des grandes difficultés de la conjecture est que bon nombre des conditions
naturelles qu’on peut imaginer en connaissant les résultats sur les complexi-
tés des suites purement morphiques ne sont même pas suffisantes à assurer
une complexité sous-linéaire. Par exemple, Boshernitzan a "légitimement"
conjecturé que si un ensemble S1 ne contient que des morphismes dont les
points fixes sont de complexité sous-linéaire, alors toute suite S1-adique est
de complexité sous-linéaire. Il a par la suite prouvé qu’il n’en était rien (voir
Proposition 2.3.9 page 65). Une idée similaire est de penser que si S2 contient
un morphisme σ ayant des points fixes de complexité élevée, alors les suites
S2-adiques correspondantes devraient également avoir une complexité élevée.
Dans cette thèse, nous donnons des exemples contredisant cette idée et cela
même lorsque σ apparaît très souvent dans la suite de morphismes (voir
Proposition 2.3.12 page 67 et Proposition 2.3.14 page 69).

Chapitre 3 : progrès réalisés dans le cas général

de la conjecture

Une approche pour résoudre la conjecture est de renforcer les conditions
nécessaires jusqu’à les rendre suffisantes2. Sous la condition supplémentaire
d’uniforme récurrence de la suite, nous y parvenons grâce à une étude poussée
des graphes de Rauzy de la suite.

Méthode de dé-substitution

La méthode de construction de la représentation S-adique d’une suite w est
basée sur les graphes de Rauzy. Dans le graphe de Rauzy Gn(w), les sommets
sont les facteurs de longueurs n de la suite et il existe une flèche de u vers
v étiquetée par une lettre a s’il existe une lettre b telle que ub = av est
un facteur de w. Les flèches dans Gn(w) correspondent donc exactement aux
sommets dans Gn+1(w). Par ailleurs, les facteurs spéciaux (gauches ou droits)

2l’autre approche étant d’affaiblir les conditions suffisantes connues pour les rendre
nécessaires
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de w, i.e. ceux qui peuvent se prolonger de plusieurs façons (à gauche ou à
droite) dans w se repèrent directement dans les graphes de Rauzy puisqu’il
s’agit des sommets ayant plusieurs flèches entrantes ou sortantes. Un résultat
célèbre de Cassaigne implique directement que le nombre de tels sommets
dans Gn(w) est borné si et seulement si w est de complexité sous-linéaire.

En étudiant la suite (Gn(w))n∈N, on peut remarquer que certains chemins
particuliers dansGm(w) sont en fait des concaténations de ces mêmes chemins
particuliers dans Gn(w) pour n < m. Par exemple, dans le cas des suites
sturmiennes, si Gn(w) contient un sommet bispécial, i.e., un sommet avec
deux flèches entrantes et deux flèches sortantes, alors Gn(w) a nécessairement
la forme représentée à la Figure A.1 page 183 et si m est le plus petit entier
m > n tel que Gm(w) a la même forme que Gn(w), alors une des deux boucles
de Gm(w) a la même étiquette qu’une des boucles de Gn(w) et l’étiquette de
l’autre est la concaténation des étiquettes des deux boucles de Gn(w).

Dans le cas général, ces chemins particuliers peuvent être définis de diffé-
rentes façons. Il peut soit s’agir de l’ensemble des chemins simples entre les
facteurs spéciaux gauches (ou droits), soit de l’ensemble des chemins d’un
sommet spécial gauche jusque lui-même dont l’étiquette est effectivement un
facteur de la suite. Dans Gn(w) les chemins de la première possibilité sont
appelés les n-segments (voir Définition 3.1.2 page 78) et ceux de la deuxième
sont appelés n-circuits (voir Définition 3.1.11 page 81). Dans un cas comme
dans l’autre, les étiquettes de ces chemins sont toujours des facteurs de la
suite et les longueurs du plus grand n-segment et du plus petit n-circuit
tendent vers l’infini lorsque n augmente (voir Remarque 3.1.10 page 80 et
Corollaire 3.1.17 page 83).

Pour chacune de ces deux familles de chemins, nous pouvons définir des
morphismes. En effet, nous montrons que pour tout n, tout (n+ 1)-segment
se décompose dans Gn(w) en une concaténation bornée de n-segments (voir
Lemme 3.2.6 page 86). Nous pouvons donc définir un morphisme σn défini
sur l’ensemble des (n+1)-segments et ayant pour images des concaténations
de n-segments (voir Définition 3.2.1 page 83). Les ensembles étant bornés et
les images étant de longueurs bornées également, le nombre de morphismes
ainsi créés est donc fini. Pour les n-circuits, les morphismes se définissent de
la même façon (voir Lemme 3.1.13 page 82 et Définition 3.3.1 page 87), à la
différence qu’ils dépendent du choix d’une suite de facteurs spéciaux gauches
de longueurs croissantes et emboîtés en préfixes (voir Lemme 3.1.14 page 82).
De plus, dans ce cas, le nombre de morphismes peut être infini. En effet,
l’uniforme récurrence assure la finitude des alphabets et des longueurs des
images, mais pas que ceux-ci soient bornés. Pour les deux familles de chemins,
la construction définit une suite de morphismes (σn : A∗

n+1 → A∗
n) dont

les images σ0 · · ·σn(a) sont les étiquettes des (n + 1)-segments (ou circuits)
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et produit donc une représentation S-adique du langage de la suite. Afin
d’obtenir une représentation de la suite elle-même, il suffit de considérer que
pour tout n, le préfixe de longueur n fait partie des extrémités des chemins
(voir Section 3.2).

Un résultat intéressant sur la décomposition S-adique obtenue sur base
des n-circuits est qu’elle fournit une caractérisation des suites uniformément
récurrentes : il s’agit exactement des suites S-adiques primitives et propres à
gauche (voir Définition 1.3.10 et Définition 1.3.11 page 33), S pouvant être
de cardinal infini. Rappelons que dans le cas où S est fini, ces conditions sont
équivalentes à la récurrence linéaire de la suite.

La conjecture étant définie pour des ensembles S de cardinal fini, il est
naturel de se concentrer sur la décomposition S-adique obtenue sur base
des n-segments. Afin d’en extraire des conditions nécessaires (notamment la
croissance presque partout déjà mentionnée plus haut), une idée développée
par Ferenczi dans [Fer96] est de considérer les morphismes σn créés, non pas
sur l’ensemble des (n + 1)-segments, mais sur un ensemble particulier de
concaténations de (n + 1)-segments défini comme suit. Même si la longueur
maximale des n-segments tend vers l’infini lorsque n croît, il peut exister des
n-segments qui sont courts et ce, même pour n très grand. Ceci nous pousse
à partitionner l’ensemble des n-segments en ceux dits courts dont la longueur
est bornée par une constante indépendante de n et ceux dits longs (voir Dé-
finition 3.4.2 page 92). Une conséquence directe de la définition est que le
plus petit long n-segment a une longueur qui tend vers l’infini lorsque n aug-
mente. Pour obtenir la croissance presque partout, il suffit donc de considérer
qu’un long n-segment apparaît dans chacune des concaténations particulières
de n-segments choisies. Plus précisément, sous la condition supplémentaire
que l’étiquette correspondante soit un facteur de la suite, les concaténations
que nous considérons sont de la forme suivante : une concaténation de n-
segments cours suivie d’un long n-segment suivi d’une concaténation de n-
segments courts. L’ensemble de ces concaténations étant de cardinal fini et
même borné indépendamment de n (voir Lemme 3.4.3 page 93), il forme le
nouvel alphabet Bn sur lequel nous définissons le morphisme τn−1, ce dernier
exprimant l’action du morphisme σn−1 (voir Définition 3.4.4 page 93).

Du fait de sa dépendance en l’existence des segments courts, la suite de
morphismes (τn)n∈N ne peut être définie qu’à partir d’un certain rang N . Pour
en déduire une représentation S-adique, il est alors nécessaire de considéré
un morphisme supplémentaire κ associant à une lettre de BN l’étiquette du
chemin correspondant dans GN(w) (voir Proposition 3.4.7 page 94). En ce
qui concerne les conditions nécessaires obtenues sur la suite (τn)n≥N , elles
découlent principalement de l’observation suivante : si le mot de longueur
2 ab apparaît dans une image τn(c), alors, dans Gn+1(w), le sous-chemin



18 Résumé

qui correspond au mot ab du chemin correspondant à la lettre c ne contient
aucun facteur spécial gauche (voir Lemme 3.4.8 page 95). Ce résultat nous
permet de prouver qu’une même lettre de peut apparaître deux fois dans une
même image (voir Proposition 3.4.9 page 96) et, plus généralement, qu’il ne
peut pas exister de "cycles" dans l’ensemble des images, i.e., un ensemble de
mots de la forme {a1u1a2, a2u2a3, . . . , akuka1} ne peut pas être un ensemble
de facteurs des mots dans τn(Bn+1) (voir Proposition 3.4.11 page 96). L’ob-
servation mentionnée plus haut permet également de prouver que dans toute
image τn(b), une même lettre a est toujours précédée par les suffixes d’un
même mot, sauf éventuellement la première lettre de l’image (voir Propo-
sition 3.4.10 page 96). Enfin, de ces trois propriétés découle une quatrième
donnant une décomposition en morphismes "simples" de tout morphisme τn
(voir Proposition 3.4.15 page 98) et sous la condition supplémentaire de non-
existence de segments courts, nous montrons également que la suite (τn)n≥N

est presque primitive (voir Proposition 3.4.12 page 97).
Malheureusement, toutes ces conditions nécessaires ne sont pas suffisantes

à garantir une complexité sous-linéaire. En effet, Section 3.5, nous exhibons
un exemple de suite S-adique satisfaisant toutes celles-ci, mais dont la com-
plexité n’est pas sous-linéaire.

Chapitres 4 et 5 : résolution de la conjecture

pour les complexités inférieures à 2n + 1

L’étude des graphes de Rauzy réalisée au chapitre 3 ne s’étant pas révélée suf-
fisamment fructueuse pour résoudre la conjecture, nous nous attaquons dans
les chapitres 4 et 5 au cas particulier des suites uniformément récurrentes et
dont la différence première de complexité p(n+ 1)− p(n) est majorée par 2.
Notons tout de même que l’ensemble de ces suites contient une grande partie
des suites étudiées dans la littérature. Dans ce cas, nous connaissons déjà
toutes les formes de graphes de Rauzy qui peuvent apparaître (voir [Rot94]),
ce qui en rend l’étude plus simple, bien que très technique. Pour ces com-
plexités, nous parvenons à déterminer des conditions nécessaires fortes sur les
représentations S-adiques et en fait suffisamment fortes pour qu’elles soient
suffisantes, résolvant ainsi la conjecture dans ce cas particulier.

Une première remarque est que la caractérisation S-adique obtenue ne
l’est que pour les sous-shifts et non pour les suites. Au Chapitre 3, nous
avons obtenu les représentations S-adiques des suites grâce à une petite as-
tuce qui consiste simplement à ajouter une flèche entrante au sommet de
Gn(w) qui correspond au préfixe de longueur n de w. Cette astuce pourrait
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sans doute être reproduite dans le cas particulier qui nous intéresse, mais au
prix de développements encore bien plus techniques et les difficultés supplé-
mentaires que cela engendrerait pèseraient bien lourd par rapport à l’intérêt
des nouveaux résultats.

Une deuxième remarque est que, contrairement aux représentations S-
adiques obtenues au Chapitre 3, celles-ci sont basées sur les n-circuits. Cela
nous fournit notamment un moyen de distinguer les représentations S-adiques
valides au moyen de la presque primitivité de la suite de morphismes. De
plus, comme extrémités des circuits, nous considérons une suite de spéciaux
droits emboîtés en suffixes plutôt qu’une suites de facteurs spéciaux gauches
emboîtés en préfixes. La raison en est que le travail très technique concernant
ces complexités a été réalisé avant de découvrir l’intérêt de travailler avec les
facteurs spéciaux gauches3. Par conséquent, les étiquettes des flèches dans les
graphes de Rauzy étudiés dans ce chapitre sont, contrairement à ce qui a été
fait jusqu’à présent dans ce document, les prolongements droits des sommets
dans la suite. Les résultats "gauches" du Chapitre 3 ont donc besoin d’un
équivalent "droit" pour ce chapitre ; ceux-ci sont listés dans la section 4.1.

Première étape : déterminer l’ensemble S
Comme mentionné plus haut, les formes (ou types) de graphes de Rauzy qui
peuvent apparaître pour les complexités qui nous intéressent sont connues et
au nombre de 10 (si on suppose que tous les graphes contiennent un sommet
bispécial). Ces types de graphes sont représentés à la Figure 4.5 page 109.
Connaissant cela, il est alors possible d’étudier quel type de graphe peut évo-
luer vers quel type de graphe et de calculer explicitement les morphismes
correspondant à ces évolutions. Pour cela, nous avons évidemment besoin
de connaître les alphabets sur lesquels nous travaillons. Dans le chapitre 4,
nous montrons que considérer des alphabets à trois lettres est toujours suf-
fisant (voir Lemme 4.3.4 page 114) et choisissons une correspondance entre
ces trois lettres et les circuits dans les graphes (voir page 117). Les évolu-
tions de graphes sont alors représentées dans l’annexe A et les morphismes
correspondants à ces évolutions se trouvent dans la section 4.5.

Il apparaît rapidement que le nombre de morphismes codant les évolu-
tions de graphes est infini (à cause de leur dépendance en des puissances k
et ℓ). Cependant, nous prouvons dans la section 4.6 que tous les morphismes
obtenus peuvent en fait être vus comme des compositions de cinq morphismes
particuliers, notés D, G, M , E01 et E12 et définis page 103. L’ensemble S de

3Celui-ci étant justement l’obtention des représentations S-adiques pour les suites et
non pour les sous-shifts
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ces cinq morphismes permet donc de donner une représentation S-adique de
n’importe quel sous-shift minimal dont la différence première de complexité
est majorée par 2. Pour ce qui est des conditions, deux conditions nécessaires
restent évidemment la presque primitivité et la propreté de la suite de mor-
phismes de S. De plus, nous pouvons ajouter une condition supplémentaire
sur la manière dont les morphismes doivent être composés. En effet, les mor-
phismes codent des évolutions de graphes de différents types et il est donc
évident que si un morphisme code une évolution vers un graphe de type 3,
le morphisme suivant ne peut coder une évolution d’un graphe d’un type
autre que 3. Cette condition peut être exprimée par l’obligation d’étiqueter
un chemin infini dans le graphe (appelé graphe des graphes) représenté à
la figure 4.8 page 112. Les sommets de celui-ci correspondent aux différents
type de graphes et les flèches représentent les évolutions possibles. Le résultat
exprimant ces conditions est le théorème 4.0.1.

Deuxième étape : déterminer toutes les suites de SN qui

sont des représentations S-adiques valides

Au début du chapitre 5, nous définissons la notion de chemin étiqueté va-
lide (voir Définition 5.1.1 page 138). Ces chemins sont exactement ceux dont
l’étiquette est une représentation S-adique d’un chemin dans le graphe des
graphes d’un sous-shift minimal dont la différence première de complexité
est majorée par deux. Donner une caractérisation S-adique de ces sous-shifts
revient donc à déterminer exactement les chemins étiquetés qui sont va-
lides. Cette notion est indispensable, car certains chemins dans le graphe
des graphes ne peuvent correspondre à une représentation S-adique satisfai-
sant les conditions voulues. En effet, les exemples 5.1.2, 5.1.3 et 5.1.4 page 138
sont des illustrations de chemins non valides. Nous pouvons observer que ces
chemins ne sont pas valides pour différentes raisons. Dans les deux premiers
cas, la non-validité provient de la non-presque primitivité (autrement dit, un
problème global de la suite de morphismes). Dans le troisième exemple, le
problème n’est pas global, mais local. En effet, lors de certaines évolutions
(dans ce cas, d’un graphe de type 1 vers un graphe de type 7 ou 8), le choix du
morphisme γn codant l’évolution4 peut induire certaines restrictions sur une
suite finie γn+1γn+2 · · · γn+k et ces restrictions constituent donc des conditions
nécessaires supplémentaires sur (γn)n∈N.

Forts de ces deux observations, nous parvenons à caractériser les chemins
valides par le biais de deux conditions : une locale (les restrictions finies cau-

4L’évolution d’un type de graphe vers un autre type de graphe peut se faire de plusieurs
façons.
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sées par le choix de certains morphismes) et une globale (la presque primiti-
vité et la propreté) (voir Proposition 5.1.5 page 140). Reste donc à déterminer
les chemins dans le graphe des graphes qui satisfont ces deux conditions.

Tout d’abord, il convient de remarquer que le graphe des graphes contient
quatre composantes fortement connexes :

C1 = {2}, C2 = {3}, C3 = {4} et C4 = {1, 5, 6, 7, 8, 9, 10}.

Par conséquent, il est suffisant d’étudier la condition globale séparément dans
chacune de ces composantes. Si en plus nous étudions la condition locale dans
ces composantes, il suffira ensuite d’étudier la condition locale pour les flèches
entre les composantes.

Les trois premières composantes se traitent relativement facilement. En
effet, la composante C1 correspond aux sous-shifts dits d’Arnoux-Rauzy et a
déjà été largement étudiée. Il n’existe pas de contrainte locale pour cette com-
posante et les morphismes étiquetant les flèches rendent la condition globale
particulièrement facile à déterminer (voir Proposition 5.2.1 page 142).

La composante C2 ne se révèle pas beaucoup plus compliquée. Dans celle-
ci, il existe une condition locale sur la suite (γn)n∈N, condition qui s’exprime
au moyen du graphe représenté à la figure 5.3. La condition globale se lit
alors directement sur ce graphe (voir Proposition 5.3.1 page 143). Dans le
résultat final, il suffira alors de remplacer le sommet 3 du graphe des graphes
par le graphe en question.

La composante C3 est un peu plus complexe. En effet, le choix de certains
morphismes γn détermine un nombre fini d’évolutions, donc un nombre fini de
morphismes γn+1 · · · γn+k (voir Lemme 5.5.1 page 149). Une fois que ces com-
portements sont déterminés, il suffit alors de remplacer, dans le graphe des
graphes, la flèche étiquetée par γn par une flèche étiquetée par γnγn+1 · · · γn+k

du sommet de départ de la flèche étiquetée par γn jusqu’au sommet d’arri-
vée de la flèche étiquetée par γn+k. Déterminer les suites de morphismes qui
satisfont la condition globale n’est alors pas difficile (voir Proposition 5.5.2
page 151).

La majeure difficulté de la caractérisation S-adique obtenue relève de la
composante C4. En effet, d’une part, la condition locale est bien plus diffi-
cile à gérer à cause de la nature des types de graphes qui constituent cette
composante et, d’autre part, le nombre plus élevé de sommets et d’étiquettes
rend la condition globale plus compliquée à déterminer. Tout d’abord, nous
parvenons à gérer les graphes de type 1 très facilement (ceux-ci correspondant
au cas bien connu des sturmiens), puis nous parvenons à traiter les graphes
de type 9 et 10 de façon assez similaire à ce que nous avons fait pour la
composante C3. La grosse difficulté concerne les graphes de type 5, 6, 7 et 8
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et plus particulièrement les graphes de type 7 et 8. En effet, vu leurs formes,
ces quatre types de graphes peuvent être regroupés en deux catégories : 5
et 6 d’une part et 7 et 8 d’autre part. Lorsqu’un graphe de Rauzy Gn évo-
lue vers une de ces catégories, le type exact du nouveau graphe dépend de
la longueur de certains chemins dans Gn (voir Figure 5.7 page 153) et ces
longueurs requièrent des calculs très techniques (donnés dans l’annexe B).
De plus, les morphismes codant des évolutions vers ces catégories peuvent
également induire des suites finies d’évolutions qui, elles aussi, dépendent de
ces longueurs (voir Lemme 5.6.2 page 154 et Lemme 5.6.4 page 155).

Une fois ces longueurs et évolutions calculées, nous modifions la compo-
sante C4 du graphe des graphes de manière à pouvoir exprimer plus facilement
les conditions locale et globale pour qu’un chemin soit valide (voir Proposi-
tion 5.6.8 page 166). Enfin, il suffit de regrouper toutes les composantes et
conditions obtenues : il s’agit du théorème 5.8.1 page 175.

Conclusions et perspectives

La caractérisation S-adique obtenue aux chapitres 4 et 5 représente une avan-
cée considérable dans l’étude des suites de très faible complexité. Celle-ci sera
sans doute d’une grande aide dans la résolution d’autres problèmes liés à ces
suites, notamment dans l’étudie de leur propriétés géométriques ou arithmé-
tiques. Cependant, les méthodes et constructions utilisées se révèlent beau-
coup trop techniques pour espérer les utiliser dans un cadre plus général.
En effet, même pour une différence première de complexité majorée par trois
(au lieu de deux), les calculs s’alourdissent déjà considérablement. De plus,
certains résultats cruciaux semblent intimement liés aux faibles complexités
(voir Lemme 4.3.4 page 114 et Exemple 4.3.5 page 115).

Par contre, il serait peut-être intéressant d’étudier le sous-shift engendré
par les suites valides dans SN. Nous pouvons démontrer qu’il n’est pas sofique
(voir Proposition 5.8.3 page 181), mais jouit-il d’autres propriétés intéres-
santes ? Par extension, ces possibles propriétés pourraient-elles se généraliser
au cas général et quelles en seraient les retombées sur la conjecture ?

Une autre idée serait de chercher à renforcer les conditions nécessaires ob-
tenues au chapitre 3. Dans un premier temps, il serait intéressant de rendre
nécessaire la condition de presque primitivité et ce, même lorsque nous tra-
vaillons avec les concaténations de n-segments. Même si nous sommes inca-
pables de le prouver actuellement, nous pensons qu’il est possible de considé-
rer une suite de sous-alphabets (B̃n) qui rendraient la suite de morphismes
(τn : B̃∗

n+1 → B̃∗
n) presque primitive.

Une autre question qui généraliserait le travail de Durand (voir [Dur98a] et
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aussi [HZ99]) est de déterminer pour quelles suites la décomposition obtenue
au théorème 3.0.3 (page 76) est ultimement périodique. Des discussions sont
en cours avec Štěpán Starosta pour répondre à cette question.

Au delà de la conjecture, il serait également intéressant de poursuivre
l’étude initiée par la proposition 2.4.1 (page 72). Plus précisément, cette
proposition donne une borne sur la complexité d’une suite S-adique expansive
(voir Définition 1.3.12 page 33) avec Card(S) < +∞. Qu’en est-il si la suite
S-adique n’est pas expansive, mais croissante partout ? Pourrait-on dire par
exemple que, dans ce cas, la complexité est nécessairement sous-polynomiale ?
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Chapter 1

Backgrounds

1.1 Words, sequences and languages

Words and languages

An alphabet is a finite set A whose elements are called letters (or symbols).
In all what follows (except if it is explicitly stated), we always suppose that
A = {0, 1, . . . , k − 1} for some k ≥ 1. A word u over A is a finite sequence
of elements of A. The length of a word u = u1 · · ·uℓ, ui ∈ A, is the number
of letters of u; it is denoted by |u|. The unique word of length 0 is called
the empty word and is denoted by ε. For any word u over A and all letters
a ∈ A, we let |u|a denote the number of occurrences of the letter a in u,
i.e., the number of integers i ∈ [1, |u|] such that ui = a. The set of words
of length ℓ over A is denoted by Aℓ and A∗ =

⋃

ℓ∈NA
ℓ denotes the set of

words over A. We let A+ denote the set A∗ \ {ε} of non-empty words over
A. The concatenation of two words u and v is simply uv and un is the
concatenation of n copies of u. Endowed with concatenation, A∗ is the free
monoid generated by A. A language over A is a subset L of A∗. If L and M
are languages, ML denotes the set of words uv with u ∈ M and v ∈ L and
Ln denotes the set of words that are concatenations of n words of L.

Sequences

The elements of AN and AZ are respectively called one-sided sequences and
two-sided sequences; they are both denoted by bold letters. For a given two-
sided sequence w over an alphabet A, we write w = · · ·w−2w−1.w0w1w2 · · ·
with wi ∈ A for all i. We also write w+ = w0w1w2 · · · and w− = · · ·w−2w−1

and for any non-empty word u over A, the two-sided sequence (resp. one-
sided sequence) w composed of consecutive copies of u is denoted by w = u∞

25
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(resp. w = uω). Given two non-empty words u and v, we also let ωu.vω denote
the two-sided sequence w = · · ·uuu.vvv · · · . A two-sided sequence (resp. a
one-sided sequence) w is periodic if there is a word u such that w = u∞

(resp. w = uω). A one-sided sequence w is ultimately periodic if there are
two words u and v, v 6= ε such that w = vuω. For a one-sided sequence
(resp. two-sided sequence) w and a language L, we also write w ∈ Lω (resp.
w ∈ L∞) whenever w is composed of consecutive copies of words of L.

Prefixes, suffixes and factors

For a word u = u1 · · ·uℓ, we write u[i,j] = ui · · ·uj for 1 ≤ i ≤ j ≤ ℓ. A word
v is a factor of a word u (or occurs at position i in u) if u[i,j] = v for some
integers i and j. It is a prefix (resp. suffix ) if i = 1 (resp. j = |u|) and
a proper factor if it is different from u. Given a language L, the language
Pref(L) (resp. Suff(L), Fact(L)) is the set of prefixes (resp. suffixes, factors)
of words in L. If L contains a unique element u, we respectively write Pref(u),
Suff(u) and Fact(u) instead of Pref({u}), Suff({u}) and Fact({u}). All these
notions can be extended to one-sided sequences (resp. two-sided sequences):
in the definition of prefixes, suffixes and factors, all we have to do is to put
i, j ∈ N (resp. i, j ∈ Z), i ≤ j, i = 0 (resp. i = −∞) for prefixes and j = +∞
for suffixes. In particular, when w is a (one-sided or two-sided) sequence, the
set Fact(w) is called the language of the sequence and is usually denoted by
L(w). For each n ∈ N, we also let Ln(w) denote the set of factors of length
n in w, i.e., Ln(w) = L(w) ∩An.

Definition 1.1.1. A language L ⊂ A∗ is prolongable if for all words u ∈ L,
there are two letters a, b ∈ A such that aub ∈ L.

Definition 1.1.2. A language L ⊂ A∗ is factorial if Fact(L) ⊂ L.

Return words

Given a sequence w and a factor u of w, a left return word to u in w is a
word v such that vu ∈ L(w), u is prefix of vu and u occurs only twice in vu.
We can similarly define the notion of right return word by exchanging vu by
uv and supposing that u is suffix of uv. Note that v is a left return word to
u in w if and only if there exists a right return word v′ to u in w such that
vu = uv′. The set of left return words (resp. right return words) to u in w

is denoted by LRWw(u) (resp. RRWw(u)).
We can also extend these two notions to languages. let L be a subset of

L(w). A left return word to L in w is a word r such that there are two words
u and v in L such that rv is a factor of w, rv admits u as a prefix and u and v
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are the only words of L that occur in rv. Similarly, a right return word to L
in w is a word r such that there are two words u and v in L such that ur is a
factor of w, ur admits v as a suffix and u and v are the only words of L that
occur in ur. The set of left return words to L in w is denoted by LRWw(L)
and the set of right return words to L in w is denoted by RRWw(L).

Recurrence and uniform recurrence

A one-sided (resp. two-sided) sequence w is recurrent if all factors u of w
occur infinitely often in w (resp. in w+ and in w−). It is uniformly recurrent
if it is recurrent and every factor occurs with bounded gaps, i.e., if u is a
factor of w, there is a constant Ku such that for all integers i, j such that
w[i,i+|u|−1] and w[j,j+|u|−1] are two consecutive occurrences of u in w, then
|i− j| ≤ Ku. In particular, a sequence w is uniformly recurrent if and only
if it is recurrent and any factor of w has a finite number of return words.

Remark 1.1.3. In the sequel, we sometimes do not explicitly say if the con-
sidered sequence is one-sided or two-sided. This is either when the context
is clear enough or when what is said holds for both kind of sequences.

1.2 Factor complexity

The complexity function of a sequence w is the function pw (or simply p)
that counts the number of factors of a given length in w:

pw : N → N : n 7→ #Ln(w).

It is obvious that if w is a sequence over an alphabet A, its complexity
function pw(n) is non-decreasing (any factor being prolongable to the right
in L(w)) and bounded by Card(A)n. Moreover, the following trivially holds.

Proposition 1.2.1. For any sequence w and all non-negative integers m and
n, we have pw(m+ n) ≤ pw(m)pw(n).

However, not every function satisfying these properties can be a complex-
ity function. For instance, the following result is well known.

Theorem 1.2.2 (Morse and Hedlund [MH38]). Let w be a one-sided sequence
over A. The following are equivalent.

1. w is ultimately periodic;

2. pw(n) ≤ n for some n ≥ 1;
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3. pw(n+ 1) = pw(n) for some n ≥ 1.

In particular, this implies that if a one-sided sequence w is not ultimately
periodic, then pw(n) ≥ n + 1 for all n. Sequences with minimal complexity
p(n) = n + 1 for all n exist and are called Sturmian sequences. They admit
several equivalent definitions and a huge literature is devoted to them. See
Chapter 2 of [Lot02] and Chapter 6 of [Fog02] for surveys on these sequences.
See [All94, Fer99] and Chapter 4 of [BR10] for surveys on the complexity of
sequences.

A sequence w has a sub-linear complexity (or an at most linear complexity)
if there is a constant D such that

∀n ≥ 1, pw(n) ≤ Dn.

One could equivalently say that w has a sub-affine complexity if for all n ∈ N,
one has pw(n) ≤ Dn + C with C ≥ 1. Indeed if for all n we have pw(n) ≤
Dn+ C, then for all n ≥ 1 we have pw(n) ≤ (D + C)n.

In order to compute the complexity function of a sequence, it is natural
to study its first difference p(n+1)−p(n) since it represents the growth rate
of complexity. A first easy result is that if the first difference of complexity
is bounded, say by a constant K, then p(n) ≤ 1 +Kn. Indeed,

p(n) = 1 +

n−1∑

i=0

p(i+ 1)− p(i) ≤ 1 +Kn.

Cassaigne proved that the converse is also true.

Theorem 1.2.3 (Cassaigne [Cas96]). A sequence w has a sub-linear com-
plexity if and only if the first difference of its complexity pw(n + 1)− pw(n)
is bounded.

The first difference of complexity is also closely related to special factors
that were first introduced by Rauzy in [Rau83] (see also [Cas97]). A factor
u of a sequence w is a right special factor (resp. a left special factor) if there
are at least two letters a and b in A such that ua and ub (resp. au and bu) are
factors of w. It is a bispecial factor if it is right and left special. For all n, we
let LSn(w) (resp. RSn(w)) denote the set of left (resp. right) special factors
of length n in w. For u in L(w), we also let δ+(u) (resp. δ−(u)) denote the
number of letters a in A such that ua (resp. au) is in L(w). For all n we
have

p(n+ 1)− p(n) =
∑

u∈RSn(w)

(δ+(u)− 1)
︸ ︷︷ ︸

≥1

(1.1)

≤
∑

u∈LSn(w)

(δ−(u)− 1)
︸ ︷︷ ︸

≥1

(1.2)
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and if w is recurrent or two-sided, then the equality holds in (1.2). Theo-
rem 1.2.3 can therefore be rephrased as follows.

Corollary 1.2.4. A sequence w has a sub-linear complexity if and only if it
has a bounded number of left and right special factors of each length.

For the same reason that it was convenient to study the first difference
of complexity to compute p(n), we may want to study the second difference
of complexity to compute p(n + 1) − p(n). More precisely, if for all n we
write s(n) = p(n + 1) − p(n), we may want to study s(n + 1) − s(n) =
p(n+2)− 2p(n+1)+ p(n). Similarly to the link between special factors and
the first difference of complexity, there are some particular factors that are
linked to the second difference of complexity: the bispecial factors.

Definition 1.2.5. Let u be a bispecial factor of a sequence w. The bilateral
order of u is defined by

m(u) = Card(L(w) ∩ AuA)− δ+u− δ−u+ 1.

A bispecial factor u is said to be weak (resp. ordinary, strong) whenever
m(u) < 0 (resp. m(u) = 0, m(u) > 0). Observe that since

#(L(w) ∩ AuA) =
∑

aB∈L(w)

δ+(au),

we have
m(u) > 0 ⇔

∑

au∈L(w)

(δ+(au)− 1) > δ+(u)− 1 (1.3)

For sequences over a binary alphabet A, we have m(u) ∈ {−1, 0, 1} for
all factors u and a bispecial factor u is weak (resp. ordinary, strong) if
#(L(X) ∩ AuA) = 2 (resp. 3, 4). Observe that for non-bispecial factors u,
we always have m(u) = 0.

Proposition 1.2.6 (Cassaigne [Cas97]). Let w be a recurrent sequence over
an alphabet A. If for all n, we write sw(n) = pw(n+ 1)− pw(n), we have

sw(n+ 1)− sw(n) =
∑

u∈Ln(w)

m(u).

According to what is said in [Cas97], it seems to be difficult to find other
particular factors that would be linked to differences of complexity of larger
order.
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1.3 S-adicity

Morphisms

Let A and B be two alphabets. A morphism (or a substitution) σ is a
map from A∗ to B∗ such that σ(uv) = σ(u)σ(v) for all words u and v over
A; it is completely determined by the images of letters. When σ is non-
erasing (i.e., when σ(a) 6= ε for all a in A), it can be extended to a map
from AN to BN by putting σ(w0w1w2 · · · ) = σ(w0)σ(w1)σ(w2) · · · and, sim-
ilarly, to a map from AZ to BZ by considering σ(· · ·w−2w−1.w0w1w2 · · · ) =
· · ·σ(w−2)σ(w−1).σ(w0)σ(w1)σ(w2) · · · . These maps are still denoted by σ.
A morphism σ : A∗ → A∗ is uniform if there exists a positive integer k such
that for all letters a ∈ A, we have |σ(a)| = k; it is letter-to-letter if k = 1.

When B = A, we say that σ : A∗ → A∗ is an endomorphism and we
still abbreviate this by morphism over A. In this case, any word or sequence
x such that σ(x) = x is called a fixed point of σ. A morphism σ over A
is right prolongable (resp. left prolongable) if there is a letter a in A such
that σ(a) = au (resp. σ(a) = ua) with u ∈ A+ and limn→+∞ |σn(a)| = +∞.
It is bi-prolongable if it is left and right prolongable. If the morphism σ
is right prolongable on the letter a (resp. bi-prolongable to the right on
the letter a and to the left on the letter b), the sequence (σn(aω))n∈N (resp.
(σn(ωb.aω))n∈N) converges in AN (resp. in AZ) to a limit denoted by σω(a)
(resp. σω(b.a)) and this limit is a fixed point of σ. A one-sided sequence
w ∈ AN is purely morphic (or purely substitutive) if there is a morphism σ
over A prolongable on a such that w = σω(a). It is morphic (or substitutive)
if it is the image under a morphism of a purely morphic sequence. We could
easily extend these notions to two-sided sequences by replacing σω(a) by
σω(b.a).

Example 1.3.1. The next two well-known morphisms will occur several
times in the sequel. The first one is the Fibonacci morphism ϕ defined by

ϕ :

{

0 7→ 01

1 7→ 0
.

It is right prolongable on the letter 0 and the corresponding fixed point ϕω(0)
is called the Fibonacci sequence and is denoted by f ; it is a Sturmian sequence.

The second one is the Thue-Morse morphism µ defined by

µ :

{

0 7→ 01

1 7→ 10
.
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It is also right prolongable on 0 and on 1. The fixed point µω(0) is called
the Thue-Morse sequence and is denoted by t; it has a sub-linear complexity
(see [Brl89, dLV89]).

In the sequel we will need the following definitions (that will be sometimes
recalled).

Definition 1.3.2. A morphism σ : A∗ → A∗ is primitive if there is an integer
n such that all letters in A occurs in all images σn(b); it is strongly primitive
if n = 1. The strong primitivity can be extended to morphisms σ : A∗ → B∗

by saying that all letters of B occur in all images σ(a) for a ∈ A.

Definition 1.3.3. A morphism σ : A∗ → B∗ is said to be left proper (resp.
right proper) if there exists a letter b ∈ B such that σ(A) ⊂ bB∗ (resp.
σ(A) ⊂ B∗b); it is said to be proper if it is left and right proper. Observe
that if σ : A∗ → A∗ is proper, then (σn(ωc.dω))n∈N converges in AZ to the
same limit w for all c, d ∈ A.

Definition 1.3.4. A morphism σ : A∗ → B∗ is said to be expansive if for all
letters a in A, |σ(a)| ≥ 2.

Definition 1.3.5. A morphism σ : A∗ → A∗ is said to be everywhere growing
if for all letters a in A, the length of σn(a) tends to infinity when n increases.
A letter a ∈ A such that the sequence (|σn(a)|)n∈N is bounded is called a
bounded letter, otherwise it is said to be growing. We let AB,σ (or AB when
the context is clear) denote the set of bounded letters. Observe that if σ is
everywhere growing, there exists an integer k and a letter a ∈ A such that σk

is prolongable on a. There is also an integer k′ such that σkk′ is expansive.
Moreover, σkk′ is obviously still prolongable on a and (σkk′)

ω
(a) = (σk)

ω
(a).

S-adicity

Definition 1.3.6. The notion of S-adic sequence generalizes the notion of
morphic sequence. Let w be a one-sided sequence over A. If S is a set
of morphisms, an S-adic representation of w is given by a sequence (σn :
A∗

n+1 → A∗
n)n∈N of morphisms in S and a sequence (an)n∈N of letters, ai ∈ Ai

for all i such that A0 = A, limn→+∞ |σ0σ1 · · ·σn(an+1)| = +∞ and

w = lim
n→+∞

σ0σ1 · · ·σn(aωn+1).

The sequence (σn)n∈N ∈ SN is the directive word of the representation and
we say that w is directed by (σn, an)n∈N. In the sequel, we will say that a
sequence w is S-adic if S is a set of morphisms such that w is directed by
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(σn, an)n∈N ∈ SN×∏∞
n=0An. For a given set S of morphisms, a sequence might

admit several directive words. However in most of the cases, the directive
word is given by the context and it will always supposed to be fixed. In other
words, when talking about an S-adic sequence, its directive word is always
implicitly fixed.

Observe that we still suppose that all alphabets An are {0, . . . , kn−1} for
some integers kn. Consequently, when Card(S) < +∞ (which will be often
the case in the sequel), we have Card

(⋃

n∈NAn

)
< +∞. In the sequel, we

let A denote the set
⋃

n∈NAn.

Example 1.3.7. Let us define the following four morphisms:

L0 :

{

0 7→ 0

1 7→ 01
R0 :

{

0 7→ 0

1 7→ 10

L1 :

{

0 7→ 10

1 7→ 1
R1 :

{

0 7→ 01

1 7→ 1

Since the work of Hedlund and Morse [MH40] (see also for instance [BHZ06])
it is well known that for any Sturmian sequence w, there is a sequence (kn)n∈N
of non-negative integers such that

w = lim
n→+∞

Lk0
0 R

k1
0 L

k2
1 R

k3
1 L

k4
0 R

k5
0 · · ·Lk4n+2

1 R
k4n+3

1 (0ω).

Remark 1.3.8. All these definitions can easily be adapted to two-sided se-
quences: as for morphic sequences, we have to consider two sequences of let-
ters (an)n∈N and (bn)n∈N, ai, bi ∈ Ai, such that limn→+∞ |σ0σ1 · · ·σn(an+1)| =
+∞, limn→+∞ |σ0σ1 · · ·σn(bn+1)| = +∞ and

w = lim
n→+∞

σ0σ1 · · ·σn(ωb.aω).

In this case, we say that w is directed by (σn, bn.an)n∈N.

In the sequel we will use the following definitions (that will sometimes
be recalled). Note that some of these definitions already have another sig-
nification in terms of DT0L languages (see [ELR76]). Roughly speaking, an
everywhere growing DT0L language is more or less the same as an expansive
S-adic sequence (Definition 1.3.12).

Definition 1.3.9. We say that a sequence of morphisms (τn : B∗
n+1 → B∗

n)n∈N
is a contraction of (σn : A∗

n+1 → A∗
n)n∈N if there is an increasing sequence of

integers (in)n∈N such that i0 = 0 and for all n in N, Bn = Ain and

τn = σinσin+1 · · ·σin+1−1.
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Definition 1.3.10. As for morphisms, we say that a directive word (σn)n∈N
is primitive if there exists a non-negative integer s0 such that for all non-
negative integers s, the morphism σs · · ·σs+s0 is strongly primitive.

Definition 1.3.11. We say that a directive word (σn)n∈N is left or right
proper if all its morphisms are respectively left or right proper. It is proper
S-adic if it is left and right proper.

Definition 1.3.12. We say that a directive word (σn)n∈N is expansive if all
its morphisms are expansive.

Definition 1.3.13. We say that a directive word (σn)n∈N is everywhere
growing if for all sequences of letters (an)n∈N ∈ ∏

n∈NAn, the length of
σ0σ1 · · ·σn(an+1) tends to infinity when n increases. A sequence (an)n∈N for
which (|σ0σ1 · · ·σn(an+1)|)n∈N is bounded is called a bounded sequence and
the set of such sequences is denoted by AB,(σn) (or AB). When the sequence
(an)n∈N is simply aω we talk about bounded letter.

Definition 1.3.14. We say that a directive word (σn)n∈N is almost primi-
tive if it is everywhere growing and if for all sequences of letters (an)n∈N ∈
(∏

n∈NAn

)
and all integers r, there is an integer s > r such that all letters

of Ar occur in σr · · ·σs(as+1).

Remark 1.3.15. By abuse of language, we will say that an S-adic sequence
has the property P (P being one of the previous definition) if its directive
word has it. For instance, we will say that a sequence w is primitive S-adic
if its directive word is primitive.

1.4 Topological dynamical systems

A (topological) dynamical system (X, T ) is defined as a compact metric space
X together with a continuous and onto map T : X → X. Given a point
x ∈ X, the orbit of x is the set O(x) = {T nx | n ∈ Z}.

Example 1.4.1. Let X = R/Z, α ∈ R and Rα : X → X be the rotation of
angle α defined by

Rα(x) = x+ α mod 1.

Then the couple (X,Rα) is a topological dynamical system whose distance is
given by

d(x, y) = min{|x− y|, |x− y + 1|}
When α ∈ R\Q, it is closely related to Sturmian sequences (see Section 2.2.1
for more details).
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Two dynamical systems (X1, T1) and (X2, T2) are said to be topologically
conjugate (or topologically isomorphic) if there is a homeomorphism φ : X →
Y that conjugates T1 and T2, i.e., such that

φ ◦ T1 = T2 ◦ φ.

Minimality

A dynamical system (X, T ) is minimal if the only closed T -invariant subsets
of X are X and ∅. Another equivalent definition is that for all x ∈ X, the
orbit of x is dense in X. A minimal dynamical system (X, T ) is said to be
periodic whenever X is finite. In particular, if (X, T ) is not minimal, there
is a subset Y ⊂ X such that (Y, T Y ) is minimal where T Y is the restriction
of T to Y .

Let us consider the dynamical system (X,Rα) of Example 1.4.1. It is well
known that for x ∈ R, the sequence ({x+nα})n∈N is dense in [0, 1[ if and only
if α is irrational. Consequently, the dynamical system (X,Rα) is minimal if
and only if α ∈ R \Q.

Subshifts

First, recall that with the product topology of the discrete topology over
A, both sets AZ and AN are compact metric spaces. The following metrics
respectively on AZ and AN define the same topology.

dZ(x,y) = 2−n for n = inf{i ∈ N | xi 6= yi or x−i 6= y−i}
dN(x,y) = 2−n for n = inf{i ∈ N | xi 6= yi}.

The shift transformation T is defined over AZ (or AN) by

T : w = (wi)i∈Z 7→ T (w) = (wi+1)i∈Z

(where we replace Z by N when working on AN). It is a continuous and
onto map over AZ (or AN) so that both (AZ, T ) and (AN, T ) are topological
dynamical systems, respectively called two-sided full shift and one-sided full
shift. Observe that for a two-sided full shift (AZ, T ), T is also one-to-one
although it is not the case for one-sided subshifts.

If X is a closed T -invariant subset of AZ or AN, then (X, T X) is also a
dynamical system and is called a (two-sided or one-sided) subshift.

The language of a subshift X is the union of the languages of its elements;
we denote it by L(X) and we write Ln(X) = L(X)∩An for all n ≥ 0. Observe
that a subshift (X, T ) is completely determined by its language. Indeed, a
sequence w belongs to (X, T ) if and only if L(w) ⊂ L(X).
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Let w be a sequence over A. We denote by Xw the set {x ∈ AZ | L(x) ⊂
L(w)}. Then (Xw, T ) is a two-sided subshift called the subshift generated by
w and when w is a two-sided sequence, we have Xw = O(w). If w is a purely
morphic sequence σω(a), then (Xw, T ) is a substitutive subshift. If moreover
σ is primitive, then all its fixed points generate the same minimal subshift
which is denoted by (Xσ, T ). Similarly, a minimal subshift X is S-adic if
it is generated by an S-adic sequence. In that case, any directive word of
elements of the subshift is a directive word of X.

Observe that if a minimal subshift (X, T ) is periodic, then X contains
only periodic sequences. Moreover, the following are equivalent:

- (X, T ) is minimal,
- for all w in X, X = Xw = Xw+ ,
- for all w in X, L(X) = L(w) = L(w+).

We also have that (Xw, T ) is minimal if and only if w is uniformly recurrent.
As for sequences, we can define the complexity function of a subshift

(X, T ) as the function pX (or simply p) that counts the number of factors of
a given length in L(X):

pX : N → N : n 7→ #Ln(X).

Observe that for minimal subshifts (X, T ), since L(X) = L(w) for all w ∈ X,
we have pw(n) = pX(n) for all w ∈ X and Equalities (1.1) and (1.2) also
hold for this case.

1.5 Rauzy graphs

In the sequel, Rauzy graphs are widely used. The S-adic representations
that we get are based on them and it is therefore crucial to really understand
what they are and how they evolve. However they will only be needed in
Chapter 3, Chapter 4 and Chapter 5. In other words, this section is not
necessary to understand Chapter 2 and could therefore be read later. First
let us recall some definitions of graph theory.

A directed graph G is a couple (V,E) where V is the set of vertices and
E ⊂ V × V is the set of edges. Edges may be labelled by elements of a set
A and then E ⊂ V ×A× V . If e = (u, a, v) is an edge of G, we let o(e) = u
denote its starting vertex (o for outgoing) and i(e) = v its ending vertex (i for
incoming). A path p in G is a sequence (v0, a1, v1)(v1, a2, v2) . . . (vℓ−1, aℓ, vℓ)
of consecutive edges. The label of p is the ℓ-tuple (a1, a2, . . . , aℓ). However
in the sequel we will simply denote it by concatenating the labels of each
edge. We also let o(p) denote the starting vertex v0 of p and by i(p) its
ending vertex vℓ; they are called the extremities of p and v1, . . . , vℓ−1 are
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called interior vertices. The length of a path is the number of edges com-
posing it. A subpath of p = (v0, a1, v1)(v1, a2, v2) . . . (vℓ−1, aℓ, vℓ) is a path
q = (u0, b1, u1)(u1, b2, u2) . . . (uk−1, bk, uk) such that k ≤ ℓ and there exists an
integer i ∈ [0, ℓ − k] such that (vi+j , ai+j+1, vi+j+1) = (uj, bj+1, uj+1) for all
integers j ∈ [0, k − 1]. It is a proper subpath if k < ℓ.

All the notions of this section are defined with respect to sequences; they
can easily be adapted to subshifts.

1.5.1 Rauzy graphs and allowed paths

Let w be a sequence over an alphabet A. For each non-negative integer n, we
define the Rauzy graph of order n of w (also called graph of words of length
n), denoted by Gn(w) (or simply Gn) as the directed graph (V (n), E(n)),
where

- the set V (n) of vertices is the set Ln of factors of length n of w and
- there is an edge from u to v if there are two letters a and b in A such

that ub = av ∈ Ln+1.
In the literature, there are different ways of labelling the edges. Indeed, the
edges are sometimes labelled by the letter a, by the letter b, by the couple
(a, b) or by the word av, i.e., the following four notations exist:

u
b−→ v u −→

a
v u

b−→
a
v u

av−→ v.

For an edge e = (u, (a, b), v) = u
b−→
a
v, let us call λL(e) = a its left label,

λR(e) = b its right label and λ(e) = ub = av its full label. Same definitions
hold for labels of paths (left and right labels being words of same length as the
considered path) where we naturally extend the map λ to the set of paths
by λ ((u0, (a1, b1), u1)(u1, (a2, b2), u2) · · · (uℓ−1, (aℓ, bℓ), uℓ)) = u0b1b2 · · · bℓ =
a1a2 · · · aℓuℓ.
Example 1.5.1. Let f be the Fibonacci sequence (see Example 1.3.1). Fig-
ure 1.1 represents the first three Rauzy graphs of f (with full labels on the
edges).

Remark 1.5.2. A sequence is recurrent if and only if all its Rauzy graphs are
strongly connected (that is for all vertices u and v of Gn there is a path p
from u to v, i.e., o(p) = u and i(p) = v.).

We say that a vertex v is right special (resp. left special, bispecial) if it
corresponds to a right special (resp. left special, bispecial) factor.

Remark 1.5.3. By definition of Rauzy graphs, (u, (a, b), v) is an edge in Gn(w)
if and only if the word ub is in the language L(w). It is also clear that for any
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ε

a

b

(a) G0(f)

a

b

aa

ab ba

(b) G1(f)

ab ba

aa

aba

baaaab

bab

(c) G2(f)

Figure 1.1: First Rauzy graphs of the Fibonacci sequence.

word u in L(w), for all non-negative integers n < |u| there is a non-empty
path p in Gn(w) whose full label λ(p) is u. The contrary is not true: not
every path in Gn(w) has a full label that is a factor of w. Indeed, in the
Rauzy graph G1(f) of the Fibonacci sequence (see Figure 1.1(b)), the full
label of the path (a, (a, a), a)n is an+1 for each n and this word is not in the
language as soon as n ≥ 2. The reason is that once we have reached the
vertex a coming from some edge, we have two possibilities: either we stay
in this vertex passing through the loop (a, (a, a), a), or we go in the vertex
b with the edge (a, (a, b), b). These possibilities exist because the word a is
a right special factor of the Fibonacci sequence, but this particularity only
implies that, starting at vertex a, we can read a a or a b. In other words, it
does not take care of what happened before (i.e., from which edge we arrived
in this vertex) although we have to. Indeed, if we come from the loop, this
means that the previous vertex of the path was the vertex a and the full label
of this path is aa. Then the only possibility that we really have is to go into
the vertex b (because aaa /∈ L(f)).

Definition 1.5.4. A path in a Rauzy graph Gn(w) is said to be allowed if
its full label is a word in L(w).

Note that, by definition, any path p = (v0, (a1, b1), v1) · · · (vℓ−1, (aℓ, bℓ), vℓ)
that does not contain any subpath (vi, (ai+1, bi+1), vi+1) · · · (vj−1, (aj , bj), vj),
1 ≤ i ≤ j ≤ ℓ−1 with vi left special and vj right special is allowed. Moreover,
the following result trivially holds true.

Proposition 1.5.5. Let Gn be a Rauzy graph of order n. For all paths p of
length ℓ ≤ n in Gn, the left label of p is a prefix of o(p) and the right label of
p is a suffix of i(p). Similarly, for any path p of length ℓ ≥ n, i(p) is equal
to the suffix of length n of λR(p) and o(p) is equal to the prefix of length n of
λL(p).
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1.5.2 Evolution of Rauzy graphs

In the sequel we will need to let the Rauzy graphs evolve, i.e., we will need to
go from Gn(w) to Gn+1(w). Let us see how it goes. As the set of edges
of Gn is in bijection with Ln+1, we can write Gn as the directed graph
(Ln(w), Ln+1(w)). Then to get the Rauzy graph of order n + 1, we only
have to replace each edge of Gn(w) by a vertex and to define the edges in
the following way:

• for each non special vertex v in Gn(w), we replace av−→ v
vb−→ by av avb−−→

vb;

• for each left special vertex v in Gn(w) that is not right special we make
the following changes

a1v

&&LLLLLLLLLLLLL

... v vb //

akv

88rrrrrrrrrrrrr

a1v
a1vb

&&MMMMMMMMMMMMM

... vb

akv
akvb

88qqqqqqqqqqqqq

Transitions in Gn Transitions in Gn+1

• for each right special vertex v in Gn(w) that is not left special, we make
the following changes

av // v

vb1

88rrrrrrrrrrrrr

vbk
&&LLLLLLLLLLLLL ...

vb1

av

avb1

88qqqqqqqqqqqqq

avbk
&&MMMMMMMMMMMMM

...

vbk

Transitions in Gn Transitions in Gn+1

• finally, for each bispecial vertex v in Gn(w), we have among the transi-
tions in Gn+1(w) represented here below, only those whose label aivbj
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is a factor of w.

a1v

��>
>>

>>
>>

>>
>>

>>
>>

>>

a2v
&&LLLLLLLLLLLLL

... v

vb1

@@�����������������
vb2

88rrrrrrrrrrrrr

vbk
&&LLLLLLLLLLLLL ...

alv

88rrrrrrrrrrrrr

a1v //

''NNNNNNNNNNNNN

��3
33

33
33

33
33

33
33

33
33

33
33

33
33

vb1

a2v

77ppppppppppppp
//

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

< vb2

...
...

alv

EE���������������������������

AA��������������������
// vbk

Transitions in Gn Possible transitions in Gn+1

Remark 1.5.6. It is a direct consequence of what precedes that for each non-
negative integer n, if there is no bispecial factor in Ln(w), then the Rauzy
graph of order n determines exactly the Rauzy graph of order n+1. Moreover,
in this case the length of the smallest path from a left special vertex to a right
special vertex decreases by 1 as n increases by 1. Consequently, there exists
a smallest non-negative integer kn such that the Rauzy graph Gn+kn contains
a bispecial vertex v and we have to check which labels aivbj belongs to L(w)
to construct the Rauzy graph Gn+kn+1(w).

1.5.3 Languages defined upon Rauzy graphs

It is possible to define languages upon Rauzy graphs. Indeed, given a Rauzy
graph Gn, we can define the language LL(Gn) (resp. LR(Gn)) respectively as
the set of left labels (resp. right labels) of paths in Gn. In the sequel, we will
mostly deal with minimal subshifts and uniformly recurrent sequences thus
with strongly connected Rauzy graphs. In that case, the following results
trivially holds true.

Fact 1.5.7. Let (X, T ) be a minimal subshift over an alphabet A. For all n,
let LL(Gn) and LR(Gn) respectively denote the set of left labels and the set of
right labels of all finite path in Gn(X). Then, for all n, we have

LL(Gn) = LR(Gn)

and
L(X) =

⋂

n∈N

LL(Gn).
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Chapter 2

Overview of S-adicity

Recall that the S-adic conjecture states that one can find a condition C such
that a sequence has a sub-linear complexity if and only if it is an S-adic
sequence satisfying the Condition C.

In this chapter, we present some known results about the complexity of
some S-adic sequences. First, we compare the case of (purely) morphic se-
quences with the case of S-adic sequences. Then we present some families
of sequences (such as Sturmian sequences, Episturmian sequences, linearly
recurrent sequences, codings of rotations,. . . ) for which the S-adic repre-
sentations are well known. Finally, we present some sufficient conditions for
an S-adic sequence to have a sub-linear complexity and we give some exam-
ples that allow to reject some "naive ideas" that one could have about the
Condition C.

2.1 Comparison between morphic and S-adic

sequences

The complexity function of (purely) morphic sequences has already been
extensively studied (see for instance [Cas97, Cas03, CN03, Dev08, Dur98a,
ELR75, ER81, ER83, Fer95, NP09, Pan84]). In this section we present some
known results about those sequences and we check whether they have a gen-
eralization for S-adic sequences. In most cases, they don’t. Actually, even if
things are already significantly more complicated for morphic sequences than
for purely morphic ones, many results about purely morphic sequences can
be generalized to morphic ones. On the opposite, we will see that very few
of them still hold true for S-adic sequences.

41
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2.1.1 The case of purely morphic sequences

Purely morphic sequences correspond to S-adic sequences with Card(S) = 1.
In that case, the complexity functions that can occur have been completely
determined by Pansiot in [Pan84]. Indeed, he proved that for purely mor-
phic sequences w = σω(a) with σ non-erasing, the complexity function pw(n)
can have only five asymptotic behaviors that are1 Θ(1), Θ(n), Θ(n logn),
Θ(n log log n) and Θ(n2). Moreover, when the sequence w is aperiodic, The-
orem 1.2.2 implies that its complexity function cannot be Θ(1) and the class
of complexity of the sequence only depends on the growth rate of images.

Definition 2.1.1. Recall that a morphism σ : A∗ → A∗ is said to be ev-
erywhere growing if it does not admit bounded letters (Definition 1.3.5 on
page 31). Since for all letters a, we have |σn(a)| ∈ Θ(nαaβn

a ) for some αa in N

and βa ≥ 1 (see [RS80]), any everywhere growing morphism satisfies exactly
one of the following three definitions:

1. a morphism σ : A∗ → A∗ is quasi-uniform if there exists β ≥ 1 such
that for all letters a ∈ A, |σn(a)| ∈ Θ(βn);

2. a morphism σ : A∗ → A∗ is polynomially diverging if there exists β > 1
and a function α : A → N, α 6= 0, such that for all letters a ∈ A,
|σn(a)| ∈ Θ(nα(a)βn);

3. a morphism σ : A∗ → A∗ is exponentially diverging if there exist a1, a2 ∈
A, α1, α2 ∈ N and β1, β2 > 1 with β1 6= β2 such that for each i ∈ {1, 2},
|σn(ai)| ∈ Θ(nαiβn

i ).

Theorem 2.1.2 (Pansiot [Pan84]). Let σ : A∗ → A∗ be a non-erasing mor-
phism prolongable on a ∈ A and let us consider the fixed point w = σω(a).

1. If σ is everywhere growing and

i. quasi-uniform, then2 pw(n) ∈ O(n);

ii. polynomially diverging, then pw(n) ∈ Θ(n log log n);

iii. exponentially diverging, then pw(n) ∈ Θ(n logn).

2. If σ is not everywhere growing and if there are infinitely many factors
of w in A∗

B
, then pw(n) = Θ(n2).

1f(n) ∈ Θ(g(n)) if ∃C1, C2 > 0, n0 ∀n ≥ n0 |C1g(n)| ≤ |f(n)| ≤ |C2g(n)|.
2f(n) ∈ O(g(n)) if ∃C > 0, n0 ∀n ≥ n0 |f(n)| ≤ |Cg(n)|.
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3. If σ is not everywhere growing and if there are only finitely many factors
of w in A∗

B
, then there exists an everywhere growing morphism τ :

B∗ → B∗ prolongable on b ∈ B and a non-erasing morphism λ : B∗ →
A∗ such that w = λ(τω(b)). In this case, we have pw(n) ∈ Θ(pτω(b)(n)).

One can regret that Theorem 2.1.2 only holds for non-erasing morphisms.
However, the following result states that when the morphism is erasing, one
can see the purely morphic sequence as a morphic sequence with non-erasing
morphisms. The result is due to Cobham [Cob68] and has been recovered
later by Pansiot [Pan83]. It can also be found in Cassaigne and Nicolas’s
survey [CN03].

Theorem 2.1.3 (Cobham [Cob68] and Pansiot [Pan83]). If w is a morphic
sequence, it is the image under a letter-to-letter morphism of a purely morphic
word σω(a) with σ a non-erasing morphism.

In addition to the type of morphism (Definition 2.1.1), there exist some
combinatorial criteria that have an influence on the complexity of purely
morphic sequences. We give here three examples of such criteria — being
uniformly recurrent, avoiding large powers and having a constant distribu-
tion — and will compare their consequences on the complexity for purely
morphic, morphic and S-adic sequences. First, the following result concerns
uniform recurrence and can be deduced from Theorem 2.1.2 (at least for ev-
erywhere growing morphisms). It can also be seen as a direct consequence of
theorems 2.2.22 and 2.2.23.

Proposition 2.1.4. Let w = σω(a) be a purely morphic sequence. If w

is uniformly recurrent, then pw(n) ∈ O(n). Moreover, if σ is everywhere
growing, w is uniformly recurrent if and only if σ is primitive.

Sketch of the proof : Let us prove it for everywhere growing morphisms. If
pw(n) is not sub-linear, there are two letters b, c ∈ A such that the sequences
(|σn(b)|)n∈N and (|σn(c)|)n∈N have different growth rates. Consequently, at
least one of the following statements holds true:

1. for all n, the letter b does not occur in σn(c);
2. for all n, the letter c does not occur in σn(b).

Since all words σn(b) and σn(c) occur in w and since σ is everywhere growing,
this implies that at least one of the letters b and c does not occur with bounded
gaps in w and this contradict the uniform recurrence. �

Now, a sequence w is said to be k-power free, k ≥ 2, if no factors of w
can be written as uk for some word u 6= ε. For instance, it is well known that
the Thue-Morse sequence (see Example 1.3.1 on page 30) is cube-free.
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Proposition 2.1.5 (Ehrenfeucht and Rozenberg [ER83]). If w is a k-power
free purely morphic sequence over an alphabet A, then its complexity func-
tion grows at least linearly and at most as n log n. Moreover, if k = 2 and
Card(A) = 3 or if k ≥ 3 and Card(A) = 2, we have pw(n) ∈ Θ(n). Fi-
nally, there exist cube-free purely morphic sequences over 3 letters alphabets
and square-free purely morphic sequences over 4 letters alphabets such that
p(n) ∈ Θ(n logn).

Finally, a sequence is said to have a constant distribution if there is a
length ℓ such that all factors of length ℓ of w contains all letters of w. One
can easily check that the Thue-Morse sequence t has a constant distribution
(with ℓ = 3). Actually, any k-power-free sequence over a binary alphabet has
a constant distribution with ℓ = k + 1.

Proposition 2.1.6 (Ehrenfeucht and Rozenberg [ER83]). If w is purely mor-
phic and has a constant distribution, then pw(n) ∈ O(n logn).

Remark 2.1.7. In [Cas97], Cassaigne gave some methods (using bispecial fac-
tors) to compute the exact complexity of purely morphic sequences. In Chap-
ter 4 of [BR10], he also shows how these methods can be used to compute
the complexity of some particular S-adic sequences (see also the unpublished
paper [Cas02]). However, the methods seem to be too much complicated to
hope using them in a general case.

2.1.2 The case of morphic sequences

Theorems 2.1.2 and 2.1.3 show that to compute the complexity function of
a purely morphic sequence, it is sometimes necessary to see it as a morphic
sequence. It is therefore natural to be interested in the complexity function of
such sequences. By definition, it is obvious that any purely morphic sequence
is morphic. Next result shows that the converse is false.

Proposition 2.1.8 (Cassaigne and Nicolas [CN03]). If w is a morphic se-
quence and if the letter a does not occur in w, then the one-sided sequence
aaw is morphic but not purely morphic.

Moreover, not only the class of morphic sequences strictly contains the
class of purely morphic sequences, but also the asymptotic behaviors of the
complexity functions are different. Indeed, Example 2.1.9 shows that the
classes of complexity given by Pansiot are not sufficient anymore.
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Example 2.1.9 (Deviatov [Dev08]). Let w be the morphic sequence τ(σω(0))
where σ and τ are defined by

σ :







0 7→ 01

1 7→ 12

2 7→ 23

3 7→ 3

and σ :







0 7→ 0

1 7→ 1

2 7→ 2

3 7→ 2

We have pw ∈ Θ(n
√
n).

Other examples can be found in [Pan85]. Indeed, for all k ≥ 1, Pansiot
explicitly built a morphic sequence w whose complexity function satisfies
pw(n) ∈ Θ(n k

√
n). Consequently, the number of different asymptotic behav-

iors for the complexity function of morphic sequences is at least countably
infinite. However, the behaviors Θ(n k

√
n) seem to be the only new behav-

iors with respect to purely morphic sequences. Indeed, in [Dev08] Deviatov
proved the next result and conjectured an equivalent result of Pansiot’s The-
orem (Theorem 2.1.2) for morphic sequences.

Theorem 2.1.10 (Deviatov [Dev08]). Let w be a morphic sequence. Then,
either pw(n) ∈ Θ(n1+ 1

k ) for some k ∈ N∗, or pw(n) ∈ O(n logn).

Conjecture (Deviatov [Dev08]). The complexity function of any morphic
sequence only adopts one of the following asymptotic behaviors: Θ(1), Θ(n),
Θ(n log logn), Θ(n log n), Θ(n1+ 1

k ) for some k ∈ N.

In particular, Theorem 2.1.10 implies that the highest complexity that one
can get is the same for morphic sequences and for purely morphic sequences.
This can be explained by the following result.

Proposition 2.1.11 (Cassaigne and Nicolas [CN03]). Let w be a one-sided
sequence over A and σ : A∗ → B∗ be a non-erasing morphism. If M =
maxa∈A |σ(a)|, for all n we have pσ(w)(n) ≤ Mpw(n). Moreover, if w is
purely morphic and σ is injective, then pσ(w)(n) ∈ Θ(pw(n)).

For purely morphic sequences, we have seen in Section 2.1.1 that some
combinatorial criteria influence the complexity (uniform recurrence, k-power
free and constant distribution). For morphic sequences, things are a little bit
different.

First, the next result is rather similar to Proposition 2.1.4. It can be easily
obtained with techniques developed by Durand in [Dur98a] and a detailed
proof can also be found in [NP09].
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Proposition 2.1.12. If w = τ(σω(a)) is a uniformly recurrent morphic
sequence with τ a letter-to-letter morphism, then pw(n) = Θ(n).

Then, Proposition 2.1.5 can also be partially extended to morphic se-
quences (see Proposition 2.1.13 below).

Proposition 2.1.13 (Pansiot [Pan85]). If w is a k-power free morphic se-
quence, then pw(n) ∈ O(n logn).

Finally, Example 2.1.14 shows that Proposition 2.1.6 does not hold any-
more for morphic sequences.

Example 2.1.14 (Pansiot [Pan85]). Let w = τ(σω(a)) be a morphism se-
quence where σ and τ are defined by

σ :







a 7→ a1

1 7→ 01

0 7→ 0

and τ :







a 7→ 000

1 7→ 010

0 7→ 011

Then w has a constant distribution and pw ∈ Θ(n2).

2.1.3 The case of S-adic sequences

As we will see, S-adic sequences are considerably more complicated than mor-
phic ones. Indeed, in this case the set of asymptotic behaviors of the com-
plexity function is uncountably. Moreover, the combinatorial criteria given
for (purely) morphic sequences (uniform recurrence, k-power free, constant
distribution) do not influence the complexity anymore.

Nothing works fine

A first important result is the following.

Proposition 2.1.15 (Cassaigne [Fog11]). Let A be an alphabet and l /∈ A.
There is a finite set S of morphisms over A′ = A∪{l} such that any one-sided
sequence over A is S-adic.

Proof. Let w = w0w1 · · · be a one-sided sequence over a finite alphabet A
and let l be a letter that does not belong to A. For each letter a in A we
define the morphism σa over A ∪ {l}by

σa :

{

l 7→ la

b 7→ b if b 6= l
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We also define the morphism φ from A ∪ {l} to A by

φ :

{

l 7→ w0

b 7→ b if b 6= l

Then we have
w = lim

n→+∞
φσw1σw2 · · ·σwn

(lω).

This results can be extended to two-sided sequences as follows.

Corollary 2.1.16. Let A be an alphabet and l, k /∈ A. There is a finite set
S of morphisms over A′ = A ∪ {l, k} such that any one-sided sequence over
A is S-adic.

Proof. Indeed, consider w = · · ·w−2w−1.w0w1 · · · ∈ AZ. Let us consider
the morphisms defined in the proof of Proposition 2.1.15 and the following
morphisms

ψ :

{

k 7→ w−1

b 7→ b if b 6= k
and ∀a ∈ A τa :

{

k 7→ ak

b 7→ b if b 6= k
.

Then we have

w = lim
n→+∞

φψσw1(τw−2σw2)(τw−3σw3) · · · (τw−n
σwn

)(ωk.lω).

In particular, this implies that one can get any high complexity with S-
adic sequences, which is strongly different from what can be observed for
morphic sequences. Moreover, the following proposition implies that the
set of possible asymptotic behaviors for the complexity function of S-adic
sequences is uncountable.

Proposition 2.1.17 (Cassaigne [Cas03]). Let f : R+ → R+ be a function
such that

i. limt→+∞
f(t)
log t

= +∞;

ii. f is differentiable, except possibly at 0;

iii. limt→+∞ f ′(t)tβ = 0 for some β > 0;

iv. f ′ is decreasing.
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Then there exists a uniformly recurrent sequence w over {0, 1} such that
log(pw(n)) ∼ f(n).

Moreover, the proof of this proposition is constructive (see also [MM10] for
other constructions of sequences with complexity close to a given function).
In particular, the function f(n) in the previous proposition can be taken
equal to nα for any α with 0 < α < 1.

For (purely) morphic sequences, Propositions 2.1.4 and 2.1.12 imply that
for uniformly recurrent (purely) morphic sequences w, we have pw(n) ∈ O(n).
For S-adic sequences, the following theorem together with Proposition 2.1.15
imply that this is not true anymore. Recall that the topological entropy of
a sequence (or a subshift) over an alphabet A is the real number h with
0 ≤ h ≤ log(Card(A)) defined by

h = lim
n→∞

log(p(n))

n
.

Observe that h is well defined due to Fekete’s Lemma (see [Fek23]) and to
the inequality p(m+ n) ≤ p(m)p(n) (see Chapter 4 of [BR10] for a proof).

Theorem 2.1.18 (Grillenberger [Gri73]). Let A be an alphabet with d =
Card(A) ≥ 2 and h ∈ [0, log(d)[. There exists a uniformly recurrent one-
sided sequence w over A with topological entropy h.

For the other combinatorial criteria (k-power free and constant distribu-
tion), it is clear that Proposition 2.1.6 does not hold for S-adic sequences
since it does not even hold for morphic ones (see Example 2.1.14). For the
last one (avoiding large powers) Proposition 2.1.19 shows that, once again,
nothing works fine for S-adic sequences (the proof follows a construction of
Currie and Rampersad in [CR10]).

Proposition 2.1.19. There exist some uniformly recurrent S-adic sequences
that are cubefree and have an exponential complexity.

Proof. From Proposition 2.1.15, we only have to prove the existence of uni-
formly recurrent sequences that are cubefree and have an exponential com-
plexity. First, let us give some definitions. Given two sequences x ∈ AN and
y ∈ BN, the direct product of x and y is the sequence x ⊗ y ∈ (A × B)N

such that (x ⊗ y)i = (xi,yi) for all i ∈ N. Then, we say that a sequence x

is strongly recurrent if for all uniformly recurrent sequences y, the sequence
x⊗ y is uniformly recurrent. In [Sal10], Salimov proved (in particular) that
the Thue-Morse sequence t is strongly recurrent.

Now let us complete the proof. From Theorem 2.1.18 we can consider a
uniformly recurrent sequence x with exponential complexity. Let also t be
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the Thue-Morse sequence and define w = t⊗ x. It is obvious that w is also
cubefree and has an exponential complexity so the result holds.

Remark 2.1.20. In the proof of the previous result, one has to consider
sequences over at least 4-letters alphabets. This can be improved to 2-
letters alphabets by replacing the direct product by the perfect shuffle, i.e.,
Shuffle(x,y) = x0y0x1y1x2y2 · · · .

Nevertheless, two positive results

Up to now, it seems that, compared to (purely) morphic sequences, nothing
works with S-adic sequences. However, we can still give the following two
results. The first one deals with uniform recurrence and the second one is a
generalization of Theorem 2.1.3.

Proposition 2.1.21 (Durand [Dur00]). Let w be an S-adic sequence directed
by the couple (σn, an)n∈N ∈ SN×∏∞

n=0An. If for all r ∈ N, there exists s > r
such that all letters of Ar occur in σr · · ·σs(a) for all a in As+1, then w is
uniformly recurrent.

Proposition 2.1.22 (Cassaigne [Fog11]). Let w be an S-adic sequence di-
rected by the couple (σn, an)n∈N ∈ SN × ∏∞

n=0An. There exists a set S̃
of morphisms and an S̃-adic representation (σ̃n : Ã∗

n+1 → Ã∗
n, ãn)n∈N ∈

S̃N ×∏∞
n=0 Ãn of w such that for all n:

1. Ãn ⊂ An and

2. σ̃n is non-erasing.

Moreover, if S is finite, so is S̃.

2.2 Some well-known S-adic representations

In the literature, some results are already well known about S-adicity. For in-
stance, some families of sequences admit an S-adic characterization. In other
words, there is a condition C for those sequences. The most famous class
of sequences that admit an S-adic characterization is the class of Sturmian
sequences. As already mentioned, these sequences have been widely studied.
In particular, they have been generalized into several directions (such as cod-
ings of rotations, codings of interval exchange transformations, episturmian
sequences) and some of these generalizations also yield to S-adic character-
izations. In this section we (partially) present what is known about these
ones.
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2.2.1 Sturmian sequences

Recall that a one-sided sequence w is Sturmian if pw(n) = n + 1 for all n.
Example 1.3.7 (on page 32) shows that any Sturmian sequence is S-adic with
S = {L0, L1, R0, R1}. Using another definition of Sturmian sequences (using
codings of rotations), one can actually say more (see Theorem 2.2.1 below).

Theorem 2.2.1 (Berthé, Holton, Zamboni [BHZ06]). Let S be the set of
morphisms {L0, R0, L1, R1} as in Example 1.3.7. A sequence w is Sturmian
if and only if there exist two sequences of integers (ak)k≥1 and (ck)k≥1 such
that

w = lim
n→∞

La1−1−c1
0 Rc1

0 L
a2−c2
1 Rc2

1 · · ·Lan−1−cn−1

0 R
cn−1

0 Lan−cn
1 Rcn

1 (0ω).

with for all k ≥ 1, ak ≥ 1, ck ≥ 0 and for all k ≥ 2, ck = ak ⇒ ck−1 = 0.
Moreover, two different couples of sequences (ak, ck)k≥1 satisfying the above
conditions provide two differents Sturmian sequences.

To briefly explain that theorem, it is convenient to see Sturmian sequences
as codings of rotations (or as mechanical words, but this direction will not
be followed here). Indeed, as we will see, the sequence (ak)k≥1 is related to
the continued fraction of the angle α and the sequence (ck)k≥1 is related to
the Ostrowski representation [Ost22] of the point x ∈ R/Z whose orbit under
the rotation is coded by the Sturmian sequence. First, let us recall the link
between Sturmian sequences and codings of rotations.

Formally, for α ∈ R, the rotation of angle α is rα : R/Z → R/Z defined
by

rα(x) = x+ α mod 1.

As already mentioned in Example 1.4.1, the couple (R/Z, rα) is a topological
dynamical system.

A one-sided sequence w over A = {0, . . . , k−1} is a coding of the rotation
rα if there exists x ∈ R/Z and a partition P of the unit circle R/Z into k
intervals {I0, I1, . . . , Ik−1} such that for all k ∈ N,

wk = i if rkα(x) ∈ Ii.

The set of codings of rotations of rα with respect to a partition P is a subshift
denoted by (Xα,P , T ).

We can suppose without loss of generality that α belongs to ]0, 1
2
[. Indeed,

when α > 1 or α < 0, the dynamical system (R/Z, rα) is the same as (R/Z, rβ)
with β ∈]0, 1[ and β ≡ α mod 1 and for α ∈]1

2
, 1[ we have to consider the

rotation in the opposite direction of angle α′ = 1 − α. In the sequel we will
always suppose that α is irrational, otherwise the orbit of any point x ∈ [0, 1[
under rα is periodic (so is its coding).
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Proposition 2.2.2 ([MH40] and [CH73]). A sequence w is Sturmian if and
only if there is an irrational number α and a point x ∈ R/Z such that w is
the coding of x under the rotation rα with respect to the partition {I0, I1} of
R/Z with I0 = [0, 1− α[ and I1 = [1− α, 1[.

Now let us explain how we can obtain exactly the directive word of the
S-adic representation of a Sturmian sequence.

For α ∈ R, let [a0; a1, a2, . . . ] denote its regular continued fraction, i.e.,

α = a0 +
1

a1 +
1

a2+···+ 1
an+···

, ai ∈ N∗.

Observe that the continued fraction of α is finite if and only if α is rational.
Moreover, we have a0 = ⌊α⌋ and for all n ≥ 1, an is called partial quotient
and is obtained as follows. We define the regular continued fraction operator
F : R/Z → R/Z by

F (x) =
1

x
−
⌊
1

x

⌋

.

Then, to find the partial quotients of α, we put f0 = α − ⌊α⌋ and for all
n ≥ 1, fn = F (fn−1). For all n ≥ 1 we have

an =

⌊
1

fn−1

⌋

.

Lemma 2.2.3 (Morse and Hedlund [MH40]). Let w be a Sturmian sequence
related to the rotation rα. The sequence (ak)k≥1 of Theorem 2.2.1 is the
sequence of partial quotients of α.

Now, for all n ∈ N let us define pn and qn by gcd(pn, qn) = 1 and

pn
qn

= a0 +
1

a1 +
1

a2+···+ 1
an

. (2.1)

We have limn→+∞
pn
qn

= α and the sequence
(

pn
qn

)

n∈N
represents the best

approximation of α, i.e., for all rational number r
s

with gcd(r, s) = 1, we have

∀n, r

s
6= pn
qn

and 0 < s ≤ qn ⇒ |sα− r| > |qnα− pn|.

Then, we consider a particular numeration system based on the sequence
(|qnα− pn|)n∈N called Ostrowski numeration system (see [Ost22, Ber01]).
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Proposition 2.2.4. Let α = [0; a1, a2, . . . ] be irrational. Any real number
x ∈ R/Z can be uniquely written as

x =
+∞∑

n=1

cn|qn−1α− pn−1|, (2.2)

with

i. pn and qn as in (2.1);

ii. for all n, 0 ≤ cn ≤ an;

iii. cn = 0 ⇒ cn+1 = an+1;

iv. for infinitely many n, c2n 6= a2n and c2n+1 6= a2n+1.

Lemma 2.2.5 (Berthé, Holton, Zamboni [BHZ06]). Let w be a Sturmian
sequence related to the rotation rα and to the point x ∈ R/Z. The sequence
(ck)k≥1 of Theorem 2.2.1 is the sequence of coefficients of the Ostrowski rep-
resentation of x in Proposition 2.2.

Remark 2.2.6. Let w be a Sturmian sequence coding the orbit of x under the
rotation rα, α = [0; a1, a2, . . . ]. The equidistribution of (x + nα mod 1)n∈N
in R/Z implies that the subshift (Xw, T ) is minimal and that the sequence x

coding the orbit of 0 is in Xw. Then, since the sequence of coefficient (cn)n≥1

of the Ostrowski representation of 0 is only composed of zero’s, the sequence
x is directed La1−1

0 La2
1 L

a3
0 L

a4
1 · · · . Finally, since by definition, an S-adic rep-

resentation of Xw is given by any S-adic representation of a sequence of Xw,
the subshift Xw admits La1−1

0 La2
1 L

a3
0 L

a4
1 · · · as an S-adic representation.

2.2.2 Codings of rotations

A natural way to generalize Sturmian sequences is to consider codings of ro-
tations of irrational angle α but with a different partition of the unit circle
R/Z. In the sequel we will only consider non-degenerate rotations, i.e., ro-
tations of irrational angle α such that there are some real numbers l0, . . . , lk
verifying 0 = l0 < l1 < · · · < lk = 1 and for all i ∈ {0, . . . , k − 1}, we have
Ii = [li, li+1[ and li+1 − li ≥ α.

Let α and β be irrational numbers, α, β ∈ R/Z. For any x ∈ R/Z, we
consider the coding of rotation w ∈ {0, 1}N defined by

wk =

{

0 if rkα(x) ∈ [0, 1− β[

1 if rkα(x) ∈ [1− β, 1[
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and call it the rotation of parameters (α, β). Those codings of rotations are
strongly related to Sturmian sequences, as shown by Proposition 2.2.9. First
we need to define the notion of sliding block code.

Definition 2.2.7. Let A and B be alphabets. A block map is an application
Φ : Am+n+1 → B with m,n ∈ Z, m+ n ≥ 0. A sliding block code is a map φ
from AZ to BZ (or from AN to BN) for which there exist two integers m and
n, −m ≤ n, and a block map Φ : Am+n+1 → B such that for all sequences w

over A and all i,
(φ(w))i = Φ(w[i−m,i+n]).

Obviously, for one-sided sequences, we must have m = 0 and n ≥ 0.

Example 2.2.8. Let t be the Thue-Morse sequence (see Example 1.3.1 on
page 30) and let f0 and f1 be the sliding block codes respectively related to
the block maps F0 and F1 of Proposition 2.2.9 below. We have

f0(t) = F0(01)F0(11)F0(10)F0(01)F0(10)F0(00)F0(01)F0(11)F0(10) · · ·
= 001010001 · · ·

and

f1(t) = F1(01)F1(11)F1(10)F1(01)F1(10)F1(00)F1(01)F1(11)F1(10) · · ·
= 100100100 · · ·

Proposition 2.2.9 (Didier [Did98b]). A sequence w ∈ {0, 1}N codes a non-
degenerate rotation of parameters (α, β) if and only if the sequences f0(w)
and f1(w) are Sturmian, where f0 and f1 are the sliding block codes related
to the block maps F0 and F1 defined by

F0 :







00 7→ 0

01 7→ 0

10 7→ 1

11 7→ 0

and F1 :







00 7→ 0

01 7→ 1

10 7→ 0

11 7→ 0

Rote also proved in [Rot94] that these sequences have a sub-linear com-
plexity.

Proposition 2.2.10 (Rote [Rot94]). Let w ∈ {0, 1}N be a coding of rotation
of parameters (α, β). For all n we have pw(n) ≤ 2n and if for all k ∈ N,
kα 6= β mod 1, then pw(n) = 2n.

Finally, Didier proved in [Did98a] that the subshifts generated by those
sequences are S-adic for a particular set S.
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Theorem 2.2.11 (Didier [Did98a]). Let w ∈ {0, 1}N be a coding of a non-
degenerate rotation of parameters (α, β) and let (in)n∈N and (αn, βn)n∈N be
the sequences defined by (α0, β0) = (α, β) and for all n,

1. in = 0 and (αn+1, βn+1) =
(

1−
{

1
αn

}

,
{

βn

αn

})

if
{

1
αn

}

≥
{

βn

αn

}

and

2. in = 1 and (αn+1, βn+1) =
({

1
αn

}

, 1−
{

βn

αn

})

otherwise.

The subshift (Xw, T ) admits the following S-adic representation

lim
n→+∞

φζ

⌊

1−β0
α0

⌋

−1

A ζ

⌊

β0
α0

⌋

−1

B σi0ζ

⌊

1−β1
α1

⌋

−1

A ζ

⌊

β1
α1

⌋

B σi1 · · ·

ζ
⌊ 1−βn

αn
⌋−1

A ζ
⌊ βn

αn
⌋

B σinζ

⌊

1−βn+1
αn+1

⌋

−1

A ζ

⌊

βn+1
αn+1

⌋

B (bd)

where φ, ζA, ζB, σ0 and σ1 are defined by

ζA :







a 7→ a

b 7→ bc

c 7→ c

d 7→ d

ζB :







a 7→ a

b 7→ b

c 7→ c

d 7→ da

φ :







a 7→ 1

b 7→ 1

c 7→ 0

d 7→ 0

σ0 :







a 7→ bda

b 7→ b

c 7→ dbc

d 7→ d

σ1 :







a 7→ bcd

b 7→ bc

c 7→ dab

d 7→ da

Remark 2.2.12. Observe that in [Did98b], Didier actually gave a generaliza-
tion of Proposition 2.2.9 for codings of rotation over arbitrarily large alpha-
bets. Moreover, he ensured in [Did98a] that Theorem 2.2.11 can also be
extended to them.

Remark 2.2.13. One can also note that, similarly to the Sturmian case, the S-
adic representation given in Theorem 2.2.11 is related to continued fractions.
Indeed, for irrational numbers α, the sequence (αn, βn)n∈N of Theorem 2.2.11
is infinite. If for all k ∈ N we define the integers ak and bk by

(ak, bk) =







(⌊
1
αk

⌋

+ 1,
⌊
βk

αk

⌋)

if ik = 0

(⌊
1
αk

⌋

,
⌊
βk

αk

⌋

+ 1
)

if ik = 1

,
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we get

αk =
1

ak + (−1)ik+1αk+1
and βk = αkbk + (−1)ikαkβk+1.

This provides a kind of generalized continued fraction of (α, β) which allows
to write

α =
1

a0 +
(−1)i0+1

a1+
(−1)i1+1

...

and

β =

∞∑

n=0

(

(−1)
∑n−1

k=0 ikbn

n∏

k=0

αk

)

.

2.2.3 Codings of interval exchange transformations

Another generalization of Sturmian sequences are the codings of interval ex-
change transformations. Indeed, for Sturmian sequences, the action of the
rotation rα (see Section 2.2.1) on the intervals I0 and I1 is simply a permu-
tation of them (Figure 2.1). Interval exchange transformations (IET) have
first been introduced by Oseledec [Ose66] (see also [KS67]) and have been ex-
tensively studied since then (see for instance [Ada02, AR91, Did97, FHZ01,
FHZ03, FHZ04, Kea75, LN98, LN00, LN01, Rau79, Vee84a, Vee84b, Vee84c]
or [Via06] for a survey)

I0

0 1− α

I1

1

rα(I1)

0 α

rα(I0)

1

Figure 2.1: For Sturmian sequences, the action of rα on I0 and I1 is simply
a permutation.

Generalities

Let λ = (λ0, . . . , λk−1) be a k-dimensional positive vector (k ≥ 2) such that
∑k−1

j=0 λj = 1 and let π be a permutation of {0, . . . , k − 1}. For all i ∈
{0, . . . , k − 1}, we let Ii denote the semi-interval [bi, bi+1[ with bi =

∑

j<i λj .
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A k-interval exchange transformation is a function Tλ,π : R/Z → R/Z such
that for all i ∈ {0, . . . , k − 1} and all x ∈ Ii,

Tλ,π(x) = x−
∑

j<i

λj +
∑

π(j)<π(i)

λπ(j).

For k = 3 and λ =
(
1
3
, 1
2
, 1
6

)
and π = (2, 1, 0), the action of Tλ,π on R/Z is

represented at Figure 2.2. With the same distance d as for rotations (Sec-
tion 2.2.2), the couple (R/Z, Tλ,π) is a topological dynamical system.

I0

0 1
3

I1
5
6

I2

1

Tλ,π(I2)

0 1
6

Tλ,π(I1)
2
3

Tλ,π(I0)

1

Figure 2.2: 3-IET with λ =
(
1
3
, 1
2
, 1
6

)
and π = (3, 2, 1).

Remark 2.2.14. Since [Kea75] it is well-known that rotations are closely linked
to 3-IET (see also [Ada02] for a detailed proof). In particular, Adamczewski
proved in [Ada02] that codings of rotations can be obtained as images by
a morphisms of S-adic sequences where S contains four morphisms over
{0, 1, 2}.

Let A = {0, . . . , k − 1}. A sequence w ∈ AN is the coding of a k-interval
exchange transformation if there is a k-interval exchange transformation Tλ,π
and a point x ∈ R/Z such that for all j ∈ N,

wj = i if T j
λ,π(x) ∈ Ii.

Minimality and i.d.o.c.

A k-IET Tλ,π is said to be irreducible if its permutation π is irreducible, i.e.,
if for all j ∈ {0, . . . , k− 2}, one has π({0, . . . , j}) 6= {0, . . . , j}. One also says
that Tλ,π satisfies the infinite distinct orbit condition (i.d.o.c.) if the k − 1
negative trajectories {T−n

λ,π (bi) | n ∈ N}, 1 ≤ i ≤ k − 1, are infinite disjoint
sets.

Proposition 2.2.15 (Keane [Kea75]). If Tλ,π is irreducible and satisfies the
i.d.o.c., then (R/Z, Tλ,π) is minimal.

A k-IET Tλ,π is said to be irrational if λ is rationally independent, i.e., for
all non-zero integer vectors (n0, n1, . . . , nk−1) ∈ Zk we have

∑k−1
i=0 niλi 6= 0.
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Proposition 2.2.16 (Keane [Kea75]). If Tλ,π is irreducible and irrational,
then it satisfies the i.d.o.c.

It is well known that for codings of irreducible k-IET satisfying the i.d.o.c.,
we have p(n) = (k−1)n+1 for all n (see for instance [AR91]) and the converse
is also true. It is also well known that they are S-adic. There actually exist
several ways to obtain an S-adic representation of these codings. The most
famous is probably using the Rauzy induction (see [Rau79]).

In [FZ08], the authors gave a combinatorial characterization of codings of
irreducible k-IET satisfying the i.d.o.c. (see also [KBC10]). Then, completing
a work initialized in [FHZ01, FHZ03, FHZ04], they also provided another
induction process in [FZ10] for symmetric k-IET, i.e., IET such that the
permutation π is defined by π(i) = k − 1 − i for all i ∈ {0, . . . , k − 1}.
In particular, this provided another S-adic representation of these IET. For
instance, for k = 3, if T(α,β) denotes the symmetric 3-IET with λ = (α, β, 1−
α− β), they obtain the following S-adic representation using return words.

Theorem 2.2.17 (Ferenczi, Holton and Zamboni [FHZ03]). Let (α, β) ∈
]0, 1[2 such that 2α < 1 and 2α+ β > 1 and such that (R/Z, T(α,β)) is a sym-
metric 3-IET satisfying the i.d.o.c. Let also (X(α,β), T ) be the corresponding
subshift and for m,n ∈ N, we let σ(0,m,n) and σ(1,m,n) respectively denote the
morphisms

σ(0,m,n) :







0 7→ 0m21n−1

1 7→ 10m−121n−1

2 7→ 0m−121n−1

and σ(1,m,n) :







0 7→ 10m−121n−1

1 7→ 0m21n−1

2 7→ 10m21n−1

.

Then, there exist two sequences of positive integers (mk)k∈N and (nk)k∈N and
a sequence (ik)k∈N ∈ {0, 1}N such that (σ(ik ,mk,nk))k∈N is an S-adic represen-
tation of (X(α,β), T ).

Observe that both morphisms σ(0,m,n) and σ(1,m,n) are actually composi-
tions of the following four morphisms so this provides an S-adic representa-
tion with Card(S) = 4.

D :







0 7→ 01

1 7→ 1

2 7→ 2

G :







0 7→ 10

1 7→ 1

2 7→ 2

E0,1 :







0 7→ 1

1 7→ 0

2 7→ 2

E1,2 :







0 7→ 0

1 7→ 2

2 7→ 1

.
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Moreover, if (α, β) does not satisfy the conditions 2α < 1 and 2α+β > 1,
there exists (ᾱ, β̄) satisfying them and a finite sequence of integers l0, . . . , lk
such that

X(α,β) = σl0E0,2σ
l1E0,2 · · ·σlk−1E0,2σ

lk
(
X(ᾱ,β̄)

)
,

where σ and E0,2 are defined by

σ :







0 7→ 0

1 7→ 10

2 7→ 20

and E0,2 :







0 7→ 2

1 7→ 1

2 7→ 0

.

For other S-adic representations, see also [LN98, LN00, LN01].
Another class of sequences related to IET is the class of Arnoux-Rauzy

sequences. They are defined as the uniformly recurrent sequences such that
p(n) = (k − 1)n + 1 for all n and such that for all n, there is a unique right
special factor r and a unique left special factor l such that δ+(r) = δ−(l) = k.
The link with IET is the following.

Proposition 2.2.18 (Arnoux and Rauzy [AR91]). Let w ∈ {0, . . . , k − 1}N
be an Arnoux-Rauzy sequence. There exists a point x ∈ R/Z, an interval
exchange transformation T(λ,π) over 2k intervals A1, . . . , Ak, B1, . . . , Bk and
a partition of R/Z into k intervals Ii = Ai ∪Bi such that for all i ∈ N,

wi = j if T i
(λ,π)(x) ∈ Ij.

Moreover, the corresponding subshifts (called Arnoux-Rauzy subshifts)
admit the following S-adic characterization. Let A = {0, . . . , k − 1}. For all
a ∈ A, let Ra : A

∗ → A∗ be the morphism

Ra :

{

a 7→ a

b 7→ ba if b 6= a

Theorem 2.2.19 (Arnoux-Rauzy [AR91]). Let A = {0, . . . , k − 1}. A sub-
shift (X, T ) over A is an Arnoux-Rauzy subshift if and only if there is a
sequence (an)n∈N ∈ AN, each value of A occurring infinitely often in (an)n∈N,
such that (Ran , 0)n∈N is an S-adic representation of (X, T ).

2.2.4 Episturmian sequences

In addition to the combinatorial similarity between Arnoux-Rauzy sequences
and Sturmian sequences (in terms of complexity and special factors), a prop-
erty shared by both type of sequences is that their languages are closed under
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reversal, i.e., for all words u = u1 · · ·uℓ in L(w), the reversal ũ = uℓ · · ·u1
of u also belongs to L(w). The class of episturmian sequences introduced
in [DJP01] (see also [GJ09] for a recent survey) generalizes these properties.
Formally, a sequence w over A = {0, . . . , k − 1} is episturmian if L(w) is
closed under reversal and if there is at most one right (or, equivalently, left)
special factor of each length in w. Consequently, Arnoux-Rauzy sequences
over A = {0, . . . , k−1} are episturmian sequences such that for all right spe-
cial factors r, one has δ+(r) = k (and so p(n) = (k−1)n+1). Observe that an
episturmian sequence might be periodic which is not the case of Sturmian and
Arnoux-Rauzy sequences and it is a direct consequence of the definition that
all episturmian sequences have sub-linear complexity (see Theorem 1.2.3).
One could also show that any episturmian sequence is uniformly recurrent.

To study episturmian sequences, Justin and Pirillo introduced epistur-
mian morphisms (see [JP02]) that are exactly the morphisms that preserve
the family of aperiodic episturmian sequences. They consist of the composi-
tions of the permutation morphisms (i.e., morphisms σ such that σ(A) = A)
and the morphisms La and Ra where, for all a ∈ A,

La :

{

a 7→ a

b 7→ ab if b 6= a
and Ra :

{

a 7→ a

b 7→ ba if b 6= a

They obtained the following S-adic characterization.

Theorem 2.2.20 (Justin and Pirillo [JP02]). Let A = {0, . . . , k − 1} be an
alphabet and S = {La | a ∈ A}∪{Ra | a ∈ A}. A one-sided sequence w ∈ AN

is episturmian if and only if w is S-adic.

Contrary to Sturmian sequences, the S-adic decomposition is not unique
for episturmian sequences. In [GLR09], the authors defined the notion of nor-
malized directive word such that any episturmian sequence admits a unique
normalized directive word, i.e., a unique normalized S-adic representation.
As an application of it, they gave a characterization of episturmian sequences
having a unique S-adic representation.

2.2.5 Linearly recurrent sequences

A last type of sequences for which the S-adic representations are well known
is the set of linearly recurrent sequences. Formally, a sequence w is linearly
recurrent if it is uniformly recurrent and if there is a constant K such that
for all factors u of w and all integers i and j such that u successively occurs
in w at positions i and j, we have |i− j| ≤ K|u|.
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Proposition 2.2.21 (Durand [Dur98a]). A purely morphic sequence σω(a)
with σ everywhere growing is linearly recurrent if and only if σ is a primitive
morphism.

Then, Damanik and Lenz improved this result as follows.

Theorem 2.2.22 (Damanik and Lenz [DL06]). Let w = σω(a) be a purely
morphic sequence over A. The following are equivalent:

1. there is a growing letter b ∈ A (Definition 1.3.5) that occurs with
bounded gaps in w and such that for all letters c ∈ A there is an integer
n such that |σn(b)|c > 0;

2. w is uniformly recurrent;

3. w is linearly recurrent.

Durand, Host and Skau proved (in particular) that these sequences have
a sub-linear complexity3.

Theorem 2.2.23 (Durand, Host and Skau [DHS99]). Let w be a linearly
recurrent sequence (with constant K). Then:

1. for all n ∈ N, all factors of length n occur in all factors of length
(K + 1)n;

2. pw(n) ≤ Kn;

3. w is (K + 1)-power free;

4. for all u ∈ L(w) and all v ∈ RRWw(u) (or LRWw(u)), we have 1
K
|u| <

|v|;

5. for all u ∈ L(w), Card(RRWw(u)) ≤ K(K + 1)2.

Then, using return words, Durand proved the following result.

Theorem 2.2.24 (Durand [Dur03]). A sequence w is linearly recurrent if
and only if it is primitive and proper S-adic (see Definition 1.3.10 and Defi-
nition 1.3.11 on page 33) with Card(S) < +∞.

3Recall that RRWw(u) is the set of right return words to u in w and that LRWw(u)
is the set of left return words to u in w (see Section 1.1.)
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Remark 2.2.25. Durand also proved that a Sturmian sequence (correspond-
ing to a rotation rα) is linearly recurrent if and only if the partial quotients
of α are bounded. Consequently, a Sturmian sequence is linearly recurrent if
and only if its S-adic representation is primitive which is a kind of general-
ization of Proposition 2.2.21. This is not true in general. Indeed, the next
example provides a primitive S-adic sequence with Card(S) < +∞ which is
not linearly recurrent.

Example 2.2.26 (Durand [Dur03]). Let S = {σ, τ} where σ and τ are
defined by

σ :







0 7→ 021

1 7→ 101

2 7→ 212

and τ :







0 7→ 012

1 7→ 021

2 7→ 002

The sequence
w = lim

n→+∞
στσ2τ · · ·σnτ(0ω)

is primitive S-adic but not linearly recurrent. Indeed, for all k, let us define
ρk = στσ2τ · · ·σkτ and wk by

wk = lim
n→+∞

σk+1τσk+2τ · · ·σk+nτ(aω).

We have w = ρk(wk) for all k. Now let v be a return word to 20 in wk.
We have |v| ≥ 3k+2 (indeed, one can check that this is true if we replace wk

by any sequence σk+1τ(x) for x ∈ AN). Moreover, the word ρk(v) is also a
return word to ρk(20) in w. Finally, we have

|ρk(v)|
|ρk(20)|

=
|v|
|20| ≥

3k+2

2
,

which contradicts the definition of linear recurrence.

The next result provides a sufficient condition for a primitive S-adic se-
quence to be linearly recurrent.

Lemma 2.2.27. Let w be a primitive S-adic sequence whose directive word
is (σn, an)n∈N ∈ SN ×∏+∞

n=0An with Card(S) < +∞. For all k, let wk be the
sequence directed by (σn, an)n≥k and let Dk be the length of the largest gap
between two successive occurrences of a word of length 2 in wk. If (Dk)k∈N
is bounded, then w is linearly recurrent.
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2.3 S-adicity and sub-linear complexity

In the previous section, we presented the S-adic representations of some
well-known sequences that have a sub-linear complexity. However, all these
representations strongly depend on the nature of the corresponding sequences
and very few things are known in the general case. In this section, we give
some partial results about S-adicity and sub-linear complexity. There are
some sufficient (but not necessary) conditions for an S-adic sequence to have
a sub-linear complexity (they are due to Durand). There is also a necessary
(but not sufficient) condition due to Ferenczi. Next, we present some exam-
ples that allow to reject some naive ideas that one could have when trying to
work on the conjecture.

2.3.1 Partial results

Some sufficient conditions

In [Dur00] and [Dur03], Durand gave some sufficient conditions for an S-adic
sequence to have a sub-linear complexity. These conditions are generaliza-
tions of what exists for purely morphic sequences (see Theorem 2.1.2 and
Proposition 2.1.4). However, even some Sturmian sequences do not satisfy
them (those with unbounded partial quotients).

Proposition 2.3.1 (Durand [Dur03]). Let w be an S-adic sequence with
Card(S) < +∞ and whose directive word is (σn, an)n∈N ∈ SN ×∏∞

n=0An. If
there is a constant D such that for all n, all letters a ∈ An+1 and b ∈ An+2,
we have

|σ0 · · ·σn+1(b)| ≤ D|σ0 · · ·σn(a)|,
then pw(n) ≤ D(Card(A))2n with A = ∪n∈NAn.

Corollary 2.3.2 (Durand [Dur03]). If w is S-adic with Card(S) < ∞ and
all morphisms in S are uniform, then we have pw(n) ≤ l(Card(A))2n with
A = ∪n∈NAn and l = maxσ∈S,a∈A(σ) |σ(a)|.

Proposition 2.3.3 (Durand [Dur00]). If w is a primitive S-adic sequence
with constant s0 (Definition 1.3.10) directed by (σn, an)n∈N ∈ SN ×∏∞

n=0An

with Card(S) < +∞, then there exists a constant D such that for all non-
negative integers r and all letters a, b ∈ Ar+s0+1, we have

|σr · · ·σr+s0(a)|
|σr · · ·σr+s0(b)|

≤ D.
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Corollary 2.3.4. Let S be a set of non-erasing morphisms and τ ∈ S be
strongly primitive. Any S-adic sequence for which τ occurs infinitely often
with bounded gaps in the directive word is uniformly recurrent and has a
sub-linear complexity.

Proof. First, the uniform recurrence is a consequence of Proposition 2.1.21.
Let s = (σn)n∈N be a directive word in which the morphism τ occurs

infinitely often with bounded gaps. We consider the set LRWs(τ) of left
return words to τ in s. Since τ occurs with bounded gaps in s, this set is
finite. Moreover, all morphisms in it are strongly primitive (as τ is) and the
directive word s = (σn)n∈N is equal to

φτ0τ1 · · · τn · · ·

with (τn)n∈N ∈ LRWs(τ)
N and φ non-erasing. We conclude the proof using

Propositions 2.3.3, 2.3.1 and 2.1.11.

A necessary condition

In [Fer96], Ferenczi provided a general method to build an S-adic represen-
tation of any minimal subshift of sub-linear complexity. We will develop
this approach in details in Chapter 3, Chapter 4 and Chapter 5. This will
significantly improve Theorem 2.3.5 and Proposition 2.3.6 below.

Theorem 2.3.5 (Ferenczi [Fer96]). Let (X, T ) be an aperiodic minimal sub-
shift over an alphabet A with sub-linear complexity. There is a finite set S of
morphisms over an alphabet D = {0, 1, . . . , k − 1}, a sequence (σn)n∈N ∈ SN

and a non-erasing morphism τ : D∗ → A∗ such that

1. for all letters d ∈ D, the length of σ0σ1 · · ·σn(d) tends to infinity with
n;

2. for all words u in L(X), there is an integer n such that u occurs in
τσ0σ1 · · ·σn(0).

Proposition 2.3.6 (Ferenczi [Fer96]). Let (X, T ) be a minimal subshift over
a three-letters alphabet such that for all n ≥ 0,

1 ≤ pX(n+ 1)− pX(n) ≤ 2.

Then Theorem 2.3.5 holds for k = 3 and Card(S) < 327.
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2.3.2 Naive ideas about the conjecture

A natural idea to try to understand the conjecture is to consider examples
composed of well-known morphisms. For instance, one could consider the
Fibonacci morphism ϕ whose fixed point ϕω(0) is a Sturmian sequence and
the Thue-Morse morphism µ whose both fixed points µω(0) and µω(1) have
a sub-linear complexity (Example 1.3.1). We have:

Proposition 2.3.7. If S = {ϕ, µ} where ϕ and µ are respectively the Fi-
bonacci morphism and the Thue-Morse morphism, any S-adic sequence is
linearly recurrent.

Proof. Let w be an S-adic sequence directed by (σn, an)n∈N and for all k ∈
N, let w(k) be the S-adic sequence directed by (σn, an)n≥k. It is a direct
consequence of the choice of S that w is primitive S-adic. From Lemma 2.2.27
it is therefore sufficient to prove that the sequence (Dk)k∈N is bounded, where
Dk is the length of the largest gap between two successive occurrences of a
word of length 2 in w(k).

First, let us prove that the words 0000 and 111 do not occur in any
sequence w(k). From the definition of ϕ and µ, any word of L4(w

(k)) occurs in
a word of σ({0, 1}2) for σ ∈ {µ2, ϕµ2, ϕ4, ϕ2µ, ϕ3µ, µϕµ, ϕµϕµ, µϕ2, ϕµϕ2}.
Indeed, for all these morphisms, σ(0) and σ(1) have length greater than
4. Moreover, observe that for all k, w(k) is equal to one of the following
sequences:

µ2(w(k+2)), ϕµ2(w(k+3)), ϕ4(w(k+4)), ϕ2µ(w(k+3)), ϕ3µ(w(k+4))

µϕµ(w(k+3)), ϕµϕµ(w(k+4)), µϕ2(w(k+3)), ϕµϕ2(w(k+4))

and we have

µ2 = [0110, 1001]

ϕµ2 = [010001, 001010]

ϕ4 = [01001010, 01001]

ϕ2µ = [01001, 01010]

ϕ3µ = [01001010, 01001001]

µϕµ = [011001, 010110]

ϕµϕµ = [010001010, 010010001]

µϕ2 = [011001, 0110]

ϕµϕ2 = [010001010, 010001]

From the shape of these morphisms, we are therefore ensured that the words
0000 and 111 do not belong to L(wk) for all k.
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Now let us bound the sequence (Dk)k∈N. Let k ∈ N and consider wk. The
language L2(wk) is equal to {00, 01, 10, 11} or {00, 01, 10} depending that
σk = µ or σk = ϕ. Suppose that σk = µ (the other case is similar) and let
us give an upper bound for Dk. We have to show that all words in L2(wk)
occur in wk with bounded gaps and that the upper bound does not depend
on k. Let us prove it for the word 00, the other cases being similar. We
have wk = µ(wk+1) and the word 00 occurs in µ(10). Moreover, any factor
u of wk+1 in which 10 does not occur is such that 00 does not occur in µ(u).
Furthermore, the gap between two occurrences of 10 in wk+1 is at most 5
(since 0000 and 111 do not occur in wk+1). Consequently, the gap between
two occurrences of 00 in wk is at most 10 (= |µ(v)| for any word v of length
5).

Then, one could try to generalize the previous result by saying that if
we take only "good morphisms" (i.e., morphisms that can only yields to se-
quences with a sub-linear complexity if they are considered alone), we should
only get S-adic sequences with a sub-linear complexity. This is reinforced by
the fact that all morphisms previously considered are "good morphisms".

Following Pytheas Fogg’s members, Boshernitzan conjectured the follow-
ing statement.

Conjecture (Boshernitzan). If S contains only morphisms that can only
yield to sequences with sub-linear complexity, then any S-adic sequence has
a sub-linear complexity.

But, he eventually provided the following counter-example to that con-
jecture. Since we did not find any detailed proof of it, we provided it.

Example 2.3.8. Let γ and E be the morphisms over {0, 1} defined by

γ :

{

0 7→ 001

1 7→ 1
and E :

{

0 7→ 1

1 7→ 0
.

Observe that both morphisms γE and Eγ are primitive. Consequently, their
respective subshifts are minimal and have a sub-linear complexity. We con-
sider the sequence

wγ,E = lim
n→+∞

γEγ2Eγ3E · · · γn−1Eγn(0ω).

Proposition 2.3.9 (Boshernitzan). The sequence wγ,E is S-adic for S =
{γE,Eγ}, is uniformly recurrent and does not have a sub-linear complexity.
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Proof. First it is obvious that wγ,E is indeed S-adic for S = {γE,Eγ}.
Next, the composition γ ◦E ◦ γ is strongly primitive and occurs infinitely

often in the directive word of wγ,E. It is therefore a consequence of Proposi-
tion 2.1.21 that wγ,E is uniformly recurrent.

Finally, from Theorem 1.2.3 and Equation (1.1), we have to prove that
the number of right special factors of length n of wγ,E is unbounded.

For all k ∈ N∗, let us define the morphism Γk = γEγ2E · · · γk−1EγkE
and, for all k ∈ N, the sequence

w(k) = lim
n→+∞

γk+1Eγk+2E · · · γk+n−1Eγk+n(0ω).

For all k we then have wγ,E = w(0) = Γk(w
(k)). For all i ≥ 1 we also define

the word ui = γi(10) = 1γi(0).
Any sequence of the form γ(x) with 0 and 1 recurrent in x contains both

words 00 and 01. Observing that γ(0) and γ(1) start with different letters
and end with same letter 1, we deduce that for all integers i, 1 ≤ i ≤ k + 1,
the word ui is a right special factor of w(k).

Now let us prove that the number of right special factor of a given length
of wγ,E is unbounded. One can check that for all k ≥ 1, the words Γk(0) and
Γk(1) start with different letters. Consequently, for all integers i such that
1 ≤ i ≤ k+1, the word Γk(ui) is a right special factor of wγ,E. These factors
do not have the same length so we cannot immediately conclude. However,
all suffixes of these factors are obviously right special and we will show that
the number of suffixes of the words Γk(ui) increases with the length of these
suffixes, which will conclude the proof.

First, let us compute the length of Γk(ui) for all k and i. We can easily
see that |ui| = 2i+1. Indeed, we have ui = 1γi(0) and, by induction, we get
|γi(0)|0 = 2i and |γi(0)|1 = 2i − 1. This also proves that for all i, we have
|ui|0 = |ui|1 = 2i. Then, we can deduce from the shape of γ that if v ∈ {0, 1}∗
is such that |v|0 = |v1|, then |γ(v)| = 2|v| and |γ(v)|0 = |γ(v)|1 = |v|.
Consequently, we obtain

|Γk(ui)| = 2i+12
∑n

j=1 j = 2i+12
k(k+1)

2 .

Now let us study the suffixes of the words Γk(ui) for k ≥ 1 and 1 ≤ i ≤
k+1. It is easily seen that for all i, the largest common suffix of ui and ui+1 is
1i. We need to compute the length of Γk(1

k) to determine a lower bound on
the number of right special factors of wγ,E . Indeed, all right special factors
Γk(ui) whose length are greater than |Γk(1

k)| have a distinct suffix of length
|Γk(1

k)|+ 1 and we will show that the set of integers i such that ui satisfies
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this property is increasing with k. We have |Γk(1
k)| = k|Γk(1)| and:

|Γk(1)| =
∣
∣γEγ2E · · · γkE(1)

∣
∣

=
∣
∣γk(0)

∣
∣
0

∣
∣γEγ2E · · · γk−1E(0)

∣
∣+
∣
∣γk(0)

∣
∣
1

∣
∣γEγ2E · · · γk−1E(1)

∣
∣

= 2k (|Γk−1(01)| − |Γk−1(1)|) +
(
2k − 1

)
|Γk−1(1)|

= 2
k2+k+2

2 − |Γk−1(1)| .

Consequently we obtain

|Γk(1
k)| = k

(

2
k2+k+2

2 − |Γk−1(1)|
)

≤ k2f(k)

with f(k) = k2+k+2
2

.
Now we can conclude the proof. For all i with log2 k < i ≤ k + 1, the

word 1i is suffix of ui, hence |Γk(ui)| > k2f(k). As the longest common
suffix of Γk(ui) and Γk(uj) when i < j is Γk(1

i), we deduce the existence of
k + 1 − ⌈log2 k⌉ right special factors of w (as ui is right special, also are its
suffixes) of length

⌈
Γk(1

k)
⌉
+ 1.

Remark 2.3.10. The previous result is even stronger than just considering
sets S of morphisms with fixed points of sub-linear complexity. Indeed, the
sequence also has bounded partial quotients, i.e., all morphisms occur with
bounded gaps in the directive word (over {γE,Eγ}).

An opposite question of the previous one is to ask whether S-adic se-
quences can have a sub-linear complexity when S contains a morphism that
admits a fixed point that does not have a sub-linear complexity. The next
example positively answers that question.

Example 2.3.11. Let γ be the morphism defined in Example 2.3.8. From
Theorem 2.1.2 we known that the sequence

γω(0) = 0010012001001300100120010014 · · ·

has a quadratic complexity.

Proposition 2.3.12. Let (kn)n∈N be a sequence of non-negative integers.
The sequence

w = lim
n→+∞

γk0µγk1µγk2µ · · ·γknµ(0ω)

is uniformly recurrent. Moreover, w has an at most linear complexity if and
only if the sequence (kn)n∈N is bounded. Finally, for all n we have

|γk0µγk1µγk2µ · · ·γkn−1µ(0)| = |γk0µγk1µγk2µ · · ·γkn−1µ(1)|.
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and denoting
ℓn = |γk0µγk1µγk2µ · · ·γkn−1µ(0)|.

we have
pw(ℓn) ≤ 4ℓn − 2.

Proof. First, as µ occurs infinitely often in the directive word, it is a conse-
quence of Proposition 2.1.21 that w is uniformly recurrent.

Now let us study the complexity depending on the sequence (kn)n∈N. The
case of a bounded sequence is a direct consequence of Corollary 2.3.4. Hence
let us consider that the sequence (kn)n∈N is unbounded and let us show that
the complexity is not at most linear. Using Theorem 1.2.3 and Equation (1.1),
we only have to prove that the number of right special factors of length n of
w is unbounded.

As said in Example 2.3.11, the fixed point γω(0) has a quadratic complex-
ity. Consequently the number of right special factors of γω(0) of a given length
is unbounded (Corollary 1.2.4). Moreover it is easily seen that all the right
special factors of length n of γω(0) occurs in γn+1(0). Now let us show that
if u is a right special factor of length n in γkn(a), then γk0µγk1µ · · ·γkn−1µ(u)
is a right special factor of w of length n2q with q =

∑n−1
i=0 (ki+1). Indeed, as

µ(0) and γ(0) start with 0 and µ(1) and γ(1) start with 1, the image of u is
still a right special factor. Moreover, µ(u) contains exactly n occurrences of
the letter 0 and n occurrences of the letter 1, and both γ and µ map a word
with the same number of 0 and 1 to a word of double length with the same
number of 0 and 1. Hence |γk0µγk1µ · · · γkn−1µ(u)| = |u|2q with q defined as
previously. Now, if u and v are two distinct right special factors of length
n of γω(0), then γk0µγk1µ · · ·γkn−1µ(u) and γk0µγk1µ · · ·γkn−1µ(v) are two
distinct special factors of length n2q of w. As the number of right special
factors of a given length of γω(0) is unbounded, the number of right special
factors of a given length of w is also unbounded which concludes the first
part of the proof.

The last step is to show that, for all integers ℓn, we have pw(ℓn) ≤ 4ℓn.
For all non-negative integers n, we already know that

|γk0µγk1µ · · ·γkn−1µ(0)| = |γk0µγk1µ · · ·γkn−1µ(1)| = ℓn = 2q

with q as defined previously by
∑n−1

i=0 (ki + 1). Consequently, all factors u of
length ℓn are factors of |γk0µγk1µ · · ·γkn−1µ(v)| for some words v of length
2. As there are only 4 possible binary words of length 2 and as there are
less than ℓn + 1 distinct factors of length ℓn in a word of length 2ℓn, we
obtain pw(ℓn) ≤ ℓn + 4. However, among the ℓn + 4 words, both words
γk0µγk1µ · · ·γkn−1µ(0) and γk0µγk1µ · · ·γkn−1µ(1) have been counted 4 times,
hence pw(ℓn) ≤ ℓn − 2.
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The previous example provides an example of S-adic sequence with a
"bad morphism" in S and it is shown that when there are only bounded
powers of that bad morphism in the directive word, then the sequence has
a sub-linear complexity, which is actually not very surprising. The following
example shows that there even exist some S-adic sequences with sub-linear
complexity such that there are arbitrarily large powers of a "bad morphism"
in the directive word.

Example 2.3.13. Let us consider the morphisms

β :







0 7→ 010

1 7→ 1112

2 7→ 2

and M :







0 7→ 0

1 7→ 1

2 7→ 1

and the sequence

wβ,M = lim
n→+∞

MβMβ2Mβ3M · · ·βn−1Mβn(0ω).

Proposition 2.3.14. The sequence wβ,M defined just above has a sub-linear
complexity. More precisely, for all n we have p(n+ 1)− p(n) ∈ {1, 2}.

Proof. Let S be the set of morphisms {Mβn | n ≥ 1}. All morphisms Mβn

are defined over {0, 1} and the sequence wβ,M is obviously S-adic. It is also
non-periodic so p(n+ 1)− p(n) ≥ 1 for all n.

For all n, let us consider s(n) = p(n + 1)− p(n). We have s(0) = 1 and,
by Proposition 1.2.6,

s(n + 1)− s(n) =
∑

u∈Ln(w)

m(u)

where m(u) denotes the bilateral order of u (see Definition 1.2.5). As wβ,M

is a binary sequence, for all its factors u we have m(u) ∈ {−1, 0− 1} and we
therefore have to compute the bilateral orders of strong and weak bispecial
factors of length n to obtain s(n+ 1)− s(n).

For all integers k ≥ 1 let us consider the morphism Bk =MβMβ2 · · ·Mβk

and the sequence w(k) directed by (Mβk+1Mβk+1 · · · , 0). We also define
B0 = id and we w(0) = wβ,M . For all k ≥ 0 we therefore have

wβ,M = Bk(w
(k))

and L2(w
(k)) = {01, 10, 11}. Moreover, for all k the image of Bk(0) starts

and ends with 0 and the image of Bk(1) contains no occurrences of the
letter 0. Consequently, if v is a strong (resp. weak) bispecial factor in
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Mβk+1(L2(w
(k+1))), then Bk(v) is a strong (resp. weak) bispecial factor of

wβ,M .
It is an easy computation that for all k, the strong and weak bispecial

factors in Mβk+1(L2(w
(k+1))) are respectively

Mβi(1) for i ∈ {0, 1, . . . , k + 1} and
Mβi(101) for i ∈ {0, 1, . . . , k}

and the ordinary bispecial factors are

1j for i ∈ {0, . . . ,Mβk+1(1)− 1} such that 1j 6=Mβi(1) ∀i.

Note that for all k, the strong bispecial factor Mβk+1(1) in the language
Mβk+1(L2(w

(k+1))) is the image under the morphism Mβk+1 of the bispecial
factor 1 =Mβ0(1) in Mβk+2(L2(w

(k+2))).
Then, for all i, Mβi(1) is a factor of Mβi+1(0), hence of Mβi+1(101).

Since for all k ≥ 1 we also have |Bk(0)| < |Bk(1)|, we deduce that for all k
and all i, 0 ≤ i ≤ k, we have

|Bk(Mβi(1))| < |Bk(Mβi(101))| < |Bk(Mβi+1(1))|.

To conclude the proof, we have to show that the words Bk(Mβi(1)) and
Bk(Mβi(101)) are respectively the only strong and weak bispecial factors of
wβ,M . Indeed, in that case there is an increasing sequence (ℓn)n∈N such that
l0 = 1 and for all n, there are two integers k ≥ 0 and i, 0 ≤ i ≤ k such that

1. |Bk(Mβi(1))| has length ℓ2n and

2. |Bk(Mβi(1))| has length ℓ2n+1.

Consequently we have s(ℓ2n + 1)− s(ℓ2n) = 1, s(ℓ2n+1 + 1) − s(ℓ2n+1) = −1
and for all integers j ≥ 1 that does not occur in (ℓn)n∈N, s(j + 1)− s(j) = 0
so s(n+ 1)− s(n) ∈ {1, 2} for all n.

Consider a bispecial factor u of wβ,M and let k denote the unique integer
such that 2|Bk(0)| ≤ |u| < 2|Bk+1(0)|. If u 6= 1j for some integer j, the word
Bk(0) is a factor of u. Let v be the longest word in {0, 1}∗ such that Bk(v)
is factor of u. From the shapes of Bk(0) and Bk(1), if v′ is such that Bk(v

′)
is a factor of u, then v′ is a factor of v. Consequently, the word v has to be
bispecial in w(k), hence in Mβk+1(L2(w

(k+1)) (from the length of u). Then,
since v contains an occurrence of the letter 0, it is weakly bispecial and equal
to some Mβi(101). Therefore u is weak bispecial.

Now let u = 1j be a factor of wβ,M . Let us prove that it is strongly
bispecial if and only if u = Bk(Mβi(1)) for some integers k and i. Let k be
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the greatest integer such that |Bk(1)| ≤ |u| < |Bk+1(1)|; Bk(1) is therefore
a factor of u. Let n be the greatest integer such that Bk(1

n) is a factor
of u. We obviously have 1 ≤ n < |Mβk+1(1)| (from the length of u). If
u 6= Bk(1

n), then u is not strong bispecial. Indeed, we can decompose u into
either 1m1Bk(1

n)1m2 or 1m1Bk(1
n) or 1m1Bk(1

n) for some integers m1 and m2.
Then, since Bk(0) ∈ 0{0, 1}∗0, the word 1m1 and 1m2 are respectively proper
prefix and proper suffix of Bk(1). Consequently the word 1m1Bk(1

n)1m2 can
only be extended to the left and to the right by 1, the word 1m1Bk(1

n) can be
extended to the left by 1 and the right by 0 and by 1 (so it is right special)
and the word Bk(1

n)1m2 can be extended to the right by 1 and to the left by
0 and by 1 (so it left special). Consequently the word 0u0 is not a factor of
wβ,M and u is not strong bispecial. We therefore have u = Bk(1

n) and 1n has
to be strong bispecial in w(k) for u to be strong bispecial in ww,M . Since this
can happen only if n = |Mβi(1)| for some integer i, the result holds true.

As a first conclusion, finding the condition C of the conjecture seems
to be a really hard problem. Indeed, Proposition 2.3.12 shows that it is not
enough to put some conditions on the morphisms in S to determine the con-
dition of the conjecture and that we also have to take care of the directive
word. Moreover, considering only "good morphisms" can provide too high
complexity (Propositions 2.3.9) and even when arbitrarily large powers of a
"bad morphism" occur in the directive word, the complexity still might be
sub-linear (Proposition 2.3.14).

2.4 Beyond linearity

For purely morphic sequences, the complexity function can have only 5
asymptotic behaviours and only depends on the growth rate of images (see
Theorem 2.1.2). For S-adic sequences we have seen in previous sections (for
instance in Section 2.1.3) that things are highly more complicated. However,
in Theorem 2.3.5, Ferenczi showed that if a minimal subshift has a sub-linear
complexity, then it is S-adic and the length of all images tends to infinity
(first point of the theorem). This is a kind of generalization of the third point
of Theorem 2.1.2. Moreover, that property (i.e., the fact that the length of
all images tends to infinity) is satisfied by most of the examples considered
in previous sections. It is also interesting to note that for purely morphic
sequences, the class of highest complexity Θ(n2) can be reached only by mor-
phisms with bounded letters (still Theorem 2.1.2). Furthermore, up to now,
Cassaigne’s constructions (Proposition 2.1.15) are the only ones that allow
to build S-adic sequences with arbitrarily high complexity and they admit
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several bounded letters. Consequently, the fact that the length of all im-
ages tends to infinity with n seems to be important to get a reasonably low
complexity. We propose to say that such an S-adic sequence is everywhere
growing (Definition 1.3.13).

It is obvious that the everywhere growing Property is not a necessary
condition for an S-adic sequence to have a sub-linear complexity since Cas-
saigne’s constructions also hold for sequences with low complexity. One can
also think to the Chacon substitution ζ defined by ζ(0) = 0010 and ζ(1) = 1
whose fixed point ζω(0) has complexity p(n) = 2n+ 1 for all n (see [Fer95]).
It is neither a sufficient condition since the sequence wγ,E of Example 2.3.11
satisfies it and does not always have a sub-linear complexity. However, one
could ask whether any high complexity can be reached by S-adic sequences
satisfying it. This question seems to be a new non-trivial problem. Proposi-
tion 2.4.1 below provides a partial answer to that question. Indeed, it deals
with expansive S-adic sequences (see Definition 1.3.12 on page 33), i.e., with
S-adic sequences such that for all morphisms σ in S and all letters a, we have
|σ(a)| ≥ 2. Techniques are similar to those used in [ELR75] for D0L systems.

Recall that a D0L system (which means deterministic L-system without
interaction) is essentially equivalent to a morphism σ : A∗ → A∗. Roughly
speaking, the main difference is that for D0L systems, we are only interested
in the language of the fixed point. In the same way that S-adic sequences are
a generalization of (purely) morphic sequences, DT0L systems (which means
deterministic table system without interaction) are a generalization of D0L
systems. However there is a more important difference between DT0L and
S-adic sequences than between D0L and substitutive sequences. Indeed, for
DT0L systems, the language one is usually interested in is the set of words
occurring in σ0σ1 · · ·σk(a) for any finite sequence in S∗ (where S denotes also
the set of rules of the system). In other words, we consider the language of all
S-adic sequences (i.e., we consider all directive words). It is proved in [ELR76]
that everywhere growing DT0L systems (which means |σ(a)| ≥ 2 for all σ
and a, i.e., which is equivalent to expansivity for S-adic sequences) with a
finite number of substitution rules have an at most polynomial complexity.
For S-adic sequences built upon the same hypothesis, we have a better upper
bound as it is shown by Proposition 2.4.1 below.

Proposition 2.4.1. If w is an expansive S-adic sequence (Definition 1.3.12)
such that Card(S) < +∞, then pw(n) ∈ O(n logn).

Proof. First let us recall the definition of the radix order �∗. Let � be an
order on the alphabet A and let u and v be in A∗, u 6= v. We have u ≺∗ v
if either |u| < |v| or |u| = |v| and there is a smallest integer i ∈ [1, |u|] such
that ui ≺ vi.
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Let w be an S-adic sequence with directive word (σn, an)n∈N. We let ℓ
denote the maximal length of σ(a) for σ in S and a in A(σ). Consider an
integer n greater than 2ℓ. For all words u in Ln(w), we construct a sequence
(uk)k∈N of words in the following way:

- u0 = u;
- for all non-negative integers k, w(k) is the S-adic sequence directed by

(σn, an)n≥k and uk+1 is the smallest word in L(w(k+1)) (with respect to the
radix order) such that uk ∈ L(σk(uk+1))
We can easily see that the sequence (|uk|)k∈N is decreasing until a smallest
integer r such that |ur| ≤ 2. We have 2 < r < 1 + C log n for a constant
C, the first inequality being trivial from the choice of n. For the second one,
observe that |ur−1| is at least 3. Then, writing ur−1 = avr−1b with a, b ∈ A,
we see that σ0σ1 · · ·σr−2(vr−1) is a proper factor of length at least 2r−1 of u.
Therefore we have n > 2r−1 and then r < C logn + 1.

Now for all words u in A∗, A =
⋃

n∈NAn, of length smaller than or equal
to 2, we define Wn(u) as the set of words of length n in L(w) such that the
construction previously described gives ur = u. Obviously,

⋃

u∈A≤2 Wn(u) =
Ln(w). Then, each word u ∈ A≤2 provides at most r − 1 factors of w that
are σ0σ1(u), σ0σ1σ2(u), . . . , σ0σ1 · · ·σr−1(u) (maybe some of them are not well
defined) and we have r < 1 + C log n. To conclude the proof, we only have
to check that there are no more than n words of length n in σ0σ1 · · ·σr−1(ur)
that admit σ0σ1 · · ·σr−2(vr−1) as a factor.

Example 2.4.2 shows that this bound is the best one we can obtain.

Example 2.4.2. Let β be the morphism

ϑ :







0 7→ 0120

1 7→ 11

2 7→ 222

and consider its fixed point w = ϑω(a). It can be seen as an everywhere
growing {ϑ}-adic sequence and we know from Theorem 2.1.2 that pw(n) =
Θ(n logn).
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Chapter 3

Some improvements of the S-adic
conjecture

In this chapter, we present a general method to build S-adic representations
of uniformly recurrent sequences (or minimal subshifts). The main idea is to
use Rauzy graphs to build a sequence of morphisms (σn : A∗

n+1 → A∗
n)n∈N

and then to consider the action of these morphisms over subsets of A∗
n. The

way to construct (σn)n∈N has first been introduced by Rauzy in [Rau83]
and then in [AR91] for the particular case of Arnoux-Rauzy sequences (see
Section 2.2.3). Then the idea of considering these morphisms over subsets of
A∗

n is due to Ferenczi in [Fer96]. This chapter is mostly based on that last
paper since we essentially present the method using the same two different
kinds of subsets of A∗

n, but with much more details than in [Fer96]. In
particular, this allows us to significantly improve Theorem 2.3.5.

Depending on the complexity of the sequence and on the chosen subsets
of A∗

n, we of course get different properties of the S-adic representation. For
instance, for sequences with sub-linear complexity, one of the two choices
(based on particular concatenations of n-segments which we will define in
Section 3.1.1) always provides a finite set S although it might be infinite
for other subsets which are based on n-circuits (Section 3.1.2). On the other
hand, that last method always provides strongly primitive morphisms that are
also proper and we known from Theorem 2.2.24 that when Card(S) < +∞,
these properties imply that the corresponding sequence is linearly recurrent.

In this Chapter, we always work with one-sided sequences. However, we
will see that all methods can be adapted to two-sided sequences. The main
results of this chapter are the following.

Theorem 3.0.1. A one-sided sequence w is uniformly recurrent if and only
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if it is primitive and left proper S-adic1. Moreover, if w does not have a sub-
linear complexity, then Card(S) = +∞. When dealing with subshifts instead
of sequences, we can moreover replace "left proper" by "proper".

From the definition, we can directly deduce the following corollary.

Corollary 3.0.2. A one-sided sequence w is uniformly recurrent if and only
if it is almost primitive and left proper S-adic. When dealing with subshifts
instead of sequences, we can moreover replace "left proper" by "proper".

Theorem 3.0.3. Let A be an alphabet and w ∈ AN be a one-sided uniformly
recurrent sequence with sub-linear complexity. There is a finite set S of mor-
phisms such that w is S-adic and such that its directive word is everywhere
growing2 and satisfies Properties 1–3 of Definition 3.0.4 below.

Let ♯ /∈ A and w′ = ♯w. When w′ do not admit constant segments3, the
directive word is furthermore almost primitive4, satisfies Property 4 of Defi-
nition 3.0.4 and we can also replace Property 3 by (with the same notations)

σn(d) ∈ (A∗
n \ A∗

naA
∗
n) ∪ (u1u2 · · ·uℓaA∗

n)

Definitions 3.0.4 (Properties). A directive word (σn : A∗
n+1 → A∗

n)n∈N
satisfies

1. Property 1 if there is a non-negative integer N such that for all n ≥ N ,
all letters a ∈ An and all letters c ∈ An+1, we have σn(c) /∈ A∗

naA
∗
naA

∗
n;

2. Property 2 if there is a non-negative integer N such that for all n ≥ N ,
all letters a1 . . . ak in An and all letters c1, . . . , ck in An+1 with k ≥ 2,
we have

(σn(c1), . . . , σn(ck)) /∈
(

k−1∏

i=1

A∗
naiA

∗
nai+1A

∗
n

)

× A∗
nakA

∗
na1A

∗
n;

3. Property 3 if there is a non-negative integer N such that for all n ≥ N ,
if σn(c) ∈ uaA∗

n for u = u1 · · ·uℓ ∈ A+
n , a ∈ An and c ∈ An+1, then for

all letters d ∈ An+1, we have

σn(d) ∈ (A∗
n \ A∗

naA
∗
n) ∪ (Anu2 · · ·uℓaA∗

n) ;

1See Definition 1.3.10 and Definition 1.3.11 on page 33.
2See Definition 1.3.13 on page 33.
3See Definition 3.1.9 on page 80.
4See Definition 1.3.14 on page 33.
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4. Property 4 if for all n, σn belongs to T ∗ with T = {G} ∪ {Eij | i, j ∈
A} ∪ {Mi | i ∈ A} a set of morphisms such that:
◮ G(0) = 10 and G(i) = i for all letters i 6= 0;
◮ Eij exchange i and j and fix the other letters;
◮ Mi maps i to 0 and fix the other letters.

3.1 Rauzy graphs: n-segments and n-circuits

To compute the S-adic representations of Theorem 3.0.1 and 3.0.3 we need
to consider some particular paths in the Rauzy graphs (see Section 1.5) of
the considered sequence or subshift. The main idea is that those paths are
labelled by words of L(w) and have larger and larger lengths when they are
chosen in Rauzy graphs of larger and larger orders. Then, we show that such
paths in a Rauzy graph of order n + 1 are composed of paths in the Rauzy
graph of order n; this will provide the morphisms of the directive word.

To explicitly formulate what happens to these paths, we need to define
the following function. First, let Pn denote the set of paths in a Rauzy graph
Gn. To be coherent with some definitions that will occur later, we need to
consider the concatenation on Pn. Observe that some concatenations of paths
might not be a path in Gn, i.e., Pn ( P∗

n.

Definition 3.1.1. For all n, we let ψn,L denote the function defined on Pn+1

such that if p ∈ Pn+1 is such that λL(p) = u, then ψn,L(p) is the unique path
q in Pn such that λL(q) = u, o(q) is the prefix of length n of o(p) and i(q) is
the prefix of length n of i(p).

Roughly speaking, ψn,L(p) is the corresponding path in Gn(w) of the
path p in Gn+1(w). Observe that ψn,L is not one-to-one. Indeed, if for
example Card(A) = 2 and p is a path in Gn(w) that does not go through
any bispecial vertex and such that i(p) is strong bispecial, then the two
right extensions of i(p) are left special and both of them are therefore an
extremity of a path q in Pn+1 such that ψn,L(q) = p. Consequently, we have
Card(ψ−1

n,L(p)) = 2. In Chapter 4 and Chapter 5, we will similarly define a
function ψn,R (Definition 4.1.1).

3.1.1 n-segments

The base of the S-adic representations of Theorem 3.0.1 and 3.0.3 is defined
upon some paths in Rauzy graphs that are called n-segments. They were
first introduced by Rauzy in [Rau83] and then used in [AR91] and [Fer96].
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Definition 3.1.2. Let n ∈ N and Gn be a Rauzy graph. A left n-segment
(resp. right n-segment) is a non-empty path p ∈ Pn whose only left (resp.
right) special vertices are its extremities o(p) and i(p). In this chapter, we will
mostly use left n-segments. Consequently, if not explicitly stated, n-segment
means left n-segment. However, this only holds for this chapter. Take care
that in Chapter 4 and Chapter 5, we will mostly work with right n-segments.

Example 3.1.3. Let t be the Thue-Morse sequence (Example 1.3.1). The
Rauzy graph G3(t) labelled with left labels is represented in Figure 3.1. The
left special factors are 010, 100, 101 and 011 and the 3-segments are the paths

010 → 101 100 → 001 → 010

010 → 100 100 → 001 → 011

101 → 010 011 → 110 → 101

101 → 011 011 → 110 → 100

001 011

010 101

100 110

0

0

0

0

0

1

1

0

1

1

1

Figure 3.1: Rauzy graph of order 3 (with left labels) of the Thue-Morse
sequence.

Remark 3.1.4. Observe that any (left or right) n-segment is trivially an al-
lowed path (see Definition 1.5.4 on page 37). By definition, its full label is
therefore a word of L(w). Moreover, as the Rauzy graphs of recurrent se-
quences are strongly connected (see Remark 1.5.2), the set of n-segments is
a covering of the set of edges of Gn in the sense that each edge belongs to
at least one n-segment. Furthermore, for each n, as there exists only a finite
(possibly unbounded) number of left special vertices in Gn, there exists only
a finite (possibly unbounded) number of n-segments. Actually, it is easily
seen that an n-segment p is completely determined by its ending vertex i(p)
and by the left label of its last edge (i.e., of the edge that arrives in i(p)).
Consequently, the number of n-segments is exactly

∑

u∈LSn(w)

δ−(u) = pw(n+ 1)− pw(n) + Card(LSn(w))
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and this number is bounded by Card(A)Card(LSn(w)), hence by

Card(A) (pw(n+ 1)− pw(n)) .

The following corollary is a direct consequence of the previous remark and
of Theorem 1.2.3.

Corollary 3.1.5. A sequence w has a sub-linear complexity if and only if
there is a constant K such that for all n, the number of n-segments in Gn(w)
is less than K.

Remark 3.1.6. The notion of n-segment is related to the notion of return
word (see Section 1.1). Indeed, it is easily seen that the set of left labels of
n-segments is exactly LRWw(LSn(w)). Observe that some n-segments might
have the same left label so we have

Card(LRWw(LSn(w))) ≤ Card({n-segments in Gn(w)}).

Remark 3.1.7. If the alphabet of w is A = {0, . . . , k − 1}, the Rauzy graph
G0 is as in Figure 3.2 so that for all 0-segments p, we have λ(p) = λL(p) =
λR(p) ∈ A.

ε

0

1k − 1

. . .. . .

Figure 3.2: Rauzy graph G0 of any sequence over {0, . . . , k − 1}.

For uniformly recurrent sequences with a "reasonably low" complexity, the
number of left special factors increases much more slowly than the complexity.
Consequently, we expect that the maximal length of n-segments will grow to
infinity. Then, due to the uniform recurrence, all factors of w of length
smaller than some ℓ will be factors of the label of the longest nℓ-segment
for some nℓ large enough. Therefore, our aim is to study the behaviour of
n-segments as n increases.

Lemma 3.1.8 here below — and also Lemmas 3.1.16, 3.2.6 and 3.4.1 in
next sections — was already proved in [Fer96]. All these lemmas were parts
of the proof of Theorem 2.3.5, but without being stated explicitly. Here, we
decided to structure the proof in several lemmas.

Lemma 3.1.8 (Ferenczi [Fer96]). Let w be a sequence over an alphabet A.
For any (n+ 1)-segment p of w, ψn,L(p) is a concatenation of n-segments of
w. Moreover, the decomposition of ψn,L(p) into n-segments is unique.
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Proof. Let p be a (n + 1)-segment in Gn+1(w) and p′ = ψn,L(p). As a prefix
of a left special factor is still a left special factor, o(p′) and i(p′) are left
special. Hence p′ is a concatenation of n-segments. The uniqueness of the
decomposition is obvious. Indeed, for two different n-segments q1 and q2, we
have either i(q1) 6= i(q2) or i(q1) = i(q2) and λL(q1) 6= λL(q2). Consequently,
starting from i(p′), there is a unique n-segment q such that λL(q) is suffix
of λL(p′). Then if q 6= p′, there is a unique n-segment q′ such that i(q′) =
o(q) and λL(q

′q) is suffix of λL(p′). Continuing this way, we see that the
decomposition is unique.

Definition 3.1.9. From the previous lemma, the minimal length among all
n-segments is non-decreasing. If it is bounded, there is an integer N and an
N -segment p such that for all integers n > N , there is an n-segment q such
that p = ψN,LψN+1,L · · ·ψn−1,L(q). Such a segment is said to be constant.
Another equivalent definition is to say that an n-segment p is constant if
there are two one-sided sequences x and y, such that for all i, both o(p)x[0,i]

and i(p)y[0,i] are left special factors of w and there is a path from o(p)x[0,i]

to i(p)y[0,i] in Gn+i(w) with left label λL(p).

Remark 3.1.10. For aperiodic sequences with sub-linear complexity, for all n
large enough there is at least one n-segment which is not constant. Indeed,
the length of a constant segment is fixed and by Corollary 3.1.5, the number
of n-segments is bounded by a constant K. Consequently, if all n-segments
are constant, they all have length bounded by ℓ. Thus, the graph would have
less than Kℓ edges. Since the number of edges in Gn is exactly pw(n + 1),
this cannot happen for n large enough. As a consequence, we have

lim
n→+∞

max{|p| | p is an n-segment} = +∞. (3.1)

Also, since the number of n-segment is bounded and since two distinct con-
stant n-segments give rise to distinct constant m-segments, m > n, there can
exist only a bounded number of constant segments5. Consequently, there is
an integer ℓ such that any constant segment has length bounded by ℓ.

3.1.2 n-circuits

The S-adic representation of Theorem 3.0.1 is based on n-circuits. They are
also widely used in Chapter 4 and Chapter 5.

5We of course only consider the "initial" constant segments, i.e., if p is a con-
stant n-segment, we do not consider the constant m-segments q, m > n, such that
p = ψn,L · · ·ψm−1,L(q).
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Definition 3.1.11. Let n ∈ N and Gn be a Rauzy graph. A left n-circuit
(resp. right n-circuit) is a non-empty path p ∈ Pn such that o(p) = i(p) is
a left (resp. right) special vertex and no interior vertex of p is o(p). As for
n-segments, we will mostly use left n-circuits in this chapter. Consequently,
if not explicitly stated, n-circuit means left n-circuit. Once again, this only
holds for this chapter since in Chapter 4 and Chapter 5 we will mostly work
with right n-circuits.

Observe that, contrary to the n-segments, an n-circuit is not always an
allowed path. Indeed, consider the path

010 → (101 → 011 → 110 → 101)3 → 010

in Figure 3.1 (on page 78). It is a 3-circuit and its full label contains the word
(101)3 which is not a factor of t since the Thue-Morse sequence is cube-free.
However, when a Rauzy graph Gn is strongly connected, the set of allowed
n-circuits is a covering of its edges in the sense that any edge occurs in at
least one n-circuit. Furthermore, even if we fix a left special vertex l, the
set of allowed n-circuits starting from l is still a covering of the edges. One
can also note that for all sequences w over A, the set of 0-circuits is exactly
the set of 0-segments. Therefore we have λ(p) = λL(p) = λR(p) ∈ A for all
0-circuits p (see Remark 3.1.7).

Remark 3.1.12. Like for n-segments, the notion of n-circuit is closely re-
lated to the notion of return word. Indeed, if l is a left special vertex in
a Rauzy graph Gn(w), then the left labels of the n-circuits starting from l
are exactly the elements of LRWw(l). Moreover we have a one-to-one cor-
respondence between n-circuits and return words, i.e., Card(LRWw(l)) =
Card({n-circuits strating from l}).

In particular, the above remark implies that the set of allowed n-circuits
starting from a given left special vertex might be infinite. Indeed, a sequence
is uniformly recurrent if and only if for all its factors u, the number of re-
turn words to u is finite. Moreover, the number of return words to a factor
u is equal to the number of return words to the smallest bispecial factor v
containing u as a factor. Consequently, if w is recurrent but not uniformly re-
current, there is a bispecial (hence left special) factor v such that the number
of allowed |v|-circuits is infinite.

Like for n-segments, for uniformly recurrent sequences with a "reasonably
low" complexity, we expect that the maximal length of n-circuits will grow
to infinity. Then, due to the uniform recurrence, all factors of w of length
smaller than some ℓ will be factors of the label of the longest nℓ-circuit for
some nℓ large enough. Our aim is therefore to study the behaviour of the
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n-circuits as n increases. The proof of the next lemma is exactly the same as
the proof of Lemma 3.1.8

Lemma 3.1.13 (Ferenczi [Fer96]). Let w be a sequence over an alphabet A
and let v be a left special factor of length n+ 1 in w. For all (n+ 1)-circuit
p starting from v, ψn,L(p) is a concatenation of n-circuit starting from the
prefix of length n of v. Moreover, the decomposition of ψn,L(p) into n-circuits
is unique.

The next lemma is well known and defines a sequence of left special factors
(vn)n∈N to which we will apply Lemma 3.1.13. In the sequel, this sequence
will be widely used, especially in Chapter 4 and Chapter 5 with the difference
that instead of left special factors, we will consider right special factors.

Lemma 3.1.14. Let w be an aperiodic sequence over an alphabet A. There
exists an infinite sequence (vn)n∈N of words over A such that for each n ∈ N,

• vn is of length n;

• vn is a left special factor of w;

• vn is a prefix of vn+1.

Proof. Let T be the directed graph whose vertices are the left special factors
in L(w) and such that there is an edge from u to v if u is a prefix of length
|v| − 1 of v. The sequence being aperiodic, there is at least one left special
factor of each length so T is an infinite tree with, for all vertices, a bounded
number of outgoing edges. We conclude the proof using König’s Lemma (see
Proposition 1.2.3 in [Lot02]).

Definition 3.1.15. Like for n-segments, Lemma 3.1.13 implies that the min-
imal length of n-circuits is non-decreasing. If it is bounded, there is an integer
N and a N -circuit p such that for all integers n > N , there is a n-circuit q
such that p = ψN,LψN+1,L · · ·ψn−1,L(q). Such a circuit is said to be constant.

The next lemma states that for uniformly recurrent sequences, there is no
constant n-circuits.

Lemma 3.1.16 (Ferenczi [Fer96]). Let w be a uniformly recurrent sequence
over an alphabet A. For any non-negative integer n, there is no constant
n-circuit in Gn(w).

Proof. As the sequence w is uniformly recurrent, if it is ultimately periodic,
it is periodic. Hence, in this case, there is no left special factor of length
greater than some N and so no n-circuit for n > N . Now suppose that w
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is aperiodic and let p be a constant n-circuit of left label u in Gn(w). By
definition, for all positive integers k, there is an (n + k)-circuit qk such that
p = ψn,L · · ·ψn+k−1,L(qk). As the left label of qk is u by definition, from
Proposition 1.5.5 we deduce that, for all k large enough, o(qk) is equal to u
followed by a prefix of itself. So, uek is a prefix of o(qk) with ek =

⌊
|o(qk)|
|u|

⌋

.
Since o(qk) is a factor of w for all k and |o(qk)| tends to infinity with k, there
are arbitrarily large powers of u in L(w) and this contradicts aperiodicity
and uniform recurrence.

The next corollary is a direct consequence of the previous lemma.

Corollary 3.1.17. Let w be a uniformly recurrent sequence over an alphabet
A. For any non-negative integer ℓ, there is an integer nℓ such that any nℓ-
circuit has length greater than ℓ.

3.2 Base of S-adic representations

In this section, we provide a general method to build morphisms. These
morphisms will be the base of those considered for the S-adic representations
of Theorem 3.0.1 and 3.0.3. Indeed, the method we give here provides some
morphisms σn : A∗

n+1 → A∗
n. Then, the S-adic representations of both cited

theorems will be obtained by considering some subsets of A∗
n for all n as new

alphabets and to consider the morphisms σn over these new alphabets.

Definition 3.2.1 (Definition of the morphisms σn). Lemma 3.1.8 allows us
to define some morphisms σn over the alphabets of n-segments. Indeed, for
each non-negative integer n, let An be the set of n-segments, An be the set
{0, 1, . . . ,Card(An) − 1} and let us consider a bijection θn : An → An. We
can extend θn to an isomorphism θn : A∗

n → A∗
n putting θn(ab) = θn(a)θn(b)

for all a, b ∈ An. Now for all n, we define the morphism σn : A∗
n+1 → A∗

n as
the unique map that satisfies

θn ◦ σn = ψn,L ◦ θn+1.

Remark 3.2.2. If the alphabet of w is A = {0, . . . , k − 1}, the Rauzy graph
G0 is as in Figure 3.2 so that for all 0-segments p, we have λL(p) ∈ A.
Consequently, we have A0 = A and we consider that for all a ∈ A0, we have

λL ◦ θ0(a) = a.

Corollary 3.1.5 implies that when w has a sub-linear complexity, there is
an integer k such that A =

⋃

n∈NAn = {0, 1, . . . , k − 1}.
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Example 3.2.3. Let t be the Thue-Morse sequence. The Rauzy graph G2(t)
is represented in Figure 3.3 (labelled with left labels). The 2-segments are

θ2(0) = 01 → 11 → 10 θ2(2) = 01 → 10

θ2(1) = 10 → 00 → 01 θ2(3) = 10 → 01

and if we define θ3 (see Example 3.1.3) by

θ3(0) = 011 → 110 → 101 θ3(4) = 010 → 101

θ3(1) = 011 → 110 → 100 θ3(5) = 010 → 100

θ3(2) = 100 → 001 → 010 θ3(6) = 101 → 010

θ3(3) = 100 → 001 → 011 θ3(7) = 101 → 011

we have

ψ2,L ◦ θ3(0) = ψ2,L ◦ θ3(1) = θ2(0)

ψ2,L ◦ θ3(2) = ψ2,L ◦ θ3(3) = θ2(1)

ψ2,L ◦ θ3(4) = ψ2,L ◦ θ3(5) = θ2(2)

ψ2,L ◦ θ3(6) = ψ2,L ◦ θ3(7) = θ2(3)

and so

σ2 :







0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 1

4 7→ 2

5 7→ 2

6 7→ 3

7 7→ 3

Remark 3.2.4. It is a consequence of the constructions described above that
|σn(i)| ≥ 2 means that there are at least two n-segments occurring in ψn,L ◦
θn+1(i). Suppose that p and q are such n-segments with i(p) = o(q). Then
σn(i) ∈ A∗

nθ
−1
n (p)θ−1

n (q)A∗
n and as any interior vertex of a (n + 1)-segment

cannot be left special, the only possibility is that the vertex i(p) = o(q) is
a bispecial vertex such that its right extension which is an interior vertex of
θn+1(i) is not left special. Hence if a Rauzy graph Gn(w) does not contain any
bispecial vertex, we have An = ψn,L(An+1) and the morphism σn is simply a
bijective and letter-to-letter morphism.
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01

11

10

00

0
1

1
0

0

1

Figure 3.3: Rauzy graph of order 2 (with left labels) of the Thue-Morse
sequence.

Also, observe that if p is a constant n-segment then for all positive integers
k and all (n + k)-segment qk such that ψn,L · · ·ψn+k−1,L(qk) = p we have
σn+k−1(θ

−1
n+k(qk))| = θ−1

n+k−1(qk−1) so the sequence (θ−1
n+k(qk))k∈N is the tail of

a bounded sequence of (σn)n∈N (Definition 1.3.13).

Remark 3.2.5. In the general case, morphisms in Definition 3.2.1 might be
uninteresting. Indeed consider the case of sequences with maximal complex-
ity (like the Champernowne sequence; see [IS75] for instance). As L(w) = A∗

for these sequences, all factors are left special and so all edges of Gn are
n-segments. For all n, the morphism σn is therefore uniform of length 1
so |σ0σ1 · · ·σn(a)| = 1 for all n and all letters a. However the construc-
tion of Definition 3.2.1 makes sense as soon as there is a sequence (an)n∈N
of letters an ∈ An such that |σ0 · · ·σn(an+1)| tends to infinity as n in-
creases. Indeed, in this case, L(w) =

⋃

n∈N L(σ0 · · ·σn(an+1)) (due to the
uniform recurrence). We can easily see that for |σ0 · · ·σn(an+1)| to converge
to infinity for at least one sequence of letters (an)n∈N, an ∈ An, it is suf-
ficient that the sequence

(
pw(n)

Card(An)

)

n∈N
is unbounded. Since Card(An) ≤

Card(A) (pw(n + 1)− pw(n)) (see Remark 3.1.4 ), it is also sufficient that
lim supn→+∞

p(n)
p(n+1)−p(n)

= +∞ and so that lim infn→+∞
p(n+1)
p(n)

= 1. Note
that sequences with an at most polynomial complexity satisfy this property
although for sequences with higher complexity, it is not always the case.

The next lemma shows that for sequences with sub-linear complexity,
the construction of Definition 3.2.1 is particularly efficient since it always
provides a finite set of morphisms. Indeed, the lemma improves Lemma 3.1.8
stating that when the sequence has a sub-linear complexity, the number of
n-segments occurring in an (n+1)-segment is bounded. In this case, we will
construct only a finite number of morphisms σn because this only gives rise to
morphisms of bounded length over bounded alphabets An (Corollary 3.1.5).
Consequently, this will prove that the set S = {σn | n ∈ N} is finite.
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Lemma 3.2.6 (Ferenczi [Fer96]). Let w be an aperiodic sequence over an
alphabet A. If w has an at most linear complexity, then for any (n + 1)-
segment p of w, ψn,L(p) is a bounded concatenation of n-segments and the
decomposition is unique.

Proof. The uniqueness of the decomposition has already been proved in
Lemma 3.1.8. Let us prove that it is bounded. Let K be such that pw(n+1)−
pw(n) ≤ K for all n (Theorem 1.2.3). Consider a (n + 1)-segment p ∈ An+1

(we know it exists since w is aperiodic). The number of n-segments in ψn,L(p)
is equal to 1 plus the number of vertices va in p, a ∈ A, such that v is a left
special factor of w and va not. Moreover, as these vertices are not left spe-
cial, the path p cannot pass through one of them more than once. Since
there exist at most K left special vertices v in Gn(w), there exist at most
KCard(A) vertices va as considered just above. Consequently, the number
of n-segments in ψn,L(p) is bounded by 1 +KCard(A).

Introduction of a new symbol ♯

Let w be a one-sided uniformly recurrent sequence over A with sub-linear
complexity. To get the S-adic representation of Theorem 3.0.3 we need to
consider a new symbol ♯ /∈ A and the one-sided sequence w′ = ♯w. It is
obvious that w′ is not recurrent and that for all n we have pw′(n) = pw(n)+1.
Moreover, since w is recurrent, all prefixes of w are left special factors of w′

so for all n, Card(LSn(w
′)) ≥ Card(LSn(w)). However we still have

pw′(n+ 1)− pw′(n) =
∑

u∈LSn(w)

(δ−(u)− 1).

Remark 3.2.7. Considering the sequence w′ instead of w does not change
much the shape of the Rauzy graphs (hence neither the sets of n-segments
and of n-circuits). Indeed, it simply corresponds to highlighting a particular
vertex (the prefix of w of each length n) by adding to it an incoming edge.
Consequently, that can only split some n-segments of w into two n-segments
of w′ and it can add some possibilities for the choice of the sequence (vn)n∈N
of Lemma 3.1.14.

However, considering w′ instead of w has a significant consequence on the
morphisms σn of Definition 3.2.1. Indeed, it implies that if A = {0, 1, . . . , k−
1} we do not have A0 = A anymore but A0 = {0, 1, . . . , k} and there is a
letter a♯ in A0 such that λL ◦ θ0(a♯) = ♯. But, since the symbol ♯ does not
occur in the label of any 1-segment, we have σ0(A1) ⊂ A0 \A∗

0a♯A
∗
0 so we can

suppose that for all a ∈ A0 \ {a♯}, we have

λL ◦ θ0(a) = a.
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Example 3.2.8. If we consider the Thue-Morse sequence t, the Rauzy graph
G3(t

′) is represented in Figure 3.4.

♯01001 011

010 101

100 110

♯
0

0

0

0

0

1

1

0

1

1

1

Figure 3.4: Rauzy graph of order 3 (with left labels) of ♯t where t is the
Thue-Morse sequence.

In all what follows we consider the notations introduced in Definition 3.2.1
such that the sequence of morphisms (σn)n∈N is built upon the set of n-
segments of w′.

3.3 S-adicity using n-circuits

In this section we prove Theorem 3.0.1. To that aim, we consider for all n the
subsets Cn of A∗

n such that for all c ∈ Cn, θn(c) is an n-circuit starting from
a particular vertex. This kind of choice of subsets of A∗

n will also be used
in Chapter 4 and Chapter 5 to obtain an S-adic characterization of minimal
subshift with first difference of complexity bounded by 2.

3.3.1 Morphisms over the set of n-circuits

In this section we explicitly define the morphisms of the S-adic representation
of Theorem 3.0.1.

Definition 3.3.1 (Definition of the morphisms γn). Let A be an alphabet,
♯ /∈ A, w be a one-sided sequence over A and w′ = ♯w. For all n, we also let
pn denote the prefix of length n of w. Since w is recurrent, all its prefixes
are left special in w′ thus (pn)n∈N corresponds to a sequence of left special
factors of w′ as in Lemma 3.1.14. For each non-negative integers n, let Cn
be the set of allowed n-circuits starting from pn. Now define the alphabet
Cn = {0, 1, . . . ,Card(Cn)−1} and consider a bijection ϑn : Cn → Cn. We can
extend ϑn to an isomorphism by putting ϑn(ab) = ϑn(a)ϑn(b) for all letters
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a, b in Cn. Then, for all n, Lemma 3.1.13 allows us define γn : C∗
n+1 → C∗

n as
the unique morphism satisfying

ϑn ◦ γn = ψn,L ◦ ϑn+1.

Observe that for all n we actually have

γn = ϑ−1
n ◦ θn ◦ σn ◦ θ−1

n+1 ◦ ϑn+1.

Remark 3.3.2. As for n-segments, it is a direct consequence of Definition 3.3.1
that if a Rauzy graph Gn does not contain any bispecial vertices, the mor-
phism γn is simply a bijective and letter-to-letter morphism. This morphism
only depends on the differences that could exist between ϑn and ϑn+1. Fur-
thermore, it is easily seen that when pn is not a bispecial vertex, the morphism
γn is a bijective and letter-to-letter morphism.

Remark 3.3.3. It is easily seen that the 0-circuits of w′ correspond to its
0-segments. Thus, as for n-segments we have C0 = {0, 1, . . . , k} whenever
A = {0, . . . , k − 1} and no letter c of C1 is such that the letter c♯ occurs in
γ0(c) where λL ◦ ϑ0(c♯) = ♯. Consequently, we consider that ϑ0 is such that
for all c ∈ C0 \ {c♯},

λL ◦ ϑ0(c) = c.

Example 3.3.4. Let t be the Thue-Morse sequence. The Rauzy graphs
G2(t) and G3(t) are represented at Figures 3.3 and 3.1. Let us compute the
morphism γ2 of Definition 3.3.1 for this particular sequence. Since the left
return words to 01 and 011 are respectively

LRWt(01) = {0110, 01, 010, 011}
LRWt(011) = {011010, 011001, 0110, 01101001}

the allowed 2-circuits starting from 01 are

ϑ2(0) = 01 → 10 → 00 → 01 ϑ2(2) = 01 → 11 → 10 → 00 → 01

ϑ2(1) = 01 → 11 → 10 → 01 ϑ2(3) = 01 → 10 → 01

and the allowed 3-circuits starting from 011 are

ϑ3(0) = 011 → 110 → 100 → 001 → 010 → 101 → 011

ϑ3(1) = 011 → 110 → 101 → 010 → 100 → 001 → 011

ϑ3(2) = 011 → 110 → 100 → 001 → 011

ϑ3(3) = 011 → 110 → 101 → 010 → 100 → 001 → 010 → 101 → 011
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By applying Definition 3.3.1 we obtain

γ2 :







0 7→ 23

1 7→ 10

2 7→ 2

3 7→ 103

.

3.3.2 Proof of Theorem 3.0.1

Let (γn)n∈N be the sequence of morphisms of Definition 3.3.1. We first prove
that it is indeed a directive word of w. Then, we prove that there is a
contraction of (γn)n∈N (Definition 1.3.9) that contains only strongly primitive
morphisms that are also left proper which is the first part of the theorem.
Then, we show how we can slightly modify the contraction to get morphisms
that are left and right proper.

Lemma 3.3.5. Let w be a uniformly recurrent sequence. Then, the sequence
of morphisms (γn)n∈N of Definition 3.3.1 is a directive word of w.

Proof. By construction, for all n and all letters c ∈ Cn+1 the word γ0 · · ·γn(c)
belongs to L(w). Moreover, since for all n and c ∈ Cn, o(ϑn(c)) = pn there
is a sequence of letters (cn)n∈N, cn ∈ Cn, such that ϑn(cn) is labelled by a
prefix of w. Consequently, for such a sequence the word γ0 · · · γn(cn+1) is a
prefix of w for all n. To conclude the proof, we only have to notice that
Corollary 3.1.17 implies that (γn)n∈N is everywhere growing.

Proposition 3.3.6. A one-sided sequence w over an alphabet A is uniformly
recurrent if and only if it is primitive and left proper S-adic. In particular,
if w does not have a sub-linear complexity, then Card(S) = +∞.

Proof. The sufficient part is simply a consequence of Proposition 2.1.21 and
the "in particular" part is a consequence of Proposition 2.3.1 page 62 and
Proposition 2.3.3 page 62. Let us prove that the condition is necessary.

Let (γn)n∈N be the sequence of morphisms as defined in Definition 3.3.1
and let us prove that there is a contraction (Γn)n∈N of (γn)n∈N such that for
all n, Γn is strongly primitive and left proper.

First, let us prove the strong primitivity. Let r be an integer and let ℓr
be the maximal length of a r-circuit. Since w is uniformly recurrent, there is
an integer Mr > r such that all factors of w of length at least Mr contain all
factors of w of length at most r + ℓr. Let s > r be an integer such that all
s-circuits have length at least Mr. For all letters c, d in Cr, λ ◦ ϑr(c) is not
a factor of λ ◦ ϑr(d). Consequently, for all s-circuits q, all r-circuits occur in
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ψr,L ◦ · · · ◦ ψs−1,L(q) so all letters of Cr occur in γr · · · γs−1(d) for all d ∈ Cs.
Let us denote by (γ′n : C̃∗

n+1 → C̃∗
n)n∈N a contraction of (γn)n∈N such that all

morphisms are strongly primitive.
Now let us prove that there is a contraction of (γ′n)n∈N such that all

morphisms are left proper. Let r be a positive integer. By construction, there
is a unique letter c ∈ C̃r such that γ′0 · · · γ′r−1(c) is a prefix of w. Let s > r be
such that the alphabet C̃s corresponds to m-circuits with m > |γ′0 · · · γ′r−1(c)|.
By definition, these circuits are starting from a prefix of w of length m. From
Proposition 1.5.5, we deduce that the image of all these circuits under the
appropriate composition of function ψn,L admit the circuit corresponding to
c as a prefix. Consequently, we have γ′r · · ·γ′s−1(C̃s) ⊂ cC̃∗

r and this concludes
the proof.

To end the proof of Theorem 3.0.1, we have to introduce the following
trick. If σ : A∗ → B∗ is a left proper morphism such that σ(A) ⊂ bB∗ for a
letter b ∈ B, we let σ(R) : A∗ → B∗ denote the right proper morphism such
that for all a ∈ A, σ(R)(a) = ub whenever σ(a) = bu. We call σ(R) the right
conjugate of σ.

Lemma 3.3.7. Let σ : A∗ → B∗ be a left proper morphism such that σ(A) ⊂
bB∗ for a letter b ∈ B. Let also w be a sequence in AN. Then we have

σ(w) = bσ(R)(w).

In particular, if σ(w) is recurrent, then L (σ(w)) = L
(
σ(R)(w)

)
.

Proof. Indeed, from the shape of σ we have

σ(w) = bu1
︸︷︷︸

σ(w0)

bu2
︸︷︷︸

σ(w1)

bu3
︸︷︷︸

σ(w2)

· · ·

for some word u1, u2, u3, · · · ∈ B∗. This sequence can then be decomposed
into the images of σ(R) by

b u1b
︸︷︷︸

σ(R)(w0)

u2b
︸︷︷︸

σ(R)(w1)

u3b
︸︷︷︸

σ(R)(w2)

· · ·

so σ(w) = bσ(R)(w) and we obviously have L
(
σ(R)(w)

)
⊂ L (σ(w)). From

σ(w) = bσ(R)(w), we know that the only factors of σ(w) that might not
occur in σ(R)(w) are the prefixes. But, for recurrent sequences, all prefixes
also occur later in the sequence. Thus, all prefixes of σ(w) occur in some
σ(R)(w[i,j]) for some i, j such that 0 < i < j so the result holds.
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The next lemma ends the proof of Theorem 3.0.1. It states that for
subshifts, we can replace the condition "left proper" of the theorem by the
condition "proper".

Proposition 3.3.8. An aperiodic subshift (X, T ) over an alphabet A is min-
imal if and only if it is primitive and proper S-adic. In particular, if (X, T )
does not have a sub-linear complexity, then Card(S) = +∞.

Proof. The proof of the sufficient part and of the "in particular part" is the
same as in Proposition 3.3.6. Moreover, we can also use that proposition to
consider a directive word (Γn)n∈N of (X, T ) such that all morphisms Γn are
strongly primitive and left proper.

Now let us consider the sequence of morphisms (̺n)n∈N such that for all
n

̺n = Γ2nΓ
(R)
2n+1.

For all n, ̺n is clearly strongly primitive and proper. Therefore we only
have to prove that (̺n)n∈N is a directive word of (X, T ) which is obvious
since (Γn)n∈N is a directive word of (X, T ) and Lemma 3.3.7 states that
replacing a left proper morphism by its right conjugate does not change the
language.

Remark 3.3.9. Propositions 3.3.6 and 3.3.8 could be obtained easily using
return words. For two-sided sequences, return words would also allow us to
replace "left proper" by "proper" in the theorem. However, we think that
Rauzy graphs can provide much more information than return words and
our goal is therefore to understand how they evolve to get properties on the
S-adic representations. Consequently, we prefer to keep working with them.

3.4 S-adicity using bounded concatenations of

n-segments

Although some properties of the S-adic representation of Theorem 3.0.1 seem
to be interesting, a bad thing is that the construction often yields to infinite
sets of morphisms (even for sequences with sub-linear complexity). In this
section we consider the action of the morphisms σn of Definition 3.2.1 over
other subsets of A∗

n that allow us to prove Theorem 3.0.3. This makes us lose
the almost primitivity and the left proper property of the directive word (as
it is the case in Theorem 3.0.1) but this provides other interesting properties.
In particular, with these subsets, we are always ensured to build a finite set
of morphisms for sequences with sub-linear complexity.
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3.4.1 Some preliminary lemmas

Before proving Theorem 3.0.3, we need some lemmas about the sequence of
morphisms (σn)n∈N that will allow us to consider some particular subsets of
A∗

n. The first one states that in any allowed path of a Rauzy graph of large
order n, the number of consecutive constant n-segments is bounded.

Lemma 3.4.1 (Ferenczi [Fer96]). Let w be a uniformly recurrent sequence
over an alphabet A. If w has an at most linear complexity, then for n large
enough, in any path in Gn(w), the number of consecutive constant n-segments
is bounded by a constant Cw. In particular, this also holds for w′ = ♯w with
♯ /∈ A.

Proof. If the result holds for w, it is a direct consequence of Remark 3.2.7
that it also holds for w′. Let K be such that p(n + 1) − p(n) ≤ K for
all n (Theorem 1.2.3). As any edge of Gn(w) occurs in at least one n-
segment, any finite path in Gn(w) can be decomposed into a finite number
of n-segments, the first one and the last one being possibly truncated. In
this decomposition, some segments may be constant and so have bounded
length, say by ℓ (Remark 3.1.10). Now if a path p composed of consecutive
constant n-segments has length greater than Kℓ, the path contains at least
K +1 occurrences of left special vertices. Consequently, some vertices vi and
vj of p are equal and the graph contains an n-circuit whose length is smaller
than Kℓ. As w is uniformly recurrent, by Corollary 3.1.17, this is impossible
for n large enough.

The previous lemma allows us to define new families of n-segments de-
pending on their length. Indeed, we already know that constant n-segments
have bounded length, say by ℓ and that some non-constant n-segment become
very long (Remark 3.1.10). But, there might also exist some non-constant n-
segment with very short length. Indeed, if for instance Card(A) = 2 and p is
a constant n-segment such that o(p) is not bispecial and i(p) is a strong bispe-
cial vertex, the two right extensions of i(p) are left special. Consequently, this
provides two (n + 1)-segments p1 and p2 such that ψn,L(p1) = ψn,L(p2) = p.
But, the definition of constant n-segment only implies that one of these
(n+1)-segment is constant so one of them might not be constant but having
a small length. To build the S-adic representation of Theorem 3.0.3, we need
to determine a family of segments that are always "long".

Definition 3.4.2. Let w be a sequence with sub-linear complexity and let
Cw be the constant of Lemma 3.4.1. Let also ℓ be the maximal length of a
constant segment (all orders n included). An n-segment is said to be short if
it has length at most Cwℓ, otherwise it said to be long. We also let N denote
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the smallest integer such that all constant segments already exist (i.e., for all
n ≥ N and all constant n-segments p there is a constant N -segment q such
that ψN,L ◦ · · ·ψn−1,L(p) = q) and such that there exist some long n-segments
(such an integer exists by Remark 3.1.10).

The next lemma states that Lemma 3.4.1 also holds for short segments;
the proof is based on the fact that for n large enough, short n-segment can
only arise from concatenation of constant segments. Thus, if there is an
allowed concatenation of short m-segments (for m > n) which is long, its
projection into Gn (through the functions ψk,L) has the same length and is
an allowed concatenation of constant n-segments.

Lemma 3.4.3 (Ferenczi [Fer96]). Let w be a uniformly recurrent sequence
over an alphabet A. If w has an at most linear complexity, then for n large
enough, any allowed concatenation of short n-segments has length bounded by
Cwℓ where Cw is the constant of Lemma 3.4.1 and ℓ is the maximal length
of a constant segment. In particular, this also holds for w′ = ♯w with ♯ /∈ A.

Now we can define the directive word of Theorem 3.0.3.

Definition 3.4.4 (Definition of the morphisms τn). Let w be a one-sided se-
quence over A and let w′ = ♯w with ♯ /∈ A. For all n ≥ N , we let An,short and
An,long respectively denote the set of short and long n-segments of w′. Then,
we define the set Bn as the set of allowed path in Pn ∩A∗

n,shortAn,longA∗
n,short.

From Lemma 3.4.3, we deduce that there is a constant C such that

Bn ⊂ A≤C
n,shortAn,longA≤C

n,short

so we have Card(Bn) < +∞. Observe that Lemma 3.1.8 implies that any path
in Bn+1 can be decomposed into paths of Bn. However, the decomposition
might not be unique in this case. Indeed, consider a path p ∈ Bn+1 such
that ψn,L(p) can be decomposed into l1s1s2l2 with l1, l2 ∈ An,long and s1, s2 ∈
An,short. This means that we can decompose ψn,L(p) into two elements q1 and
q2 of Bn in three different ways: (q1, q2) ∈ {(l1, s1s2l2), (l1s1, s2l2), (l1s1s2, l2)}.
This is a problem when we want to define morphisms because this means
that the letter that corresponds to the path p of Bn+1 admits several images.
However, any choice of decomposition yields to a morphism, hence to an
S-adic representation.

We then consider a bijection Θn : Bn → Bn with Bn = {0, . . . ,Card(Bn)−
1} and define τn : B∗

n+1 → B∗
n as a morphism (there might exist several

available morphisms) such that

Θn ◦ τn = ψn,L ◦Θn+1.
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As explained just above, several choices can be made when decomposing a
path of Bn+1 into paths of Bn. This comes from the fact that Θn is a bijection
between Bn and Bn but not between B∗

n and B∗
n. Consequently, we cannot

write τn = Θ−1
n ◦ θn ◦ σn ◦ θ−1

n+1 ◦Θn+1 as we did for morphisms σn and γn.
For all n, we let An,long and An,short respectively denote θ−1

n (An,long) and
θ−1
n (An,short).

Remark 3.4.5. The first morphism in the new directive word is τN and except
if there do not exist any constant segments (in that case we have N = 0 and
σn = τn for all n ≥ 0), we obviously might have BN 6= A. Consequently, the
sequence (τn)n≥N cannot be a directive word of w. We need to consider a new
morphism κ = λL◦ΘN and the sequence of morphisms (κ, τN , τN+1, τN+2, . . . ).

The next lemma shows that the directive word (κ, τN , τN+1, . . . ) is every-
where growing.

Lemma 3.4.6 (Ferenczi [Fer96]). Let A be an alphabet and w ∈ AN be a
uniformly recurrent sequence with sub-linear complexity. Let (κ, τN , τN+1, . . . )
be the directive word of Definition 3.4.4. For all integers ℓ, there is an integer
nℓ ≥ N such that for all n ≥ nℓ and all letters b ∈ Bn+1, |κτN · · · τn(b)| ≥ ℓ.

Proof. By definition, for all letters b ∈ Bn+1, Θn+1(b) contains a long (n+1)-
segment so has length greater than Cw′ℓ. We also have |κτN · · · τn(b)| =
|Θn+1(b)|. Moreover, long segments can only arise from long segments of
smaller order; otherwise that would contradict Lemma 3.4.3. Finally, the fact
that the long segments cannot be constant (due to their length) ensures that
they will occur as proper subpaths of long segments of larger order. These
long segments will therefore have length greater than 2Cw′ℓ. Continuing
this way, for all k we can find larger and larger orders m such that all long
m-segments have length greater than kCw′ℓ which concludes the proof.

3.4.2 Proof of Theorem 3.0.3

Let us split the proof of Theorem 3.0.3 into several propositions. The first one
proves that the sequence of morphisms (κ, τN , τN+1, . . . ) of Definition 3.4.4
is indeed a directive word of w and that the set of morphisms occurring in it
is finite. Then we give one proposition for each property of Definition 3.0.4.
When the sequence w′ = ♯w does not admit constant segments (for the last
part of Theorem 3.0.3), we obviously have N = 0 and τn = σn for all n.

Proposition 3.4.7 (S-adicity). Let w be an aperiodic and uniformly recur-
rent sequence over A with a sub-linear complexity. The set of morphisms
{τn | n ≥ N} of Definition 3.4.4 is finite and (κ, τN , τN+1, τN+2, . . . ) is a
directive word of w.
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Proof. First let us prove that the set of morphisms in (κ, τN , τN+1, τN+2, . . . )
is finite. We already know by definition that for all n ≥ N , the alphabet
Bn is finite so we have to prove that the images of letters under τn have
bounded length. This is obvious since for any letter b ∈ Bn+1, Θn+1(b) can
be decomposed into a bounded number of (n+1)-segments and Lemma 3.2.6
implies that each of them can be decomposed into a bounded number of
n-segments.

Now let us prove that (κ, τN , τN+1, τN+2, . . . ) is a directive word of w.
For all n, the prefix of w is left special in w′. Consequently, for all n there
are some n-segments p of w′ such that o(p) = w[0,n−1] and some of these
n-segments have a left label which is a prefix of w. For all n ≥ N , let
Pn ⊂ Bn denote the set of letters p such that o(Θn(p)) = w[0,n−1]. We have
τn(Pn+1) ∈ P+

n B
∗
n for all n ≥ N . Let (pn)n≥N be a sequence of letters pn ∈ Pn

such that λL◦Θn(pn) is a prefix of w and τn(pn+1) ∈ pnB
∗
n (it is a consequence

of the constructions that such a sequence exists). Since the directive word
(κ, τN , τN+1, τN+2, . . . ) is everywhere growing (Lemma 3.4.6), we have

w = lim
n→+∞

κτNτN+1 · · · τn(pωn+1)

and this concludes the proof.

The proofs of the properties in Theorem 3.0.3 are mostly based on the
following lemma.

Lemma 3.4.8. Let w be an aperiodic and uniformly recurrent sequence over
A with a sub-linear complexity and let (κ, τN , τN+1, τN+2, . . . ) be the directive
word of Definition 3.4.4. Let n ≥ N and b ∈ Bn such that Θn(b) can be
decomposed into p1 · · · pilpi+1 · · · pk with l ∈ An,long and pi ∈ An,short for all
i. If there is a letter c ∈ Bb+1 such that τn(c) ∈ B+

n bB
∗
n, then the right

extension of o(l) that is an interior vertex of Θn+1(c) is not left special and
for all j = 1, . . . , i, the right extension of o(pi) that is an interior vertex of
Θn+1(c) is not left special either. Similarly, if τn(c) ∈ B∗

nbB
+
n , then the right

extension of i(l) that is an interior vertex of Θn+1(c) is not left special and
for all j = i+ 1, . . . , k, the right extension of i(pi) that is an interior vertex
of Θn+1(c) is not left special either.

Proof. The result is almost trivial. Indeed, if τn(c) ∈ B∗
nb1b2B

∗
n for some

letters c ∈ Bn+1 and b1b2 ∈ Bn, the definition of the alphabet Bn implies
that the short (n + 1)-segment that might occur in Θn+1(c) can only occur
at the extremities. Consequently, the short n-segments at the beginning of
Θn(b2) and at the end of Θn(b1) cannot keep being short (n + 1)-segments.
In other words, their extremities in Θn+1(c) must be non left special.
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Proposition 3.4.9 (Property 1). Let w be an aperiodic and uniformly recur-
rent sequence over A with a sub-linear complexity and let (κ, τN , τN+1, . . . ) be
the directive word of Definition 3.4.4. For all integers n ≥ N and all letters
b ∈ Bn and c in Bn+1, τn(c) /∈ B∗

nbB
∗
nbB

∗
n.

Proof. This is an almost direct consequence of Lemma 3.4.8. Suppose τn(c) =
ubvbw with b ∈ Bn and u, v, w ∈ B∗

n. From Lemma 3.4.8, the subpath q of
Θn+1(c) such that ψn,L(q) = Θn(bvb) does not contain any left special vertex.
This path is therefore inaccessible from vertices that do not compose it so
Gn+1 is not strongly connected which is a contradiction with the recurrence
of w (see Remark 1.5.2).

Proposition 3.4.10 (Property 2). Let w be an aperiodic and uniformly re-
current sequence over A with a sub-linear complexity and let (κ, τN , τN+1, . . . )
be the directive word of Definition 3.4.4. For all integers n ≥ N , if there is
b ∈ Bn, u = u1u2 · · ·uℓ ∈ B+

n and c ∈ Bn+1 such that τn(c) ∈ ubB∗
n, then

for all letters d ∈ Bn+1, τn(d) ∈ (B+
n \B∗

nbB
∗
n) ∪ (Bnu2 · · ·uℓbB∗

n). More-
over, if Θn(u1) ∈ An,longA∗

n,short and if there is no letter a ∈ Bn such that
Θn(a) ∈ A∗

n,shortΘn(u1), then τn(d) ∈ (B+
n \B∗

nbB
∗
n) ∪ (u1 · · ·uℓbB∗

n) for all
letters d ∈ Bn+1.

Proof. As Proposition 3.4.9, this is an consequence of Lemma 3.4.8. Indeed,
the fact that τn(c) ∈ ubB∗

n implies that the subpath q of Θn+1(c) such that
ψn,L(p) = lu1p1 · · · pkΘn(u2u3 · · ·uℓ)pk+1 · · · pmlb does not contain any left spe-
cial vertex, where lu1 , lb ∈ An,long, pi ∈ An,short for all i and lu1p1 · · · pk and
pk+1 · · ·pmlb are respectively suffix and prefix of Θn(u1) and Θn(b). Conse-
quently, q is the only path of Gn+1 from o(q) to i(q) (supposing that we do
not consider paths containing twice the vertex o(q)). In other word, the suffix
of q that is mapped to lb through ψn,L can be uniquely extended to the left
in Gn+1 by the subpath of q that is mapped to pm through ψn,L and this one
can also be uniquely extended to the left in Gn+1 and so on until we reach the
prefix of q. Any letter d in Bn+1 such that Θn+1(d) contains the path lb as
a subpath contains also the path q. Consequently, if b occurs in τn(d), then
u2u3 · · ·uℓb also occurs in it. The first letter of τn(d) might be different from
u1 because there might be different letters a in Bn such that Θn(a) admits
lu1p1 · · · pk as a suffix.

Proposition 3.4.11 (Property 3). Let w be an aperiodic and uniformly re-
current sequence over A with a sub-linear complexity and let (κ, τN , τN+1, . . . )
be the directive word of Definition 3.4.4. For all integers n ≥ N , all let-
ters b1, . . . , bk in Bn and all letters c1, . . . , ck in Bn+1, (τn(c1), . . . , τn(ck)) /∈
B∗

nb1B
∗
nb2B

∗
n × B∗

nb2B
∗
nb3B

∗
n × · · · × B∗

nbk−1B
∗
nbkB

∗
n ×B∗

nbkB
∗
nb1B

∗
n.
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Proof. This is again a consequence of Lemma 3.4.8. Indeed, suppose by
contrary that

(τn(c1), . . . , τn(ck)) ∈ B∗
nb1B

∗
nb2B

∗
n × B∗

nb2B
∗
nb3B

∗
n × · · ·

× B∗
nbk−1B

∗
nbkB

∗
n ×B∗

nbkB
∗
nb1B

∗
n.

For all letters bi, i = 1, . . . , k, we let li denote the long n-segment of Θn(bi).
We also let qk denote the subpath of Θn+1(ck) such that ψn,L(qk) = l1 and
for i = 1, . . . , k − 1, qi is the subpath of Θn+1(ci) such that ψn,L(qi) = li+1.

Consider the path qk. Lemma 3.4.8 and τn(ck) ∈ B∗
nbkB

∗
nb1B

∗
n imply that

qk can be uniquely extended to the left in Gn+1 until we reach qk−1 (i.e.,
there is no left special vertex between i(qk) and o(qk−1)). Then, Lemma 3.4.8
and τn(ck−1) ∈ B∗

nbk−1B
∗
nbkB

∗
n imply that qk−1 (and so qk) can be uniquely

extended to the left in Gn+1 until we reach the qk−2. Continuing this way,
we see that qk can be uniquely extended to the left in Gn+1 until we reach qk
again. Thus this provides a loop inGn+1 that is inaccessible from vertices that
do not belong to it and Gn+1 is not strongly connected: a contradiction.

Proposition 3.4.12 (Almost primitivity). Let w be an aperiodic and uni-
formly recurrent sequence over A with a sub-linear complexity and let (σn)n∈N
be the directive word of Definition 3.2.1. For all non-negative integers r and
all letters b ∈ Ar, there is an integer s > r such that for all a ∈ As,long, b
occurs in σr · · ·σs−1(a). In particular, if (σn)n∈N is everywhere growing, then
it is almost primitive.

Proof. The proof is exactly the same as for the S-adic representation using n-
circuits (see Proposition 3.3.6). For any n-segments p, there is no n-segment
q such that λ(p) is a factor of λ(q). But, thanks to the uniform recurrence,
the full label of any n-segment is factor of any sufficiently long word in L(w),
hence of the full label of any long m-segment for m large enough.

The particular case is a direct consequence of the definitions.

Remark 3.4.13. One can regret that the almost primitivity does not hold in
general. But, for the directive word (κ, τN , τN+1, τN+2, . . . ), there can exist
some letters in Bn that are useless. For instance, if there is a path p in a Rauzy
graph Gn such that p = l1s1s2l2 where l1, l2 ∈ An,long and s1, s2 ∈ An,short, the
definition of Bn states that there are 6 letters b1, b2, . . . , b6 in Bn such that
Θn(b1) = l1, Θn(b2) = l1s1, Θn(b3) = l1s1s2, Θn(b4) = l2, Θn(b5) = s2l2 and
Θn(b6) = s1s2l2. Now consider q ∈ Pn+1 such that ψn,L(q) = p and suppose
that the left special vertex i(s1) = o(s2) is bispecial. Suppose moreover that
its left extension which is an interior vertex of q is not right special and
that its right extension which is an interior vertex of q is not left special.
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Finally, we suppose that i(l2) is not right special. All this implies that if
q′ ∈ Pn+1 is such that ψn,L(q

′) contains l1c1c2l2 as a subpath, then q is a
subpath of q′. Moreover, this also implies that q can be decomposed into
l′1sl

′
2 with l′1, l

′
2 ∈ An+1,long, s ∈ An+1,short, ψn,L(l

′
1) = l1, ψn,L(l

′
2) = l2 and

ψn,L(s) = s1s2. Consequently, there is no letter b in Bn+1 such that τn(b)
contains b2 or b5. So, both of them can be removed from Bn without loss of
generality.

An idea to obtain the almost primitivity in the general case would be
to prove that we can choose some sub-alphabets B̃n ⊂ Bn such that the
restriction of (κ, τN , τN+1, τN+2, . . . ) to these alphabet is still a directive word
of w and is almost primitive. However, we still have some troubles with the
fact that Θn is not an isomorphism between B∗

n and B∗
n.

Remark 3.4.14. It is easily seen that Propositions 3.4.9, 3.4.10 and 3.4.11 still
hold true if we replace (κ, τN , τN+1, τN+2, . . . ) by the directive word (σn)n∈N.
Indeed, their proofs are always based on Lemma 3.4.8 and this result still
holds true when working with (σn)n∈N. In particular, the last part of Propo-
sition 3.4.10 (with the letter u1) is always true.

For the proof of next property, we need to recall some basic notions of
graph theory. Let G be a graph. A path p in G is a cycle if its extremities
are equal. Let v be a vertex of graph G. The neighbours of v are the vertices
u such that there is an edge between u and v.

A tree is an undirected graph in which any two vertices are connected
by exactly one simple path, i.e., a path that does not pass twice through
a same vertex. In other words, any connected graph with no cycle (except
the cycles (u, v)(v, u) where u and v are vertices) is a tree. A tree is said
to be rooted if one particular vertex v0 is designated the root. In this case,
the vertices v can be ordered with respect to the length of the unique simple
path between v0 and v. If the length of the simple path between v0 and v is
i, we say that v is a vertex of level i. The children of a vertex v of level i are
the neighbours of level i + 1 of v. A vertex u is a successor of a vertex v if
there is a sequence of vertices v = v1, v2, . . . , vk = u such that vi+1 is a child
of vi for all i, 1 ≤ i ≤ k − 1. The set of successors of v in G is denoted by
succG(v). In the same idea, the parent of v is the neighbour of level i− 1 of
v and the ancestors of v are the vertices u such that v ∈ succG(u). A vertex
v is a leaf if it has no child.

A forest is an undirected graph whose connected component are trees.
When the trees of a forest F are rooted, the roots (resp. the leaves) of F are
the respective roots (resp. the respective leaves) of its connected components.

Proposition 3.4.15 (Property 4). Let w be an aperiodic and uniformly
recurrent sequence over A with a sub-linear complexity and let (σn)n∈N be
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the directive word of Definition 3.2.1. For all n, σn belongs to T ∗ with T =
{G} ∪ {Eij | i, j ∈ A} ∪ {Mi | i ∈ A} a set of morphisms such that:

1. G(0) = 10 and G(i) = i for all letters i 6= 0;

2. Eij exchange i and j and fixes the other letters;

3. Mi maps i to 0 and fix the other letters.

Proof. Let n be an integer. The main idea to decompose the morphism σn is
the following. Let F be the graph whose set of vertices are the couples (a, n)
with a in Bn and the couples (c, n+1) with c in Bn+1 and whose set of edges
is defined as follows:

• for c ∈ Bn+1 and a in Bn, there is an edge between (c, n+1) and (a, n)
if σn(c) ∈ A∗

na;

• for a, b ∈ Bn, there is an edge between (a, n) and (b, n) whenever there
is a letter c in Bn+1 such that ba occurs in σn(c).

We already know that the last part of Proposition 3.4.10 and that Propo-
sition 3.4.11 hold true for the directive word (σn)n∈N (see Remark 3.4.14).
Moreover, they imply that F is a forest such that the number of connected
components (that are trees) of F is the number of letters a in An such that
σn(c) ∈ aA∗

n for some letter c in An+1. We suppose that the root of such
a tree is the vertex (a, n). Consequently, the leaves of F are the vertices
(c, n + 1) and we can check that the set of images in σn(An+1) is the set of
words a1 · · · ak, k ≥ 0, a1, . . . , ak ∈ Bn being the respective first components
of the vertices of a simple path in F from a root to the parent of a leaf.

Now let us explain how we can build σn with F . The idea is to start from
the leaves, to move towards the roots and to build σn reading the letters
on the vertices, i.e., the first components of them. The first step (from the
leaves to their respective parents) is simply to map each letter c in An+1

to the last letter of σn(c). This can be realized with the morphisms Eij

and Mi. Indeed, for any n-segment p, let χ(p) = {Xx | X = i(p) and x ∈
A such that Xx ∈ L(w)}. As a segment is completely determined by its last
edge, there is a bijection between the set An+1 of (n + 1)-segments and the
set {Xx ∈ χ(p) | Xx is left special and p ∈ An}. We write

An+1
∼= {Xx ∈ χ(p) | Xx is left special and p ∈ An} . (3.2)

Let p be a n-segment and let k(p) be the number of vertices Xx in χ(p) that
are left special. If k(p) = 1, we deduce from Equation 3.2 that there is a
unique (n+ 1)-segment qp such that

σn ◦ θ−1
n+1(qp) ∈ A∗

nθ
−1
n (p).
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Consequently, there is a bijection between P ∗ and {qp | p ∈ P}∗ with

P = {p ∈ An | ∃!Xx ∈ χ(p) that is left special} .

This bijection is realized by a bijective and letter-to-letter morphism E and
it is clear that such a morphism can be decomposed in a finite product of
morphisms Eij (see for instance Lemma 2.2 in [Ric03]).

Now, if k(p) > 1, Once again we deduce from Equation 3.2 that there are
k(p) (n+ 1)-segments qp,1, . . . , qp,k(p) such that

σn ◦ θ−1
n+1(qp,i) ∈ A∗

nθ
−1
n (p)

for all i, 1 ≤ i ≤ k(p). For all i, 1 ≤ i ≤ k(p), the letter θ−1
n+1(qp,i) must be

mapped to θ−1
n (p). This is realized by the following product of morphisms:

M =
∏

p∈An such
that k(p)>1

E0θ−1
n (p)




∏

1≤i≤k(p)

Mθ−1
n+1(qp,i)



E0θ−1
n (p).

Observe that, by construction, the morphisms E and M respectively act
on disjoints subsets of Bn+1. Consequently, we have

E ◦M(An+1) = M◦ E(An+1)

and this morphism realizes the step from the leaves of F to their respective
parents.

Now let us show that we can keep moving towards the roots of F and
build σn reading the letters on the vertices. Let us define the morphism
σtemp = E ◦ M and the graph Ftemp = F . Since we have already built the
morphism realizing the step from the leaves to their respective parents, we
remove them (the leaves) from Ftemp. Once this is done, there might be some
new leaves in Ftemp that are also roots of Ftemp. For these vertices (a, n), this
means that for any child (c, n+1) of (a, n) in F we have σtemp(c) = σn(c) = a
(otherwise there would be an edge between (a, n) and another vertex (b, n)).
Hence the work is done for these letters so we remove the corresponding
vertices from Ftemp. Consequently, the remaining vertices in Ftemp correspond
to the letters a in An that occur in images σn(c) of length at least 2. Observe
that since we have only removed some leaves from Ftemp, the graph is still a
forest and we can repeat the process until Ftemp is empty. This is formalized
by the algorithm below.

Algorithm:

While Ftemp is not empty:
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1. Consider a leaf (a, n) in Ftemp. Let (b, n) be the parent of (a, n) in
Ftemp. Remove (a, n) from Ftemp.

2. Replace σtemp by ̺ ◦ σtemp where ̺ = E0a ◦ E1b ◦G ◦ E1b ◦ E0a maps a
to ba and fixes the other letters.

3. If (b, n) is a root of Ftemp, remove (b, n) from Ftemp.

This algorithm clearly stops since any vertex of F can be reached (so
removed from Ftemp) in a finite number of steps. Moreover, when it stops,
we have σtemp = σn (by construction of F ).

3.5 First conclusions

In this chapter, we presented a method to build S-adic representations of
sequences or subshifts. The main idea is to consider the morphisms σn of
Definition 3.2.1 but instead of considering them on their canonical alphabet
An, we study their action on subsets of A∗

n. Depending on the chosen subsets,
we of course get different properties. But, none of the choices we made led us
to a good candidate for the condition C of the S-adic conjecture. Indeed, the
conditions in Theorem 3.0.1 are clearly a bad candidate: take for instance
the set of morphisms {γknµ | n ∈ N} of Example 2.3.11 (page 67) and define
for all n the morphism

∆n :

{

0 7→ 1γknµ(0)

1 7→ 1γknµ(1)

All morphisms are proper and strongly primitive and the sequence

w = lim
n→+∞

∆0 · · ·∆n(0
ω)

does not have a sub-linear complexity as soon as the sequence (kn)n∈N is
unbounded (see Proposition 2.3.12).

Example 2.3.11 can also be slightly modified in such a way that it satisfies
all conditions of Theorem 3.0.3 so this last result does not solve the conjecture
either. Indeed, we can decompose the 2 morphisms γ and µ with 3 morphisms
that satisfy the conditions of the theorem: γ = β ◦ α′ and µ = β ◦ µ′ with

γ′ :

{

0 7→ 012

1 7→ 3
µ′ :

{

0 7→ 02

1 7→ 31
β :







0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 1

.
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It is easily seen that the new directive word is almost primitive and satisfies
Properties 1–3. Moreover, we have

γ′ = E02GE12GE13

µ′ = E12GE02E13GE03E13

β = M1E01M2M3E01

Now a natural question is to ask whether there exist some other subsets
of A∗

n that could be considered as alphabets and would lead to S-adic repre-
sentations with other properties. One also could try to extend these results
to non-uniformly recurrent sequences. For instance, it seems that when w

has a sub-linear complexity and is k-power-free, the set of morphisms occur-
ring in the directive word (κ, τN , τN+1, . . . ) is also finite. But, it is not clear
that all properties still hold true. Another natural idea is to try to describe
exactly for which sequences this directive word is ultimately periodic. Some
discussions are currently ongoing with S. Starosta in that last direction.

Remark 3.5.1. We can extend Theorem 3.0.3 to two-sided sequences w =
−w.w+. Indeed, in the proof of Proposition 3.4.7, we only have to find
a sequence of letters (sn)n≥N such that for all n, i(Θn(sn)) = w[0,n−1],
κτN · · · τn−1(sn) is suffix of −w and τn(sn+1) ∈ B∗

nsn. Such a sequence exists
by construction so we obtain

w = lim
n→+∞

κτNτN+1 · · · τn(ωsn+1.p
ω
n+1).



Chapter 4

S-adicity of minimal subshifts
with complexity 2n

In this chapter we consider the S-adic representation of Theorem 3.0.1 in
the particular case of minimal subshifts with first difference of complexity
bounded by 2. In that particular case, we are able to give much more details
on the representations. In particular, we prove that such subshifts are S-adic
with Card(S) = 5 which is a considerable improvement of Proposition 2.3.6.
In all this chapter, the set S is the set of 5 morphisms {G,D,M,E01, E12}
where

G :







0 7→ 10

1 7→ 1

2 7→ 2

D :







0 7→ 01

1 7→ 1

2 7→ 2

M :







0 7→ 0

1 7→ 1

2 7→ 1

E01 :







0 7→ 1

1 7→ 0

2 7→ 2

E12 :







0 7→ 0

1 7→ 2

2 7→ 1

Theorem 4.0.1. Let G be the graph represented in Figure 4.8. By adding
one edge from 7 to 10 and one edge from 8 to 10, there is a non-trivial way to
label the edges of G with morphisms in S∗ such that for any minimal subshift
(X, T ) such that 1 ≤ pX(n+1)−pX(n) ≤ 2 for all n, there is an infinite path
p in G whose label (σn)n∈N ∈ SN is a directive word of (X, T ). Furthermore,
(σn)n∈N is almost primitive and admits a contraction that contains only proper
morphisms1.

1It was already the case in Theorem 3.0.1.

103



104 Chapter 4. S-adicity of minimal subshifts with complexity 2n

The proof of this theorem is based on a detailed description of all possi-
ble Rauzy graphs of minimal subshifts with the considered complexity. The
Rauzy graphs of such subshifts can have only 10 different shapes. These
shapes correspond to vertices of G and the edges of G are given by the pos-
sible evolutions of these graphs. We then compute explicitly the morphisms
representing these evolutions and show that they belong to S∗. In the next
chapter, we will study even more the evolutions of Rauzy graphs in order to
obtain an S-adic characterization of these subshifts.

In all this chapter, (X, T ) satisfies the conditions of Theorem 4.0.1, i.e., it
is minimal and is such that 1 ≤ pX(n+1)−pX(n) ≤ 2 for all n. Consequently,
we have pX(n) ≤ 2n for all n ≥ 1 when Card(A) = 2 and pX(n) ≤ 2n+1 for
all n when Card(A) = 3.

4.1 Some preliminary lemmas

As already mentioned in Chapter 3, in this chapter we deal with right n-
segments and right n-circuits (see Definition 3.1.2 and Definition 3.1.11).
Consequently, some lemmas of Chapter 3 cannot be directly applied and
need to be rephrased. In this section we quickly present the "right version"
of the results of Chapter 3 we need for the considered particular case. Proofs
are similar to those of Chapter 3.

First we define the function ψn,R similarly to ψn,L.

Definition 4.1.1. Given a path p ∈ Pn+1, ψn,R(p) is the unique path q in
Pn such that λR(q) = λR(p) and o(q) and i(q) are suffixes of o(p) and i(p)
respectively.

Lemma 4.1.2 (Ferenczi [Fer96]). Let (X, T ) be a subshift over an alphabet A
and let v be a right special factor of length n+1 of X. For all (n+1)-circuits
p starting from v, ψn,R(p) is a concatenation of n-circuits starting from the
suffix of length n of v. Moreover, the decomposition of ψn,R(p) into n-circuits
is unique.

Lemma 4.1.3. Let (X, T ) be a minimal and aperiodic subshift over an al-
phabet A. There exists an infinite sequence (vn)n∈N of words over A such that
for each n ∈ N,

• vn is of length n;

• vn is a right special factor of X;

• vn is a suffix of vn+1.
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Definition 4.1.4. Let (X, T ) be a minimal and aperiodic subshift over
an alphabet A. Let also (vn)n∈N be a sequence of right special factors of
X as in Lemma 4.1.3. For each non-negative integers n, let C′

n be the
set of allowed n-circuits starting from vn. Now define the alphabet C ′

n =
{0, 1, . . . ,Card(Cn) − 1} and consider a bijection ϑn : C ′

n → C′
n. We can

extend ϑn to an isomorphism by putting ϑn(ab) = ϑn(a)ϑn(b) for all letters
a, b in Cn. Then, for all n, Lemma 4.1.2 allows us to define γ′n : C ′∗

n+1 → C ′∗
n

as the unique morphism satisfying

ϑn ◦ γ′n = ψn,L ◦ ϑn+1.

Remark 4.1.5. As for left n-circuits, when a Rauzy graph Gn does not contain
any bispecial vertices, the morphism γ′n is simply a bijective and letter-to-
letter morphism. This morphism only depends on the differences that could
exist between ϑn and ϑn+1. Moreover, since Gn does not contain any bispecial
vertex, the shape of Gn+1 is the same as the one of Gn. Consequently, we can
suppose without loss of generality that ϑn and ϑn+1 satisfy ψn,L ◦ ϑn+1(i) =
ϑn(i) for all letters i in Cn+1 so that γ′n is the identity morphism. As a
consequence, to build the S-adic representation of a subshift, we only have
to consider the subsequence (γ′in)n∈N of (γ′n)n∈N where (in)n∈N is the growing
sequence of integers such that for all n, either Gn does not contain any
bispecial vertex, or n = ik for some integer k. We therefore have γ′in =
γ′in · · · γ′in+1−1.

Definition 4.1.6. Let (γ′n)n∈N be the sequence of morphisms as defined in
Definition 4.1.4 and let (in)n∈N be the sequence of integer as defined in Re-
mark 4.1.5. For all n we let Cn denote the alphabet Cin and γn denote the
morphism γ′inγ

′
in+1 · · · γ′in+1−1. For all n, the morphism γn is therefore defined

from C∗
n+1 to C∗

n.

Remark 4.1.7. It is easily seen that, as for left n-circuits, we have C0 = A so
we can suppose that ϑ0 is such that for all c ∈ C0,

λR ◦ ϑ0(c) = c.

Lemma 4.1.8. Let (X, T ) be a minimal and aperiodic subshift over an al-
phabet A. Then the sequence of morphisms (γn)n∈N of Definition 4.1.6 is a
directive word of X.

Lemma 4.1.9. Let (X, T ) be a minimal and aperiodic subshift over an al-
phabet A and let (γn)n∈N be the directive word of Definition 4.1.6. There is
a contraction (Γn)n∈N of (γn)n∈N such that all morphisms Γn are right proper
and strongly primitive.
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Like for Theorem 3.0.1, we need to introduce the following trick. If σ :
A∗ → B∗ is a right proper morphism such that σ(A) ⊂ B∗b for a letter
b ∈ B, we let σ(L) : A∗ → B∗ denote the left proper morphism such that for
all a ∈ A, σ(L)(a) = bu whenever σ(a) = ub. We call σ(L) the left conjugate
of σ.

Lemma 4.1.10. Let σ : A∗ → B∗ be a right proper morphism such that
σ(A) ⊂ B∗b for a letter b ∈ B. Let also w be a sequence in AZ. Then we
have

σ(w) = T
(
σ(L)(w)

)
.

Proposition 4.1.11. Let (X, T ) be a minimal and aperiodic subshift over
an alphabet A and let (Γn)n∈N be the directive word of Lemma 4.1.9. The
sequence of morphism (̺n)n∈N is a primitive and proper directive word of X
where for all n,

̺n = Γ2nΓ
(L)
2n+1.

4.2 10 shapes of Rauzy graphs

In this section we describe the possible shapes of Rauzy graphs for the con-
sidered class of complexity. To that aim we define the following notion of
reduced Rauzy graph.

Definition 4.2.1. Let Gn be a Rauzy graph, the corresponding reduced
Rauzy graph is the directed graph gn such that

- the vertices are the vertices of Gn that are either special such that at
least one value in {δ+v, δ−v} is null and

- there is an edge from u to v if there is a path p in Gn from u to v such
that all interior vertices of p are not special.

The (left, right and full) labels of an edge in gn are the (left, right and
full) labels of the corresponding path in Gn. Of course, for all subshifts X,
gn(X) denotes the reduced Rauzy graph corresponding to Gn(X).

To avoid any confusion, edges of reduced Rauzy graphs are represented
by double lines. Figure 4.1 represents the reduced Rauzy graph g2(f) with
full labels on the edges where f is the Fibonacci sequence (Example 1.3.1).
The graph G2(f) is represented at Figure 1.1(c).

From Equation (1.1) (on page 28) the hypothesis on the complexity im-
plies that for all integers n, there are either one right special factor u of
length n with δ+(u) ∈ {2, 3} or two right special factors v1 and v2 with
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ab ba

baab

bab

aba

Figure 4.1: g2(f) with full labels on the edges.

δ+(v1) = δ+(v2) = 2. From Equation (1.2) we can make a similar observa-
tion for the left special factors. Hence for all integers n, we have the following
possibilities:

1. there is one right special factor r and one left special factor l of length
n with δ+(r) = δ−(l) ∈ {2, 3} (Figure 4.2);

2. there is one right special factor r and two left special factors l1 and l2
of length n with δ+(r) = 3 and δ−(l1) = δ−(l2) = 2 (Figure 4.3(a));

3. there are two right special factors r1 and r2 and one left special factor
l of length n with δ+(r1) = δ+(r2) = 2 and δ−(l) = 3 (Figure 4.3(b));

4. there are two right special factors r1 and r2 and two left special factors
l1 and l2 of length n with δ+(r1) = δ+(r2) = δ−(l1) = δ−(l2) = 2
(Figure 4.4).

From these possibilities we can deduce that for all n, gn(X) only has eight
possible shapes: those represented in Figures 4.2 to 4.4. Reduced Rauzy
graphs in Figure 4.2 are well-known: they correspond to reduced Rauzy
graphs of Sturmian sequences (Figure 4.2(a)) or of Arnoux-Rauzy sequences
(Figure 4.2(b)). Reduced Rauzy graphs in Figure 4.4 have also been studied
by Rote in [Rot94].

Observe that in the above figures, the edges represented by dots may have
length 0. In this case, the two vertices they link are merged to one vertex.

From Remark 4.1.5 we only have to consider Rauzy graphs containing at
least one bispecial factor. To this aim, we have to merge the vertices that
are linked by dots in Figures 4.2 to 4.4. Observe that both Figures 4.4(a)
and 4.4(b) give rise to two different graphs: one with one bispecial vertex
and one right special vertex and one with two bispecial vertices. This gives
rise to 10 different type of graphs. They are represented in Figure 4.5.

Remark 4.2.2. In the sequel, we sometimes talk about the type of a Rauzy
graph Gn without any bispecial vertex. In that case, the type of that graph
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(a) (b)

Figure 4.2: Reduced Rauzy graphs with one left special factor and one right
special factor.

(a) (b)

Figure 4.3: Reduced Rauzy graphs with different numbers of left and right
special factors.

(a) (b)

(c) (d)

Figure 4.4: Reduced Rauzy graphs with two left and two right special factors.
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B

(a) Type 1

B

(b) Type 2

B

(c) Type 3

R B

(d) Type 4

B R

(e) Type 5

B1 B2

(f) Type 6

R B

(g) Type 7

B1 B2

(h) Type 8

R B

(i) Type 9

R B

(j) Type 10

Figure 4.5: Reduced Rauzy graphs with at least one bispecial vertex.
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is simply the type of Gn where in is the smallest integer greater than n such
that Gn contains a bispecial vertex. Also it is obvious that if R is a right
special vertex in a Rauzy graph, the circuits starting from it have the same
full labels of those starting from the smallest bispecial vertex (in a Rauzy
graph of larger order) containing R as a suffix.

Now that we have defined all types of graphs, we can check which evo-
lutions are available, i.e., which type of graphs can evolve to which type of
graphs. It is clear that a given Rauzy graph cannot evolve to any type of
Rauzy graphs. For example, if Gn is a graph of type 4, both right special
vertices can be extended by only two letters. Since for any word u and for
any suffix v of u, we have δ+(v) ≥ δ+(u), the graph Gn will never evolve to
a graph of type 2 or 3. Let us explain with an example how we can compute
the possible evolutions.

An example

Consider a graph of type 1 as represented in Figure 4.6 and let us give all
possible evolutions from it. The letters a and b (resp. α and β) represent the
right (resp. left) extending letters of B.

B
aα

bβ

Figure 4.6: Reduced Rauzy graph of type 1 with some additional labels.

By definition of the Rauzy graph, the words αB, βB, Ba and Bb are
vertices of Gn+1. Since the subshifts we are considering satisfy p(n + 1) −
p(n) ≥ 1 for all n, at least one of the vertices αB and βB is right special
and at least one of the vertices Ba and Bb is left special. Moreover, by
definition of the reduced Rauzy graphs, the two loops of gn become edges
respectively from Ba to αB and from Bb to βB and the last thing we have
to do is to decide which edges are starting from αB and βB and which
edges are arriving to Ba and Bb. Except if a loop has length 1, there is
obviously no other edge but the loops starting from Ba and Bb or arriving to
αB and βB. For instance, we cannot have an edge from βB top αB (when
the loops are longer than one). By minimality, we know that we have only
three possibilities (2 of them being symmetric). The possible evolutions are
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represented at Figure 4.7. This shows that a graph of type 1 can evolve only
to a graph of type 1, 7 or 8.

αB

βB

Ba

Bb

(a) B is ordinary bispe-
cial

αB

βB

Ba

Bb

(b) B is ordinary bispe-
cial

αB

βB

Ba

Bb

(c) B is strong bispecial

Figure 4.7: Possible evolutions of the graph represented in Figure 4.6.

Graph of graphs

Making an analogous reasoning starting from any type of Rauzy graph, we
can compute which evolutions are available. Then, we can define the graph
of graphs as the directed graph with 10 vertices (one for each type of Rauzy
graph) such that there is an edge from i to j if a Rauzy graph of type i can
evolve to a Rauzy graph of type j. This graph is represented in Figure 4.8
and all possible evolutions are given in Appendix A.

4.3 A critical result

Now that we know all possible Rauzy graphs we have to deal with, we can de-
fine the bijections ϑn of Definition 4.1.4. As already mentioned in Chapter 3,
the alphabets Cn might be unbounded in the general case. In this section
we prove that when the first difference of complexity is bounded by 2, they
always contain 2 or 3 letters. This result seems to be inherent to that class of
complexity. Actually, Example 4.3.5 at the end of the section shows that it
cannot be extended to the general case of sub-linear complexity. It would be
interesting to have a similar example with the first difference of complexity
bounded by 3.

We need two technical lemmas to simplify the proof that Card(Cn) ∈
{2, 3} for all n.
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4 2 3

10 9

5 6

7 1 8

Figure 4.8: Graph of graphs.
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Lemma 4.3.1. Let A be an alphabet. If (X, T ) is a minimal subshift over A
satisfying p(n + 1)− p(n) ≤ 2 for all n and if B is a strong bispecial factor
of X, then any right special factor of length ℓ > |B| admits B as a suffix.

Proof. Indeed, B being supposed to be strong bispecial, we have m(B) > 0.
Then, Equation (1.3) on page 29 shows that this is equivalent to

∑

aB∈L(X)

(δ+(aB)− 1) > δ+(B)− 1

where the second inequality is true only if there are at least two letters a
and b in A such that aB and bB are right special (since δ+(aB) ≤ δ+(B)).
As there can exist at most 2 right special factors of each length (because
p(n+ 1)− p(n) ≤ 2) and as any suffix of a right special factor is still a right
special factor, the result holds.

The following result is a direct consequence of Lemma 4.3.1.

Corollary 4.3.2. Let (X, T ) be a minimal subshift satisfying 1 ≤ p(n+1)−
p(n) ≤ 2 for all n and let (vn)n∈N be a sequence of right special factors of
X fulfilling conditions of Lemma 4.1.3. For any strong bispecial factor B of
length n of X, we have B = vn. In particular, if there are infinitely many
strong bispecial factors in L(X), there is a unique sequence (vn)n∈N fulfilling
conditions of Lemma 4.1.3.

Lemma 4.3.3. Let Gn be a Rauzy graph. If there is a right special vertex R
in Gn with δ+(R) = 2, an n-circuit q starting from R, two paths p and s in
Gn and two integers k1 and k2, k1 < k2 − 1, such that

1. i(p) = o(s) = R;

2. p is not a suffix of q;

3. q is not a suffix of p;

4. the first edge of s is not the first edge of q;

5. both paths pqk1s and pqk2s are allowed;

then there is a strong bispecial factor B that admits R as a suffix.

Proof. Since i(p) = o(q) = R but p and q are not suffix of each other, there
is a left special vertex L in Gn and two edges e1 in p and e2 in q such that p
and q agree on a path q′ from L to R and i(e1) = i(e2) = L. Let α and β be
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the respective left labels of e1 and e2. Let also a and b respectively denote
the right labels of the first edge of q and of s. By hypothesis we have a 6= b.

Now let us prove that the word λ(q′qk1) is strong bispecial. As the paths
pqk1s and pqk2s are allowed, the four words αλ(q′qk1)a, αλ(q′qk1)b, βλ(q′qk1)a
and βλ(q′qk1)b belong to L(X). Consequently we have

δ+(αλ(q′qk1)) + δ+(βλ(q′qk1)) = 4.

Moreover, as the word λ(q′qk1) admits R as a suffix, we have δ+(λ(q′qk1)) ≤
δ+(R) = 2 and this implies that m(λ(q′qk1)) > 0 (from Equation (1.3) on
page 29).

Proposition 4.3.4. Let (X, T ) be a minimal subshift satisfying 1 ≤ p(n +
1)− p(n) ≤ 2 for all n and let (vn)n≥N be a sequence of right special factors
fulfilling the conditions of Lemma 4.1.3. Then for all right special factors vn,
there are at most 3 allowed n-circuits starting from vn.

Proof. Suppose that there exist 4 allowed n-circuits starting from the vertex
vn in the graph Gn(X) and let us have a look at all possible reduced Rauzy
graphs. We see that this is possible only if there exist two right special
factors of length n. More precisely, this is only possible if vn corresponds
to the leftmost right special vertex in Figures 4.3(b), 4.4(c) and 4.4(d) or
to any right special vertex in Figures 4.4(a) and 4.4(b) (as these two graphs
present a kind of "symmetry"). We will show that for each of these graphs,
the existence of 4 n-circuits starting from the described vertices implies that
the other right special factor R of length n is a suffix of a strong bispecial
factor B of length m ≥ n in L(X). Then, due to Corollary 4.3.2, vm = B so
vn is not a suffix of vm which contradicts the hypothesis.

The result clearly holds for graphs as represented in Figure 4.4(a) and
it is a direct consequence of Lemma 4.3.3 for graphs as represented at Fig-
ure 4.4(b) (since the existence of 4 n-circuits implies that 3 of them goes
through the loop respectively k1, k2 and k3 times, k1 < k2 < k3).

For graphs as represented in Figure 4.4(c), we have to consider several
cases. To be clearer, Figure 4.9 represents the same graph with some labels.
The letters α and β are the left extending letters of L1 in L(X) and the letters
a and b are the right extending letters of R2 in L(X). If there are three n-
circuits starting from R1, going through a same simple path from R1 to L1

and passing through the loop p = L2 → R2 → L2 respectively k1, k2, and k3
times, k1 < k2 < k3, then we can conclude using Lemma 4.3.3. Otherwise, for
both simple paths from R1 to L1, there are two n-circuits passing through it.
Let kα,1 and kα,2, kα,1 < kα,2 (resp. kβ,1 and kβ,2, kβ,1 < kβ,2) be the number
of times that the two circuits passing through the edge with left label α (resp.
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β) can pass through the loop p. If kα,1 < kα,2 − 1 or if kβ,1 < kβ,2 − 1 or if
kα,1 6= kβ,1, we conclude using Lemma 4.3.3. Otherwise, we have kα,1 = kβ,1
and kα,2 = kβ,2 = kα,1 + 1 and we can easily check that the full label of the
path q = L1 (→ L2 → R2)

kα,1 is a strong bispecial factor.

R1 L1 L2 R2

α

β
a

b

Figure 4.9: Graph as in Figure 4.4(c) with some labels.

The cases of graphs as represented at Figures 4.3(b) and 4.4(d) can be
treated in a similar way.

The next example shows that Proposition 4.3.4 cannot be extended to
the general case. Indeed, it provides a uniformly recurrent sequence (hence
a minimal subshift) with sub-linear complexity and such that the number of
return words (hence of n-circuits) to any factor of length n increases with n.

Example 4.3.5. For all n let us define the morphism πn over {0, 1} by

πn :







0 7→ 01021041 · · ·02n = 0
(
∏n

i=0 1 02
i
)

1 7→ 10120140 · · ·12n = 1
(
∏n

i=0 0 12
i
)

and consider the sequence

wpi = lim
n→+∞

π1π2 · · ·πn(0ω).

Proposition 4.3.6. The sequence wπ defined above is uniformly recurrent,
has a sub-linear complexity and for all integers k, there is a length ℓk such
that all factors of wπ of length at least ℓk have at least k return words in wπ.

Proof. The uniform recurrence is a direct consequence of Proposition 2.1.21.
With an analogous reasoning as in Proposition 2.3.14, we can also show that
wπ has a sub-linear complexity.

Let us prove that all sufficiently long factors of wπ have many return
words. For all k ≥ 1, we let wk denote the sequence

wk = lim
n→∞

πkπk+1 · · ·πn(0ω).
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We obviously have w1 = wπ and for all k ≥ 1, wπ = π1 · · ·πk(wk+1). We
also have

|π1π2 · · ·πk(0)| = |π1π2 · · ·πk(1)|
for all k so we let lk denote this length.

Let n be a positive integer (suppose it is large). The sequence (lk)k≥1 is
increasing so there is a unique positive integer k such that lk−1 ≤ n < lk.
Consequently, all factors of length n of wπ belong to Fact (π1 · · ·πk ({0, 1}2)).
From the shape of πk, for all u ∈ Ln(wπ) there is a unique word v ∈
Fact (πk ({0, 1}2)) such that u ∈ Fact (π1 · · ·πk−1(v)) and any word v′ such
that u ∈ Fact (π1 · · ·πk−1(v

′)) contains v as a factor. By unicity of v, the
number of return words to u in wπ is equal to the number of return words to
v in wk so we only have to show that v has many return words. Let us show
that the number of return words to v in wk is at least linear in k. This will
prove the result since k increases with n.

If both words 00 and 11 belong to Fact(v), there are two possibilities:

• either v = xy where x is a suffix of length at least 2 of πk(0) and y is a
prefix of length at least 4 of πk(1);

• or v = xy where x is a suffix of length at least 2 of πk(1) and y is a
prefix of length at least 4 of πk(0).

In both cases, the number of return words to v in wk is equal to the number
of return words to 01 or 10 (depending on the case) in wk+1. To conclude
this case, we have to check in the images of πk+1 that both 01 and 10 have
at least k + 2 return words in wk+1.

Now suppose that 00 belongs to Fact(v) but that 11 does not (the opposite
case can be proved similarly). This implies that v does not occur in πk(1) so
v has at least as much return words in wk as the number of distinct positive
powers of 1 in wk+1, i.e., k + 1.

Finally, suppose that 00 and 11 do not belong to Fact(v). Then v can
only belong to {0, 1, 01, 10, 010, 101} and we can see in the images of πk that
the number of return words in wk to each factor is at least k. This completes
the proof.

4.4 A procedure to assign letters to circuits

Now let us explicitly determine the bijections ϑk. From Remark 4.2.2 we
only have to define ϑin for all n. We would like to define them for each graph
represented at Figure 4.5 in such a way that two Rauzy graphs of same type
provide the same bijection ϑk. In that case, a given evolution (from Gin
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to Gin+1) would always provide the same morphism γn of Definition 4.1.6.
However, we will see that it is sometimes impossible to give enough details
about ϑk so that the morphisms γn are sometimes defined up to permutations
of the letters (see Section 4.5).

From Lemma 4.3.4 we know that Card(Cn) ∈ {2, 3} for all n (1 is not
enough since the number of in-circuits is at least δ+(vin) ≥ 2). From Defini-
tion 4.1.4 we then have Cn ∈ {{0, 1}, {0, 1, 2}} depending on n.

Observe that, in the description of the bijections ϑin below, we sometimes
express some restrictions on the number of times that one can pass through
a loop in the consider type of Rauzy graph. The reason for this is that if the
circuits do not satisfy those restrictions, the right special factor that is not
vin is a suffix of a strong bispecial factor (by Lemma 4.3.3) so this contradicts
Corollary 4.3.2.

1. Type 1: there exists only one right special vertex and the two possible
circuits are the two loops. One is ϑin(0) and the other is ϑin(1) and
we cannot be more precise (like we are for graphs of type 2 or 3 here
below).

2. Type 2 and 3: also here there exists only one right special vertex and
the three possible circuits are the three possible loops ϑin(0), ϑin(1)
and ϑin(2). However, as shown by Figure 4.8, the only graphs that
can evolve to a graph of type 2 (resp. of type 3) are the graphs of
type 2 (resp. of type 2 and 3). Moreover after such an evolution, the
right labels of the three loops start with the same letter as before the
evolution. Consequently we suppose that for all i ∈ {0, 1, 2}, i is prefix
of λR ◦ ϑin(i).

3. Type 4: first consider vin = R. There exist two segments from R to B.
Consequently, there exist at least two circuits ϑin(0) and ϑin(1), each of
them passing through one of the two segments and looping respectively
k and ℓ times, k + ℓ ≥ 1, in the loop B → B before coming back to
R. If there exists a third circuit, then we suppose it starts with the
same segment as the circuit ϑin(0) does, and then goes through the
loop exactly k− 1 times. In this case, we must have ℓ ≤ k. If the third
circuit does not exist, then we suppose that k ≥ ℓ so we have k ≥ ℓ ≥ 0
and k + ℓ ≥ 1.

Now consider vin = B. There exist exactly three circuits: the circuit
that does not pass through the vertex R is denoted by ϑin(0) and the
two others, ϑin(1) and ϑin(2), are going to the vertex R and then are
coming back to B with one of the two segments from R to B.
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4. Type 5 and 6: as a consequence of Remark 4.2.2, the circuits are the
same whatever the type of graphs is. Moreover, from the symmetry of
theses graphs, it is useless to make a distinction between the two right
special vertices. Suppose vin = R for a graph of type 5. There exist four
possible circuits (but Proposition 4.3.4 implies that only three among
them are allowed) and we only impose some restrictions to their labels:
the circuits ϑin(0) and ϑin(1) must pass through two different segments
from R to B and through two different segments from B to R. If the
third circuit ϑin(2) exists, then it pass through the same segment from
R to B as ϑin(0) does and through the same segment from B to R as
ϑin(1) does.

5. Type 7 and 8: like for graphs of type 5 or 6, the starting vertex
and the type of the graph does not change anything to the definition
of the circuits. Suppose vin = R for a graph of type 7. We consider
that ϑin(0) is the circuit that does not pass through the vertex B. The
circuit ϑin(1) goes to B, passes through the loop B → B k times, k ≥ 1,
and then comes back to R. The circuit ϑin(2), if it exists, is the same
as ϑin(1) but passes through the loop B → B k − 1 times instead of k
times.

6. Type 9: suppose vin = R. Like for graphs of type 4, we consider
the two circuits ϑin(0) and ϑin(1), each of them going through different
segments from R to B and looping respectively k and ℓ times in the loop
B → B, k+ ℓ ≥ 1, before coming back to R. However for these graphs,
k and ℓ must satisfy k − ℓ ≤ 1 otherwise the vertex B would become
strong bispecial (see Lemma 4.3.3). Moreover, if the third circuit ϑin(2)
exists, we suppose it starts like ϑin(0) does and passes through the loop
exactly k − 1 times. In this case, the circuit ϑin(1) cannot go through
the loop k+1 times otherwise B would again become strong bispecial.
Hence we always suppose k ≥ ℓ. Consequently, ℓ can only take the
values k − 1 and k even if the circuit ϑin(2) does not exist.

Now suppose vin = B. There exist exactly three circuits: the circuit
that does not pass through the vertex R is ϑin(0) and the two other
circuits, ϑin(1) and ϑin(2), are going to the vertex R and then are
coming back to B with one of the two segments from R to B.

7. Type 10: suppose vin = R. Let x denote the segment from R to B
that passes only through non-left-special vertices; y is the other segment
from R to B. We consider that ϑin(0) (resp. by ϑin(1)) is the circuit
that starts with y (resp. with x), passes k times (resp. ℓ times) through
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the loop B → B, k + ℓ ≥ 1, and then comes back to R. If the third
circuit ϑin(2) exists, then it starts with x or y and loops respectively
k−1 or ℓ−1 times before coming back to R. Moreover, if ϑin(2) starts
with x, then we must have k ≤ ℓ− 1 and if ϑin(2) starts with y, then
we must have ℓ ≤ k (because of Lemma 4.3.3).

Now suppose vin = B. There are exactly three circuits. The loop
B → B is ϑin(0), the circuit passing through the segment y is ϑin(1)
and the circuit passing through x is ϑin(2).

4.5 Computation of the morphisms γn

Now that we know the bijections ϑin , we can compute the morphisms γn
as in Definition 4.1.4 (and Definition 4.1.6). In this section we only present
the method on the same example as in Section 4.2. The entire list (from
page 122 to 125) can be computed in the same way using graphs represented
in Appendix A so it is left to the reader. However, pay attention that when
the graph obtained after evolution contains two right special vertices, there
are often at least two morphisms coding the evolution: one for each choice of
vin+1.

Suppose Gn is a graph of type 1 as in Figure 4.6 (on page 110). By
definition of ϑin for this type of graphs, ϑin(0) and ϑin(1) are the two loops of
the graph. Suppose that ϑin maps 0 to the in-circuit starting with an a and 1
to the in-circuit starting with a b. For the two first evolutions (Figure 4.7(a)
and 4.7(b)), gin+1 is again of type 1. By definition of ϑin+1 for this type
of graphs, we therefore have two possibilities for each evolution. Indeed, in
Figure 4.7(a) we have either

(ψin,R ◦ ϑin+1(0), ψin,R ◦ ϑin+1(1)) = (ϑin(0), ϑin(10))

or
(ψin,R ◦ ϑin+1(0), ψin,R ◦ ϑin+1(1)) = (ϑin(10), ϑin(0))

and in Figure 4.7(b) we have either

(ψn,R ◦ ϑn+1(0), ψn,R ◦ ϑn+1(1)) = (ϑin(01), ϑin(1))

or
(ψn,R ◦ ϑn+1(0), ψn,R ◦ ϑn+1(1)) = (ϑin(1), ϑin(01)).

The four morphisms labelling the edge from 1 to 1 in the graph of graphs are
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therefore
{

0 7→ 0

1 7→ 10

{

0 7→ 10

1 7→ 0

(4.1)
{

0 7→ 01

1 7→ 1

{

0 7→ 1

1 7→ 01

For the third evolution (Figure 4.7(c)), the bijection ϑin+1 (hence ϑin+1)
depends on the choice of vin+1. If vin+1 = αB we have

(ψin,Rϑin+1(0), ψin,Rϑin+1(1), ψin,Rϑin+1(2)) = (ϑin(0), ϑin(1
k0), ϑin(1

k−10))

for an integer k ≥ 2 (remember that the circuit ϑin+1(2) might not exist).
Similarly, if vin+1 = βB we have

(ψin,Rϑin+1(0), ψin,Rϑin+1(1), ψin,Rϑin+1(2)) = (ϑin(1), ϑin(0
k1), ϑin(0

k−11))

for an integer k ≥ 2. Consequently, there are infinitely many morphisms
labelling the edges from 1 to 7 and from 1 to 8 (one for each k ≥ 2) but they
all have one of the following two shapes:







0 7→ 0

1 7→ 1k0

2 7→ 1k−10

and







0 7→ 1

1 7→ 0k1

2 7→ 0k−11

. (4.2)

Still remember that we possibly have to consider their restriction to the
alphabet {0, 1}.

In this example we see that an edge in the graph of graphs might be
labelled by several morphisms. This is due not only to a lack of precision in
the definition of the bijections ϑin but also to the number of possibilities that
exist for a given Rauzy graph to evolve to a given type of Rauzy graph. For
example, consider a graph of type 8 as in Figure 4.10.

This graph can evolve to a graph of type 7 or 8 (depending on the length
of some paths) in two different ways:

- either one of the bispecial factors B1 and B2 is a strong bispecial factor
and the other one is a weak bispecial factor;

- or both of them are ordinary bispecial factors and the two new right
special factors are αB1 and δB2.
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B1 B2

a
γ

d

β

c

δ

b

α

Figure 4.10: Rauzy graph of type 8 with some labels.

Indeed, the two other cases do not satisfy the hypothesis on the subshift: two
weak bispecial factors delete all right special factors so the subshift is either
not minimal (when the graph is not strongly connected anymore) or periodic
(when the graph keeps being strongly connected) and two strong bispecial
factors provide 4 right special factors so we do not have p(n+ 1)− p(n) ≤ 2
anymore.

The Rauzy graphs obtained in both available cases are represented at
Figure 4.11. They are of type 7 or 8 depending on the respective length
of the paths B1b → αB1 and B1a → βB1 for Figure 4.11(a) and on the
respective length of the paths B1b→ αB1 and B2c→ δB2 for Figure 4.11(b).
These two possibilities of evolution to a same type of graphs imply that the
edges 8 → 7 and 8 → 8 in G are labelled by several morphisms.

Now let us present all morphisms. To alleviate notations we let [u, v, w]
denote the morphism







0 7→ u

1 7→ v

2 7→ w

and when some letters are not completely determined (that is if some circuits
can play the same role), we use the letters x, y and z.

For example, the morphisms in Equation (4.2) will be denoted by one
morphism: [x, yk1x, yk1−1x] and it is understood that {x, y} = {0, 1}. Observe
that x and y depend on the type of graphs we come from. Indeed, coding
the evolution of a graph of type 1, we cannot have {x, y} = {0, 2} since there
are only two circuits in a graph of type 1. Moreover, if for example letters
0, x and y occur in an image, it is understood that 0, x, and y are pairwise
distinct.

Also, as explained in Section 4.4, the letter 2 might sometimes not exist in
Cn and its existence may change the conditions that exist on the morphism
(for example the number of times that one can pass through a loop as for
graphs of type 10). Consequently, when the existence of 2 in Cn+1 does not
change anything, we simply put the third component of γn into parentheses
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αB1

B1b

B1a

βB1

γB2

B2d

B2c

δB2

(a) B1 is strong and B2 is weak

αB1

B1b

B1a

βB1

γB2

B2d

B2c

δB2

(b) Both B1 and B2 are ordinary

Figure 4.11: Evolutions from 8 to 7 or 8.

and when it changes some conditions, we consider 2 morphisms: one with 3
components and one with 2. One last thing is that, for some graphs, we have
to determine which right special vertex is the starting vertex of the n-circuits.
To this aim, we simply replace in (vin , vin+1) what is needed to. When both
choices for vin+1 give rise to the same morphisms, we simply replace vin+1 by
the symbol ⋆, meaning that vin+1 can be one of the two right special vertices.

Morphisms starting from a graph of type 1

1 to (vin , vin+1) Morphisms Conditions
1 (B,B) [x, yx], [yx, x]
7 or 8 (B, ⋆) [x, ykx, (yk−1x)] k ≥ 2
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Morphisms starting from a graph of type 2

2 to (vin , vin+1) Morphisms Conditions
1 (B,B) [x, yzx], [yzx, x], [xy, zy]

[xy, zxy], [zxy, xy]
2 (B,B) [0, 10, 20], [01, 1, 21]

[02, 12, 2]
3 (B,B) [0, 10, 210], [0, 120, 20]

[01, 1, 201], [021, 1, 21]
[02, 102, 2], [012, 12, 2]

4 (B,R) [xykz, yℓz, (xyk−1z)] k ≥ ℓ ≥ 1,
[ykz, xyℓz, (yk−1z)] k + ℓ ≥ 3

(B,B) [x, yx, yzx], [x, yzx, yx]
7 or 8 (B, ⋆) [x, ykzx, (yk−1zx)] k ≥ 2

[x, zykx, (zyk−1x)]

[x, (yz)kx, ((yz)k−1x)]
[xy, zkxy, (zk−1xy)]
[xy, zky, (zk−1y)]

[x, (yz)kyx, ((yz)k−1yx)] k ≥ 1
10 (B,R) [(xy)kz, y(xy)ℓz] k ≥ 1, ℓ ≥ 0

k + ℓ ≥ 2
[(xy)kz, y(xy)ℓz, (xy)k−1z] k ≥ 2, k > ℓ ≥ 0
[(xy)kz, y(xy)ℓz, y(xy)ℓ−1z] ℓ ≥ k ≥ 1

(B,B) [xy, zxy, zy]

Morphisms starting from a graph of type 3

3 to (vin , vin+1) Morphisms Conditions
1 (B,B) [xy, zy], [xy, z], [x, yz]
3 (B,B) [0, 10, 20], [0, 10, 2], [0, 1, 20]

[01, 1, 21], [01, 1, 2], [0, 1, 21]
[02, 12, 2], [02, 1, 2], [0, 12, 2]

7 or 8 (B, ⋆) [x, yzkx, (yzk−1x)] k ≥ 1
[x, ykz, (yk−1z)] k ≥ 2

10 (B,B) [x, yx, yz]
(B,R) [xky, zxℓy] k ≥ 1, ℓ ≥ 0,

k + ℓ ≥ 2
[xky, zxℓy, (xk−1y)] k ≥ 2, k > ℓ ≥ 0
[xky, zxℓy, (zxℓ−1y)] ℓ ≥ k ≥ 1
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Morphisms starting from a graph of type 4

4 to (vin , vin+1) Morphisms Conditions
1 (R,B) [x, y] Card(Cn) = 2
4 (R,R) [0, 1, (2)]

(B,B) [0, 10, 20], [0, 20, 10]
(R,B) [1, 0, 2], [1, 2, 0]
(B,R) [0xky, xℓy, (0xk−1y)] k ≥ 1, k ≥ ℓ ≥ 0

[xky, 0xℓy, (xk−1y)]
7 or 8 (R, ⋆) [1, 0, (2)]

(B, ⋆) [0, xky0, (xk−1y0)] k ≥ 1
10 (R,B) [1, 0, 2]

(B,R) [0(x0)ky, (x0)ℓy] k, ℓ ≥ 0, k + ℓ ≥ 1
[0(x0)ky, (x0)ℓy, 0(x0)k−1y] k ≥ 1, k ≥ ℓ ≥ 0
[0(x0)ky, (x0)ℓy, (x0)ℓ−1y] ℓ > k ≥ 0

Morphisms starting from a graph of type 5

5 to (vin , vin+1) Morphisms Conditions
1 (R,B) [x, y] Card(Cn) = 2
10 (R,B) [1, 2, 0]

(B,R) [1, 01, 2]
[0k2, 1, (0k−12)] k ≥ 1
[2k0, 12ℓ0] k, ℓ ≥ 0, k + ℓ ≥ 1
[2k0, 12ℓ0, 2k−10] k ≥ ℓ ≥ 0, k ≥ 1
[2k0, 12ℓ0, 12ℓ−10] ℓ > k ≥ 0

Morphisms starting from a graph of type 6

6 to (vin , vin+1) Morphisms Conditions
1 (⋆, B) [x, yx], [yx, x] Card(Cn) = 2
7 or 8 (⋆, ⋆) [1, 0k2, (0k−12)] k ≥ 1

[x, ykx, (yk−1x)] k ≥ 2 and Card(Cn) = 2
10 (⋆, B) [1, 01, 2]

(⋆, R) [12k0, 2ℓ0] k, ℓ ≥ 0, k + ℓ ≥ 1
[12k0, 2ℓ0, 12k−10] k ≥ ℓ ≥ 0, k ≥ 1
[12k0, 2ℓ0, 2ℓ−10] ℓ > k ≥ 0
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Morphisms starting from a graph of type 7

7 to (vin , vin+1) Morphisms Conditions
1 (R,B) [x, y] Card(Cn) = 2
7 or 8 (R, ⋆) [0, 1, (2)]

(B, ⋆) [0, 10, (20)]
9 (R,B) [0, x, y]

(B,R) [01, 1, (02)], [1, 01, (2)]
[01, 2, (02)], [1, 02, (2)] Card(Cn) = 3

Morphisms starting from a graph of type 8

8 to (vin , vin+1) Morphisms Conditions
1 (⋆, B) [x, yx], [yx, x] Card(Cn) = 2
5 or 6 (⋆, ⋆) [0x, y, (0y)], [x, 0y, (y)] Card(Cn) = 3
7 or 8 (⋆, ⋆) [0, 10, (20)]

[x, ykx, (yk−1x)] k ≥ 2, Card(Cn) = 2
9 (⋆, B) [0, x0, y0]

(⋆, R) [01, 1, (02)], [1, 01, (2)] Card(Cn) = 3
[01, 2, (02)], [1, 02, (2)]

Morphisms starting from a graph of type 9

9 to (vin, vin+1) Morphisms Conditions
1 (R,B) [x, y] Card(Cn) = 2
5 or 6 (R, ⋆) [0, 1, (2)], [2, 1, 0]

(B, ⋆) [0x, y, (0y)], [x, 0y, (y)]
9 (R,R) [0, 1, (2)]

(B,B) [0, x0, y0]

Morphisms starting from a graph of type 10

10 to (vin , vin+1) Morphisms Conditions
1 (R,B) [x, y] Card(Cn) = 2
7 or 8 (R, ⋆) [1, 0, (2)]

(B, ⋆) [0, 2k1, (2k−11)] k ≥ 1
10 (R,R) [1, 0, (2)]

(B,B) [0, 20, 1]
(R,B) [0, 1, 2] Card(Cn) = 3
(B,R) [01k2, 1ℓ2] k, ℓ ≥ 0, k + ℓ ≥ 1

[01k2, 1ℓ2, 01k−12] k ≥ 1, k ≥ ℓ ≥ 0
[01k2, 1ℓ2, 1ℓ−12] ℓ > k ≥ 0
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4.6 Proof of Theorem 4.0.1

In the previous section we computed the morphisms γn of Definition 4.1.6
when the first difference of complexity is bounded by 2. As expected, this
provided an infinite set of morphisms but with a finite number of shapes.
In this section, we prove that all these morphisms are actually compositions
of morphisms in S where S = {G,D,M,E01, E12} (see the beginning of the
chapter). If (Γn)n∈N is the contraction of (γn)n∈N as in Lemma 4.1.9 (i.e., for
all n Γn is strongly primitive and right proper), then we also prove that for all
n, Γ(L)

n also belongs to S∗. In particular, this will prove Theorem 4.6.1 below.
This theorem will then be improved in Chapter 5 to become Theorem 5.8.1
(page 175).

Theorem 4.6.1. Let G be the graph represented in Figure 4.8 and let

S = {G,D,M,E01, E12}

as defined at the beginning of the chapter. If we add two edges in G – one
from 7 to 10 and one from 8 to 10 –, then we can label the edges of G by
morphisms in S∗ such that for all minimal and aperiodic subshift (X, T ) with
first difference of complexity bounded by 2, there is a path p in G labelled by
(σn)n∈N ∈ SN such that (σn)n∈N is a directive word of (X, T ) and there is a
contraction of it that contains only strongly primitive and proper morphisms.

We need three results to simplify its proof. The first one is a direct
consequence of the definitions.

Fact 4.6.2. If (σn)n∈N is an almost primitive directive word, then it is ev-
erywhere growing.

Lemma 4.6.3. Let (X, T ) be a minimal and aperiodic subshift with first
difference of complexity bounded by 2. Let (γn)n∈N be the directive word of
Definition 4.1.6. Suppose that both γn and γn+1 are coding an evolution from
a graph of type 3 to a graph of type 3. Then if γn is equal to







x 7→ x

y 7→ yx

z 7→ zx




resp.







x 7→ xy

y 7→ y

z 7→ z






for {x, y, z} = {0, 1, 2}, then γn+1 can only be one of the three following
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morphisms






x 7→ x

y 7→ yx

z 7→ zx







x 7→ xy

y 7→ y

z 7→ z







x 7→ xz

y 7→ y

z 7→ z



resp.







x 7→ xz

y 7→ yz

z 7→ z







x 7→ x

y 7→ y

z 7→ zx







x 7→ x

y 7→ y

z 7→ zy






Proof. We only have to look at the behaviour of the Rauzy graph when it
evolves. Figure 4.12 shows the two possibilities for a graph of type 3 to
evolve to a graph of type 3. When computing the morphisms coding these
evolutions, we see that what is important to know is which letter corresponds
to the top loop in Figure 4.12(a). Indeed, if ϑin(x) corresponds to the top
loop in Figure 4.12(a), the three available morphisms are (the second must
be counted twice since y can be replaced by z)







x 7→ x

y 7→ yx

z 7→ zx

and







x 7→ xy

y 7→ y

z 7→ z

.

The evolution represented in Figure 4.12(b) is coded by the first morphism
and the evolution represented in Figure 4.12(c) is coded by the second one
(where ϑin(y) is the leftmost loop in Figure 4.12(a)).

After the first evolution, the graph becomes again a graph as in Fig-
ure 4.12(a) where the circuit ϑin+1(x) still corresponds to the top loop. The
available morphisms are therefore the same as before the evolution.

After the second evolution, the graph becomes again a graph as in Fig-
ure 4.12(a) but the top loop is the circuit ϑin+1(z). The available morphisms
are therefore the same as before the evolution but with x and z exchanged.

Lemma 4.6.4. Let G be the graph of graphs represented at Figure 4.8. The
sets of products of morphisms coding the sequences of evolutions in

7 → (9 → 9)+ → 5 or 6 and 8 → (9 → 9)∗ → 5 or 6

are the same and equal to
{
[0x0j , y0j, (0y0j)], [x0j, 0y0j, (y0j)] | {x, y} = {1, 2}, j ≥ 0

}
.



128 Chapter 4. S-adicity of minimal subshifts with complexity 2n

(a) Rauzy graph
of type 3

(b) Evolution 1 (c) Evolution 2

Figure 4.12: Evolutions of a graph of type 3 to a graph of type 3.

Proof. This is simply a computation. When the graph is of type 7 and
(vin , vin+1) = (R,B), we have γn = [0, x, y]. Then the path can stay in the
vertex 9 for a while with the morphism [0, x0, y0] (which creates the power
of 0 at the end of the images). Finally, the graph evolves to a graph of type
5 or 6 with the morphism [0x, y, (0y)] or [x, 0y, (y)]. We only have to make
the product to see that this corresponds to the morphisms of the lemma.

When the graph is of type 7 and (vin, vin+1) = (B,R), we have

γn ∈ {[01, 1, (02)], [1, 01, (2)], [01, 2, (02)], [1, 02, (2)]}.

Then the path can stay in the vertex 9 for a while with the identity morphism
and finally, the graph evolve to a graph of type 5 or 6 with a morphism in

{[0, 1, (2)], [2, 1, 0]}.

However, the definition of ϑn for graphs of type 5 and 6 implies that when
the morphisms from 7 to 9 belongs to

{[01, 1, (02)], [1, 01, (2)]} (resp. {[01, 2, (02)], [1, 02, (2)]})

then the morphism from 9 to 5 or 6 can only be [2, 1, 0] (resp. [0, 1, (2)]).
Once again we only have to make the product to see that this corresponds
to the morphisms of the lemma.

When the graph is of type 8, the morphisms coding an evolution to a
graph of type 5 or 6 already correspond to the morphisms of the lemma.
If the graph first evolves to a graph of type 9, we only have to repeat the
computation made starting from a graph of type 7.

Now we can prove Theorem 4.6.1.

Proof of Theorem 4.6.1. First, Lemma 4.1.8 states that the sequence (γn)n∈N
of Definition 4.1.6 is a directive word of (X, T ). Then, Lemma 4.1.9 ensures
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that one can find a contraction of that directive word such that all morphisms
are strongly primitive2 and right proper. Finally, Lemma 4.1.10 and Propo-
sition 4.1.11 show how we can modify the obtained contraction in such a way
that all morphisms are proper.

Now, it is a consequence of the construction that if we label the edge of
G with the morphisms γn given in Section 4.5, the sequence of morphisms
(γn)n∈N labels an infinite path in G. When looking at all these morphisms (in
the previous section), we see that a large majority of them are already right
proper. Moreover, when considering the left conjugate of some morphisms
in (γn)n∈N, the almost primitivity still holds true. Also, if γn is a right
proper morphism, then for all non-negative integers i ≤ n, γiγi+1 · · · γ(L)n is a
left proper morphism. Consequently, if there is a sub-sequence (γmn

)n∈N of
(γn)n∈N that contains only right proper morphisms, we only have to consider
the sequence of morphisms (βn)n∈N such that for all n,

βn =

{

γn if ∀k ∈ N, n 6= m2k

γ
(L)
n otherwise

.

Then, (βn)n∈N is almost primitive and all products of morphisms

βm2nβm2n+1 · · ·βm2n+1 · · ·βm2(n+1)−1

are proper. Observe that γ0 is always a right proper morphism. Indeed, if
p(1) − p(0) = 2 (resp. 3) then G0 is of type 1 (resp. 2) and all morphisms
starting from a graph of type 1 or 2 are right proper.

To complete the proof, there are two steps left:

1. show that all morphisms γn belong to S∗ and that their left conjugate
(when they are right proper) also belong to S∗;

2. study what happens when there are only finitely many right proper
morphisms in (γn)n∈N.

The first point will be done after the end of the proof (from page 133
to 136). For the second point, let us decompose the problem. The graph
G has four strongly connected components that are C1 = {2}, C2 = {3},
C3 = {4} and C4 = {1, 5, 6, 7, 8, 9, 10}. We can study them separately, i.e.,
for all i ∈ {1, 2, 3, 4}, we study paths that ultimately stay in Ci and such that
the label (γn)n∈N contains only finitely many right proper morphisms. Then,
in the final contraction (Γn)n∈N (to get only strongly primitive and proper
morphisms), we only have to put all morphisms γ0 · · · γN in Γ0 where N is

2This comes from the almost primitivity of (γn)n∈N.
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the greatest integer such that γN does not code an evolution from a vertex
in Ci.

All morphisms labelling the unique edge of Component C1 are right proper
so there is nothing to do for that component.

The component C2 contains only the vertex 3. If (γn)n∈N contains only
finitely many right proper morphisms, there is an integer k such that

(γn)n≥k ∈ {[0, 10, 2], [0, 1, 20], [01, 1, 2], [0, 1, 21], [02, 1, 2], [0, 12, 2]}N.

But, Lemma 4.6.3 implies that if γn is






x 7→ xy

y 7→ y

z 7→ z

for n ≥ k and {x, y, z} = {0, 1, 2}, then γn+1 can only be one of the two
following morphisms







x 7→ x

y 7→ y

z 7→ zx







x 7→ x

y 7→ y

z 7→ zy

.

Consequently, the morphism γn ◦ γn+1 can be one of the two following mor-
phisms







x 7→ xy

y 7→ y

z 7→ zxy







x 7→ xy

y 7→ y

z 7→ zy

.

These morphisms are right proper and it is easily seen that they belong to
S∗ (and that so do their respective left conjugates).

The component C3 contains only the vertex 4. Among the morphisms
from 4 to 4, the only ones that are not right proper are those in Q =
{[0, 1, (2)], [1, 0, 2], [1, 2, 0]} and for all m ≥ 0, (γn)n≥m cannot belong to QN

otherwise this would contradict Lemma 4.6.2. Consequently, there are in-
finitely many right proper morphisms in (γn)n∈N.

The component C4 is {1, 5, 6, 7, 8, 9, 10}. First, as mentioned earlier, all
morphisms coding an evolution from a graph of type 1 are right proper.
Consequently, we have to consider paths in G that ultimately stay into
{5, 6, 7, 8, 9, 10}. We can see in G that if p does not go infinitely often through
a vertex in {7, 8}, then it ultimately stays either in the vertex 9 or in the
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vertex 10. Moreover, for all morphisms γn coding an evolution from a graph
of type 9 to a graph of type 9, we have γn(0) = 0. Thus, from Lemma 4.6.2,
either a path p ultimately stays in the vertex 10, or it goes infinitely of-
ten through a vertex in {7, 8}. In the first case, the morphism such that
(vin, vin+1) = (R,R) is [1, 0, (2)] and Lemma 4.6.2 implies that for all m ≥ 0,
we cannot have (γn)n≥m = [1, 0, (2)]ω otherwise all m-circuits would be con-
stant. Consequently, the sequence (vin)n∈N has to contain infinitely many
occurrences of the vertex B. It also has to contain infinitely many occur-
rences of the vertex R because the morphism such that (vin , vin+1) = (B,B)
is [0, 20, 1] and this would again contradict Lemma 4.6.2. Consequently, since
all morphisms such that (vin , vin+1) = (B,R) are right proper, there are in-
finitely many right proper morphisms in (γn)n∈N.

Now we still have to study the paths p that goes infinitely many times
through a vertex in {7, 8} but only finitely many times through 1. Suppose
that we are starting from 7 or 8 in G and let us show that we always have to
consider sequences of evolutions whose corresponding product of morphisms
is right proper. The idea is to try to avoid right proper morphisms γn and to
show that this always yields to build products of morphisms that are right
proper.

First, the only non-right proper morphism coding an evolution from {7, 8}
to {7, 8} is the identity morphisms from 7 to {7, 8} and for allK, Lemma 4.6.2
implies that (γ)n≥K 6= [0, 1, (2)]ω. To avoid right proper morphisms, the path
has therefore to leave {7, 8}. When looking at all possible evolutions, we see
that the only possibility is to eventually evolve to a graph of type 5 or 6 (by
possibly first evolving to a graph of type 9). Then, Lemma 4.6.4 ensures that
the product of morphisms γn · · · γm coding this sequence of evolutions is the
same whatever it started from 7 or from 8. That lemma also provides the
possible morphisms that are

[0x0j, y0j, (0y0j)] and [x0j, 0y0j, (y0j)].

Since we want to avoid right proper morphisms, we consider that j = 0 so
we obtain the morphisms

η1 = [0x, y, (0y)] and η2 = [x, 0y, (y)].

We see in these morphisms that the image of 1 and of 2 end with the same
letter. Then, we can see that for all non-right proper morphisms coding an
evolution from a graph of type 5 or 6 and avoiding the vertex 1 (except for the
morphism [1, 2, 0] from 5 to 10), all images ends with 1 or 2. Consequently,
the composition of η1 or η2 with one of these morphisms provides a right
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proper morphism. The list of all possibilities is given below. Their decom-
position into morphisms of S (and the decompositions of their respective left
conjugates) are given after the end of the proof (on page 136).

η1 ◦ [1, 01, 2] = [y, 0xy, 0y]

η1 ◦ [0k2, 1, (0k−12)] = [(0x)k0y, y, ((0x)k−10y)]

η1 ◦ [1, 0k2, (0k−12)] = [y, (0x)k0y, ((0x)k−10y)]

η2 ◦ [1, 01, 2] = [0y, x0y, y]

η2 ◦ [0k2, 1, (0k−12)] = [xky, 0y, (xk−1y)]

η2 ◦ [1, 0k2, (0k−12)] = [0y, xky, (xk−1y)]

Therefore, we only have to add an edge in G from {7, 8} to 10 labelled
by [y, 0xy, 0y], [(0x)k0y, y, ((0x)k−10y)], [0y, x0y, y] and [xky, 0y, (xk−1y)] and
also to add the morphisms [y, 0xy, 0y], [y, (0x)k0y, ((0x)k−10y)], [0y, x0y, y]
and [0y, xky, (xk−1y)] to the label of each edge from {7, 8} to {7, 8}.

The last remaining case is when the graph has evolved to a graph of type
5 with η1 or η2 and then to a graph of type 10 with [1, 2, 0]. In η1◦ [1, 2, 0] and
η2◦ [1, 2, 0], we see that the images of 0 and 1 end with the same letter. Then,
from a graph Gm of type 10 with vm = B, for all non-right proper morphisms
coding an evolution avoiding the vertex 1 in G, all images end with 0 or 1.
Therefore, the product provides again a right proper morphism. The list of
possibilities is given below and the decompositions into morphisms in S are
given after the end of the proof (on page 136).

η1 ◦ [1, 2, 0] ◦ [0, 2k1, (2k−11)] = [y, (0x)k0y, ((0x)k−10y)]

η1 ◦ [1, 2, 0] ◦ [0, 20, 1] = [y, (0x)y, 0y]

η2 ◦ [1, 2, 0] ◦ [0, 2k1, (2k−11)] = [0y, xky, (xk−1y)]

η2 ◦ [1, 2, 0] ◦ [0, 20, 1] = [0y, x0y, y]

Once again we would have to add the two morphisms (depending on a param-
eter k) [y, (0x)k0y, ((0x)k−10y)] and [0y, xky, (xk−1y)] to the label of each edge
from {7, 8} to {7, 8} and to add the morphisms [y, (0x)y, 0y] and [0y, x0y, y]
to the label of each edge from {7, 8} to 10. This is actually already done by
the previous cases.

To complete the proof of Theorem 4.6.1, let us show that all morphisms
γn belong to S∗. To avoid long decompositions, we define the morphism
E0,2 = [2, 1, 0] = E0,1E1,2E0,1. We also define the following morphisms. For
Gx,y (resp. Dx,y), read "add y to the left (resp. right) of x". For Mx,y, read
"map x to y".
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G0,1 = [10, 1, 2] = G D0,1 = [01, 1, 2] = D
G0,2 = [20, 1, 2] = E1,2GE1,2 D0,2 = [02, 1, 2] = E1,2DE1,2

G1,0 = [0, 01, 2] = E0,1GE0,1 D1,0 = [0, 10, 2] = E0,1DE0,1

G1,2 = [0, 21, 2] = E0,1G0,2E0,1 D1,2 = [0, 12, 2] = E0,1D0,2E0,1

G2,0 = [0, 1, 02] = E0,2G0,2E0,2 D2,0 = [0, 1, 20] = E0,2D0,2E0,2

G2,1 = [0, 1, 12] = E1,2G1,2E1,2 D2,1 = [0, 1, 21] = E1,2D1,2E1,2

M0,1 = [1, 1, 2] = E0,2ME0,2 M1,0 = [0, 0, 2] = E0,1M0,1

M0,2 = [2, 1, 2] = E0,1E1,2ME0,1 M2,0 = [0, 1, 0] = E0,2M0,2

M1,2 = [0, 2, 2] = E1,2M M2,1 = [0, 1, 1] =M

Now we can decompose all morphisms γn. Here, we only present the
decompositions of the morphisms depending of some exponents k or ℓ; the
reader is invited to check the conditions that exist on k and ℓ in Section 4.5
(from page 122 to 125). When a morphism γn is right proper, we also give
the decomposition of γ(L)n into morphisms of S.

Remark 4.6.5. To get simplest decompositions of γ(L)n , we sometimes con-
sider another definition of it. Indeed, when γn is right proper and such that
γn(Cn+1) ⊂ C∗

nxy for two letters x, y, we define γ(L)n as the morphism such
that γ(L)n (a) = xyu whenever γn(a) = uxy for u ∈ C∗

n and x, y ∈ Cn. We only
have to adapt Lemma 4.1.10 (page 106) to keep all results true.

Remark 4.6.6. In the decompositions given below, some morphisms can com-
mute and some other cannot. Consequently, the S-adic characterization that
we will get in the next chapter is defined up to some commutations of mor-
phisms in the directive word. Maybe it would be interesting to see if there is a
way to define a normalized S-adic representation as it is done for episturmian
sequences (see [GLR09]).

Decomposition of morphisms starting from a graph of type 1

1 to Morphisms Decomposition
7 or 8 γn = [x, ykx, yk−1x] M2,xG

k−1
2,y Dy,2[x, y, 2]

γ
(L)
n = [x, xyk, xyk−1] M2,xD

k−1
2,y Gy,2[x, y, 2]
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Decomposition of morphisms starting from a graph of type 2

2 to Morphisms Decomposition
4 γn = [xykz, yℓz, xyk−1z] Dk−ℓ

x,y G
ℓ−1
z,y Dy,zGz,xDx,y[x, y, z]

γ
(L)
n = [zxyk, zyℓ, zxyk−1] Dk−1

x,y Gx,zD
ℓ
z,yGy,x[y, z, x]

γn = [ykz, xyℓz, yk−1z] Dℓ
x,yDx,zG

k−1
z,y Dy,z[y, x, z]

γ
(L)
n = [zyk, zxyℓ, zyk−1] Dℓ

x,yGx,zD
k−1
z,y Gy,z[y, x, z]

7 or 8 γn = [x, ykzx, yk−1zx] Gk−1
z,y Dz,xDy,z[x, y, z]

γ
(L)
n = [x, xykz, xyk−1z] Gk−1

z,y Dy,zGy,xGz,x[x, y, z]

γn = [x, zykx, zyk−1x] Dk−1
z,y Gy,zDy,xDz,x[x, y, z]

γ
(L)
n = [x, xzyk, xzyk−1] Dk−1

z,y Gz,xGy,z[x, y, z]

γn = [x, (yz)kx, (yz)k−1x] Dy,zMz,xG
k−1
z,y Dy,z[x, y, z]

γ
(L)
n = [x, x(yz)k, x(yz)k−1] Dy,zMz,xD

k−1
z,y Gy,z[x, y, z]

γn = [x, (yz)kyx, (yz)k−1yx] Gz,yG
k−1
y,z Dy,xDz,y[x, z, y]

γ
(L)
n = [x, x(yz)ky, x(yz)k−1y] Gz,yG

k−1
y,z Dz,yGy,xGz,x[x, z, y]

γn = [xy, zkxy, zk−1xy] Dx,yMy,xG
k−1
y,z Dz,y[x, z, y]

γ
(L)
n = [xy, xyzk, xyzk−1] Dx,yMy,xD

k−1
y,z Gz,y[x, z, y]

γn = [xy, zky, zk−1y] Dx,yG
k−1
y,z Dz,y[x, z, y]

γ
(L)
n = [yx, yzk, yzk−1] Gx,yD

k−1
y,z Gz,y[x, z, y]

10 γn = [(xy)kz, y(xy)ℓz, (xy)k−1z] Dx,yEx,y[y
kz, xyℓz, yk−1z]

(see 2 to 4)
γ
(L)
n = [z(xy)k, zy(xy)ℓ, zy(xy)ℓ−1] Dx,yEx,y[zy

k, zxyℓ, zxyℓ−1]
(see 2 to 4 with k and ℓ
exchanged)

Decomposition of morphisms starting from a graph of type 3

3 to Morphisms Decompositions
7 or 8 γn = [x, zykx, zyk−1x] see 2 to 7 or 8

γ
(L)
n = [x, xzyk, xzyk−1]
γn = [x, ykz, yk−1z] Gk−1

z,y Dy,z[x, y, z]

10 γn = [xky, zxℓy, xk−1y] see 2 to 4
γ
(L)
n = [yxk, yzxℓ, yxk−1]
γn = [xky, zxℓy, zxℓ−1y] see 2 to 4 with k and ℓ exchanged
γ
(L)
n = [yxk, yzxℓ, yzxℓ−1]
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Decomposition of morphisms starting from a graph of type 4

4 to Morphisms Decompositions
4 γn = [0xky, xℓy, 0xk−1y] see 2 to 4

γ
(L)
n = [y0xk, yxℓ, y0xk−1]
γn = [xky, 0xℓy, xk−1y] see 2 to 4
γ
(L)
n = [yxk, y0xℓ, yxk−1]

7 or 8 γn = [0, xky0, xk−1y0] see 2 to 7 or 8
γ
(L)
n = [0, 0xky, 0xk−1y]

10 γn = [0(x0)ky, (x0)ℓy, 0(x0)k−1y] see 2 to 10
γ
(L)
n = [y0(x0)k, y(x0)ℓ, y0(x0)k−1]
γn = [0(x0)ky, (x0)ℓy, (x0)ℓ−1y] see 2 to 10
γ
(L)
n = [y0(x0)k, y(x0)ℓ, y(x0)ℓ−1]

Decomposition of morphisms starting from a graph of type 5

5 to Morphisms Decompositions
10 γn = [0k2, 1, 0k−12] see 3 to 7 or 8

γn = [2k0, 12ℓ0, 2k−10] see 2 to 4
γ
(L)
n = [02k, 012ℓ, 02k−1] see 2 to 4
γn = [2k0, 12ℓ0, 12ℓ−10] see 2 to 4 with k and ℓ exchanged
γ
(L)
n = [02k, 012ℓ, 012ℓ−1] see 2 to 4 with k and ℓ exchanged

Decomposition of morphisms starting from a graph of type 6

6 to Morphisms Decompositions
7 or 8 γn = [1, 0k2, 0k−12] see 3 to 7 or 8

γn = [x, ykx, yk−1x] see 1 to 7 or 8
γ
(L)
n = [x, xyk, xyk−1]

10 γn = [12k0, 2ℓ0, 12k−10] see 2 to 4
γ
(L)
n = [012k, 02ℓ, 012k−1]
γn = [12k0, 2ℓ0, 12ℓ−10] see 2 to 4
γ
(L)
n = [012k, 02ℓ, 012ℓ−1]

Decomposition of morphisms starting from a graph of type 8

8 to Morphisms Decompositions
7 or 8 γn = [x, ykx, yk−1x] see 1 to 7 or 8

γ
(L)
n = [x, xyk, xyk−1]
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Decomposition of morphisms starting from a graph of type 10

10 to Morphisms Decompositions
10 γn = [01k2, 1ℓ2, 01k−12] see 2 to 4

γ
(L)
n = [201k, 21ℓ, 201k−1]
γn = [01k2, 1ℓ2, 1ℓ−12] see 2 to 4
γ
(L)
n = [201k, 21ℓ, 21ℓ−1]

Decomposition of additional morphisms occurring in the proof of
Theorem 4.6.1

7 or 8 to Morphisms Decompositions
7 or 8 γn = [y, (0x)k0y, ((0x)k−10y)] see 2 to 7 or 8

γ
(L)
n = [y, y(0x)k0, (y(0x)k−10)]
γn = [0y, xky, (xk−1y)] see 2 to 7 or 8
γ
(L)
n = [y0, yxk, (yxk−1)]

10 γn = [(0x)k0y, y, ((0x)k−10y)] see just above
γ
(L)
n = [y(0x)k0, y, (y(0x)k−10)] (7 or 8 to 7 or 8)
γn = [xky, 0y, (xk−1y)] see just above
γ
(L)
n = [yxk, y0, (yxk−1)] (7 or 8 to 7 or 8)



Chapter 5

S-adic characterization of minimal
subshifts with complexity 2n

In the previous chapter we showed that the graph of graphs G (see Figure 4.8
on page 112) can be slightly modified in such a way that for any minimal
and aperiodic subshift with first difference of complexity bounded by 2, there
is a path in G that describes its directive word. As explained in Section 5.1
below, the converse is false. In this section we show that if we modify even
more the graph of graphs, then we can obtain an S-adic characterization of
minimal subshifts with the considered complexity. In other words, we manage
to determine the condition C of the S-adic conjecture for that particular case.
This is Theorem 5.8.1 on page 175. In all this section, S is still the set of 5
morphisms defined at the beginning of Chapter 4.

Remark 5.0.1. In this section we will have to give many details on Rauzy
graphs and on their evolutions. Let us recall all needed notations.

1. (in)n∈N is the growing sequence of integers such that for all integers
m ≥ 0, Gm(X) contains a bispecial vertex if and only if m = in for
some integer n ≥ 0;

2. (vn)n∈N is a sequence of right special vertices as in Lemma 4.1.3 (so
(vin)n∈N is the sub-sequence of (vn)n∈N that corresponds to graphs with
at least one bispecial vertex);

3. for all n ∈ N, γn codes the evolution from Gin to Gin+1 ;

4. (σn)n∈N is the directive word of Theorem 4.6.1; it is composed of the
decompositions into S∗ of morphisms γn or γ(L)n (or even sometimes of
(γn · · ·γn+k)

(L) for some integer k). Observe that we still sometimes

137
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consider the definition of γ(L) given in Remark 4.6.5. The decompo-
sition considered actually always corresponds to the one given from
Page 133 to Page 136.

5.1 Valid paths

To get the S-adic characterization of Theorem 5.8.1, we need to be able to
explicitly describe all paths in G that correspond to the sequence of evolu-
tions of a minimal and aperiodic subshift with first difference of complexity
bounded by two. Therefore, our aim is to modify the graph G in such a way
that these paths can be easily described.

The first step is to understand how we can describe the "good labelled
paths" in G, hence the good sequences of evolutions. To this aim, we intro-
duce the notions of valid directive word and of valid path.

Definition 5.1.1. A sequence of morphisms (σn)n∈N ∈ SN is said to be a
valid directive word if it is an S-adic representation of a minimal subshift
with first difference of complexity bounded by 2. We also say that a finite
sequence of morphisms σ0σ1 · · ·σk ∈ S∗ is valid if it is the prefix of a valid
directive word (σn)n∈N.

Since all valid sequences of morphisms in S describe paths in G, we also
say that a labelled (finite or infinite) path p in G is valid if we can modify
its label by contracting it and by replacing some right proper morphisms by
their left conjugates such that the decomposition of the modified label into
elements of S is valid.

There exist several reasons for which a given labelled path in G is not
valid: two conditions (due to Proposition 3.3.8) are that the directive word
(σn)n∈N has to be almost primitive and must admit a contraction that con-
tains only proper morphisms. Example 5.1.2 and Example 5.1.3 below show
two sequences of evolutions which are forbidden because their respective di-
rective words do not satisfy the almost primitivity.

Example 5.1.2. Sturmian subshifts have Rauzy graphs of type 1 for all n.
However if, for instance, we consider that for all n, the morphism γn coding
the evolution of Gin is [0, 10], the directive word is not almost primitive
and the sequence of Rauzy graphs (Gin)n∈N is such that for all n, in = n
and λR(ϑn(0)) = 0 and λR(ϑn(1)) = 10n (the reduced Rauzy graph gn is
represented in Figure 5.1). By Fact 1.5.7 (page 39), the language of the
obtained subshift X is

L(X) =
{
0j | j ∈ N

}
∪
{
0j10k | j, k ∈ N

}
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so it has complexity pX(n) = n + 1 for all n but it is not minimal, so not
S-adic. One can easily check that it actually corresponds to the subshift
generated by the sequence w = · · · 000.1000 · · · .

0n

0

10n

Figure 5.1: Reduced Rauzy graph gn of · · · 000.1000 · · · .

Example 5.1.3. Let us consider a path in G that ultimately stays in the
vertex 9. Figure 5.2 represents the only way for a Rauzy graph Gin of type 9
to evolve to a Rauzy graph of type 9. We can see that in this evolution, the
in-circuit ϑin(0) starting from the vertex B (i.e., the loop that does not pass
through the vertex R) "stays unchanged" in Gin+1, i.e., ψin,R(ϑin+1(0)) =
ϑin(0). Consequently, there is an integer n such that ϑin+1(0) is a constant
circuit which is forbidden for minimal subshift (Lemma 3.1.16). One can also
check on page 125 that for all morphisms γn coding such an evolution, we
have γn(0) = 0. As there is no other evolution from a Rauzy graph of type 9
to a Rauzy graph of type 9, the directive word cannot be almost primitive.

R B

(a) Before evolution

R

(b) After evolution

Figure 5.2: Evolution of a graph of type 9 to a graph of type 9.

The two previously given conditions (being almost primitivity and proper)
are not sufficient: there is also a "local condition" that has to be satisfied.
Indeed, Example 5.1.4 below shows that for some prefixes γ0 · · · γk labelling
a finite path p in G, not every edge starting from i(p) is allowed.

Example 5.1.4. Consider a graph Gin of type 1 that evolves to a graph as in
Figure 4.7(c) (Page 111), hence to a graph of type 7 or 8. We write R1 = αB
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and R2 = βB and suppose that vin+1 = R1. The morphism coding this
evolution is [x, ykx, yk−1x] for some integer k ≥ 2. If we suppose k ≥ 3, this
means that the circuits ϑin+1(1) and ϑin+1(2) respectively go through k − 1
and k − 2 times in the loop R2 → R2. By construction of the Rauzy graphs,
this means that the shortest bispecial factor B′ (with respect to the radix
order) admitting R2 as a suffix is an ordinary bispecial factor. Let m > n
be an integer such that B′ is a bispecial vertex in Gim . Since B′ is ordinary
bispecial, there is a right special factor R′ of length im +1 that admits B′ as
a suffix. Moreover, since vim is not B′ (as R1 has to be a suffix of vim), the
right special factor vim+1 is not R′. Consequently there are two right special
factors in Gim+1 so Gim+1 is not of type 1.

To be a valid labelled path in G the three previous examples show that
a given path p must necessary satisfy at least two conditions: a local one
about its prefixes (Example 5.1.4) and a global one about almost primitivity
(Example 5.1.2 and Example 5.1.4). The next result states that the converse
is true.

Proposition 5.1.5. A path p in G labelled by (σn)n∈N ∈ SN is valid if and
only if both following conditions are satisfied.

1. All prefixes of p are valid1;

2. (σn)n∈N is almost primitive and a contraction of it contains only proper
morphisms2.

Proof. The first condition is obviously necessary and the second condition
comes from Theorem 4.0.1 (since the S-adic representation of that theorem
is obtained by n-circuits, like in this chapter). For the sufficient part, if all
prefixes of (σn)n∈N are allowed, it implies that we can build a sequence of
Rauzy graphs (Gn)n∈N such that for all n, Gn is as represented in Figure 4.2
to Figure 4.4 and evolves to Gn+1. To these Rauzy graphs we can associate a
sequence of languages (L(Gn))n∈N defined as the set of finite words labelling
paths in Gn. By construction we obviously have L(Gn+1) ⊂ L(Gn) and the
language

L =
⋂

n∈N

L(Gn)

is factorial, prolongable (Definition 1.1.2 and Definition 1.1.1) and such that
1 ≤ pL(n + 1)− pL(n) ≤ 2 for all n (where pL is the complexity function of

1a local condition
2a global condition
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the language). It therefore defines a subshift (X, T ) whose language is L. It
remains therefore to prove that (X, T ) is minimal.

By hypothesis, (σn : A∗
n+1 → A∗

n)n∈N is almost primitive and admits a
contraction that contains only proper morphisms. This implies that for all
sequences of letters (an)n∈N ∈∏n∈NAn, the sequence

(
σ0σ1 · · ·σn(a∞n+1)

)

n∈N

converges to the same limit w. By construction of the morphisms, we have
L = L(w) so X is generated by w. By Proposition 2.1.21 (page 49), w is
uniformly recurrent so (X, T ) is minimal.

Our aim is now to describe exactly the set of all valid paths in G. The idea
is to modify the graph of graphs G in such a way that the "local condition"
to be a valid path (the first point of Proposition 5.1.5) is treated by the
graph. In other words, we would like to modify G in such a way that all
finite paths are valid. In that case, we will only have to take care at the
global condition, which is rather easy to check. But, we actually will see
that modifying the graph G as wanted will not be possible. There will still
remain some vertices v such that for some finite paths arriving in v, some
edge e starting from v make the path pe not valid. However, we will manage
to describe the local condition for these vertices so this will still provide an
S-adic characterization.

As in the proof of Theorem 4.6.1, we will split the proof of our character-
ization, Theorem 5.8.1 into several parts. The graph of graphs G contains 4
strongly connected components:

C1 = {2}, C2 = {3}, C3 = {4}, C4 = {1, 5, 6, 7, 8, 9, 10}.

First, we will separately study the valid paths in each strongly connected
component Ci of G and modify them as explained above. We will end the
proof by linking them together.

Remark 5.1.6. As mentioned earlier, a path p in G always starts from the
vertex 1 or from the vertex 2 (depending on the size of the alphabet: 2 or 3).
When studying the validity of a path in the component C2, C3 or C4, we only
study the validity of its suffix that always stays in that component (even for
C4 since a path ultimately staying in the component C4 might start in the
vertex 2). The validity of the prefixes that correspond to edges that are not
in the final component will be treated at the end of the proof, while linking
the different components.
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5.2 Valid paths in C1

This component corresponds to the class of Arnoux-Rauzy subshifts and has
already been studied in [AR91]. The morphisms γn that code an evolution
in that component are

[0, 10, 20] = D1,0 ◦D2,0

[01, 1, 21] = D0,1 ◦D2,1

[02, 12, 2] = D0,2 ◦D1,2

and their respective left conjugates are

[0, 01, 02] = G1,0 ◦G2,0

[10, 1, 12] = G0,1 ◦G2,1

[20, 21, 2] = G0,2 ◦G1,2

.

In [AR91], the authors only consider the morphisms [0, 10, 20], [01, 1, 21]
and [02, 12, 2]. They proved (see Theorem 2.2.19 on Page 58) that a sequence
of such morphisms is valid if and only if every morphism occurs infinitely of-
ten in the sequence (otherwise the subshift obtained would not be minimal).
Adapting this result to our case (with the left conjugates), we have the fol-
lowing.

Proposition 5.2.1. Let s = (σn)n∈N be a sequence of morphisms in S. Then
s is a valid directive word corresponding to a subshift whose Rauzy graphs
are all of type 2 if and only if there is a sequence of morphisms (γn)n∈N in
{[0, 10, 20], [01, 1, 21], [02, 12, 2]} and a contraction (Γn)n∈N of (σn)n∈N such
that

1. the three morphisms [0, 10, 20], [01, 1, 21] and [02, 12, 2] occur infinitely
often in (γn)n∈N;

2. for all non-negative integers n, Γn is either γn or γ(L)n and there are
infinitely many right proper morphisms and infinitely many left proper
morphisms in (Γn)n∈N.

Proof. Indeed, the validity of all prefixes of p can easily be checked and can
also be found in [AR91]. Then, the first condition is necessary and sufficient
for (σn)n∈N to be almost primitive and the second condition is necessary and
sufficient to obtain a contraction that contains only proper morphisms.
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5.3 Valid paths in C2

This component contains only the vertex 3 of G and the morphisms that code
an evolution in this component are

[0, 10, 20] = D1,0 ◦D2,0 [01, 1, 21] = D2,1 ◦D0,1 [02, 12, 2] = D0,2 ◦D1,2

[0, 10, 2] = D1,0 [01, 1, 2] = D0,1 [02, 1, 2] = D0,2

[0, 1, 20] = D2,0 [0, 1, 21] = D2,1 [0, 12, 2] = D1,2

Proposition 5.3.1. Let s = (σn)n∈N be a sequence of morphisms in S. Then
there is an integer N ≥ 0 such that (σn)n≥N is a suffix of a valid directive
word corresponding to a minimal subshift whose Rauzy graphs are ultimately
of type 3 if and only if there is a non-negative integers N ′ ≤ N , a contraction
(Γn)n∈N of (σn)n∈N and a sequence of morphisms (γn)n≥N ′ such that

1. (γn)n≥N ′ labels an infinite path in the graph represented in Figure 5.3
with

(a) for all x ∈ {0, 1, 2}, the loop on Vx is labelled by morphisms in

Fx = {Dy,xDz,x, Dx,yDz,y | {x, y, z} = {0, 1, 2}} ;

(b) for all x, y ∈ {0, 1, 2}, x 6= y, the edge from Vx to Vy is labelled by
morphisms in

Fx→y = {Dx,z, Dx,yDz,x | z /∈ {x, y}} ;

2. for all integers n ≥ N ′, Γn is either γn or γ(L)n and there are infinitely
many right proper morphisms and infinitely many left proper morphisms
in (Γn)n≥N ′;

3. for all x ∈ {0, 1, 2}, there are infinitely many integers n ≥ N ′ such that
Dy,x is a factor of γn for some y ∈ {0, 1, 2}.

Proof. First let us define the integers N and N ′ of the result. Our aim is to
study the validity of the suffix of s that corresponds to evolutions of Rauzy
graphs of type 3. Consequently, if (γn)n∈N is the sequence of morphisms cod-
ing the evolutions of Rauzy graphs then we let N ′ denotes the smallest integer
such that γN ′ codes the evolution of a Rauzy graph of type 3. The integer N
is therefore the integer such that (Γn)n≥N ′ is a contraction of (σn)n≥N , where
(Γn)n≥N ′ is obtained from (γn)n∈N by contraction and by replacing some right
proper morphisms by their left conjugate.
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V0

V1

V2

F0

F1

F2

F0→1

F1→2

F2→0

F0→2

F2→1

F1→0

Figure 5.3: Graph corresponding to component C2 in G.

Now we have to characterize sequences of morphisms that satisfy condi-
tions 1 and 2 of Proposition 5.1.5 (only for the suffix (σn)n≥N).

Let us start with condition 1 (i.e., the local one). The morphisms that
code an evolution from a graph of type 3 to a graph of type 3 (and their
decomposition into S∗) are listed above. However, Lemma 4.6.3 shows that
they cannot be composed in every way. When computing the morphisms
coding the different evolutions (see Figure 4.12 on page 128), we see that what
is important is which letter corresponds to the top loop in Figure 4.12(a).
Consequently, we can "split" the vertex 3 in G into 3 vertices V0, V1 and V2,
each Vx corresponding to the fact that the circuit ϑin(x) only goes through
non-left special vertices (i.e., corresponds to the top loop in Figure 4.12(a))
and we put some edges between these vertices if the corresponding evolution
is available. Then we label the graph as follows: for all x, y ∈ {0, 1, 2} such
that x 6= y, we let Fx denote the set of morphisms labelling the loop on
Vx and we let Fx→y denote the set of morphisms labelling the edge from Vx
to Vy. Of course, Fx and Fx→y contain the morphism corresponding to the
evolution, i.e., Fx contains the morphism

Dy,xDz,x =







x 7→ x

y 7→ yx

z 7→ zx
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and Fx→y contains the morphism

Dx,z =







x 7→ xz

y 7→ y

z 7→ z

.

Defining Fx and Fx→y this way ensures that the local condition is satisfied.
Now let us consider the second condition of Proposition 5.1.5. We have

to describe all paths in Figure 5.3 whose label (σn)n≥N is almost primitive
and admits a contraction that contains only proper morphisms.

Let us start with the proper property. Up to now, there are only non-right
proper morphisms in Fx→y, x, y ∈ {0, 1, 2}, x 6= y and Lemma 4.6.3 does not
force a valid path in Figure 5.3 to be labelled by infinitely many right proper
morphisms (we can for instance consider a path that does not go through
any loop in 5.3). Consequently, for a valid path labelled by (σn)n≥N , even if
we are ensured (by Proposition 5.1.5) to get a contraction of (σn)n≥N which
contains only right proper morphisms, this contraction might not label a path
in Figure 5.3. Our aim is therefore to modify sets Fx and Fx→y in such a way
that any valid path labelled by (σn)n≥N admits a contraction with infinitely
many right proper morphisms that labels a path in Figure 5.3. Then it will be
enough to consider left conjugates of infinitely many right proper morphisms
(but leaving infinitely many right proper morphisms unchanged).

As all non-right proper morphisms belong to some set Fx→y, this can
easily be done as follows: for all x, y, z ∈ {0, 1, 2}, x 6= y, y 6= z, one can
check that the morphism Dx,zDy,x ∈ Fx→yFy→z is right proper and labels
a finite path from Vx to Vz. Consequently, for all x and all y, z such that
{x, y, z} = {0, 1, 2} we can add in Fx the morphism Dx,zDy,z and we add
in Fx→z the morphism Dx,zDy,x. Now, if a contraction (γ′n)n≥N ′′ of (σn)n≥N

labels a valid path in Figure 5.3, if γ′n and γ′n+1 are not right proper and if
x, y, z belong to {0, 1, 2} are such that y /∈ {x, z} and such that γ′nγ

′
n+1 labels

a finite subpath of length 2 starting in Vx, going through Vy and ending in Vz,
then there is contraction (γn)n≥N ′ of (γ′n)n≥N ′′ that labels a path in Figure 5.3
in which γ′nγ

′
n+1 is replaced by some right proper morphism γm labelling the

edge from Vx to Vz.
Now let us describe all labelled paths in Figure 5.3 with almost primitive

label. Morphisms in sets Fx and Fx→y, x, y ∈ {0, 1, 2}, are composed of mor-
phisms Du,v for some u, v ∈ {0, 1, 2}. Let us prove that the label (γn)n≥N of
a path in Figure 5.3 is almost primitive if and only if for all x ∈ {0, 1, 2},
there are infinitely many integers such that Dy,x is a factor of γn for some
y ∈ {0, 1, 2}, y 6= x. The condition is trivially necessary since if for all y,
Dy,x is not a factor of γn for n not smaller than some integer m ≥ N ′, then
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x does not belong to γm · · · γm + k(z) for all z 6= x and all integers k ≥ 0.
It is also sufficient. Indeed, from the way the morphisms can be composed
(governed by Figure 5.3), the condition implies that (γn)n≥N ′ is everywhere
growing: for all x, y, z such that {x, y, z} = {0, 1, 2}, one cannot make mor-
phisms in {Dy,x, Dz,x} and morphisms in {Dz,y, Dy,z} infinitely often occur as
factors of some γn without making Dx,y or Dx,z occurring infinitely often too.
Therefore, if (γn)n≥N ′ is not almost primitive, there are letters x and y such
that x does not occur in γr · · · γs(y) for some integers r and s, s > r. Conse-
quently, Dy,x cannot occur as a factor of γm for all m ≥ r. Since (γn)n≥N ′ is
everywhere growing, this implies that Dy,z infinitely often occurs as factor of
morphisms γn. Thus, if x does not occur in γr · · · γs(y), the morphism Dz,x

cannot occur as factor of morphisms γn. This contradicts the fact that either
Dy,x or Dz,x occurs infinitely often as factor of morphisms γn.

5.4 Preliminary lemmas for C3 and C4

In both types of graphs of component C1 and C2, there is only one right
special vertex. This makes the computation of valid paths easier to compute
than when there are two right special factors. Indeed, if R1 and R2 are two
bispecial factors in a Rauzy graph Gin, the circuits starting from R1 impose
some restrictions on the behaviour of R2, i.e., on the way it will make the
graph evolves when it will become bispecial (see Example 5.1.4 where the
explosion of the bispecial vertex B′ is governed by ϑin(1) and ϑin(2)). Such
a thing cannot happen for graphs of type 2 and 3, i.e., the local condition of
Proposition 5.1.5 can be easily expressed. In this section, we introduce some
notations and we give some lemmas that will be helpful to study valid paths
in components C3 and C4.

First, let us briefly explain what we will mean when talking about ex-
plosion of a bispecial factor. Roughly speaking, "explosion" describes the
behaviour of a bispecial vertex when the Rauzy graph evolves. These ver-
tices are of a particular interest since those are the only ones that can change
the shape of a graph (hence they are the only ones that determine the mor-
phisms γn since they depend on the shape of the graphs). See Section 1.5.2
for more details on the behaviours of vertices when Rauzy graphs evolve.

The next lemma gives a method to build a contraction (ηn)n∈N of (σn)n∈N
which is a little bit different from (γn)n∈N and that will help us to describe
the valid paths in C3 and C4.

Lemma 5.4.1. Let (X, T ) be a minimal subshift with first difference of com-
plexity satisfying 1 ≤ p(n+1)−p(n) ≤ 2 for all n. There is a non-decreasing
sequence (jn)n∈N of integers and a contraction (ηn)n∈N of (σn)n∈N such that
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or all n, ηn codes the explosion of a unique bispecial factor of length jn in
Gjn(X).

Proof. First it is obvious that if a Rauzy graph Gin contains two bispecial
vertices, making them explode at the same time or separately produces the
same graph Gin+1 (hence Gin+1). Consequently, since γn describes how a
graph evolves to the next one, we can decompose it into two morphisms γ(1)n

and γ
(2)
n such that γn = γ

(1)
n γ

(2)
n , each one describing the explosion of one of

the two bispecial vertices. Then it suffices to show that we can decompose
γ
(1)
n and γ

(2)
n into morphisms of S. This is actually obvious. Indeed, if there

are two bispecial vertices, the graph can only be of type 6 or of type 8. Then,
making only one bispecial vertex explode corresponds to considering that it
is actually respectively of type 5 or 7 and we know that these morphisms
belong to S∗. However, we have to make it carefully: if B1 and B2 are the
two bispecial vertices in Gin and if, for instance, B1 is strong, we have to make
B2 explode before B1 otherwise the explosion of B1 would yield a graph with
3 right special vertices and this does not correspond to any type of graphs
as considered in Figure 4.5. In other words, γ(1)n has to correspond to the
explosion of B2 and γ(2)n has to correspond to the explosion of B1.

To conclude the proof, it suffices to build the sequences (jn)n∈N and
(ηn)n∈N. From what precedes, the first one is simply the sequence (in)n∈N
but such that when Gin contains two bispecial factors, then in occurs twice
in (jn)n∈N. The second one is the sequence (γn)n∈N (still with some mor-
phisms γ(L)n instead of γn) but such that when Gin contains two bispecial
vertices, we split γn into γ(1)n and γ(2)n .

Example 5.4.2. Let us consider a path p in G that ultimately stays in the set
of vertices {7, 8}. When the Rauzy graph Gin is of type 7, there is a unique
bispecial factor so the morphism γn satisfies the conditions of the Lemma,
i.e., it corresponds to a morphism in (ηm)m∈N. On the other hand, when Gin

is of type 8, its two possible evolutions are represented at Figures 4.11(a)
and 4.11(b) on page 122. Suppose that the starting vertex vin corresponds to
the vertex B1 in Figure 4.10 (page 121) and suppose that Gin evolves as in
Figure 4.11(a) with vin+1 equals to αB1; the others cases are analogous. We
have γn = [0, 1k0, (1k−10)]. To decompose it as announced in Lemma 5.4.1,
it suffices to consider that Gin is of type 7 with B2 as bispecial vertex. We
make this bispecial vertex explode like it is supposed to do (i.e. like a weak
bispecial factor). This makes the graph evolving to a graph G′

in
of type 1

(whose bispecial vertex is B1) and we consider that the morphism coding
this evolution is ηm = [0, 1]. Now it suffices to make this new graph G′

in

evolve to a graph of type 7 or 8 with the morphism ηm+1 = [0, 1k0, (1k−10)].
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We then have γn = ηm ◦ ηm+1 and these new morphisms satisfy condition 2
in Lemma 5.4.1. They can easily be decomposed by morphisms in S since
ηm = id and ηm+1 = γn.

Definition 5.4.3. Let (jn)n∈N and (ηn)n∈N be as in Lemma 5.4.1. For all n
we let Bjn denotes the bispecial factor of length jn whose explosion is coded
by ηn.

The following result is a direct consequence of Definition 4.1.4.

Lemma 5.4.4. Let (jn)n∈N and (ηn)n∈N be as in Lemma 5.4.1. The morphism
ηn is a letter-to-letter morphism if and only if Bjn 6= vjn (where (vn)n∈N is
the sequence of starting vertices of the circuits).

Remark 5.4.5. Observe that, as illustrated by Example 5.1.4, when Bjn 6=
vjn, the evolution of Gjn is influenced by the last morphism ηk, k < n,
such that Bjk = vjk . Indeed, as we have seen in Section 4.4, the circuits
starting from vjk may depend on some parameters (the number of loops they
contain for instance) and there exist some restrictions to these parameters3.
Actually, considering a particular morphism ηk corresponds to determining
these parameters. Since some of these circuits go through the other right
special vertex in Gjk (if it exists), these parameters influence the behaviour
of this right special vertex.

On the other hand, when Bjn = vjn , there are no restrictions on the pos-
sibilities for ηn since we do not have any information on the circuits starting
from the right special vertex that is not vjn . Also, for graphs in components
C3 and C4 there are no restrictions on the labels of the circuits like there
are for Rauzy graphs of type4 2 or 3. Consequently, all possible morphisms
are allowed. However, some of these morphisms are only locally allowed, i.e.,
even if a morphism is allowed, some "infinite choices" containing it may be
forbidden. Indeed, Example 5.1.3 shows that a graph of type 9 can evolve to
a graph of type 9 (so there is an allowed evolution) but it cannot ultimately
keep being a graph of type 9 otherwise (γn)n∈N would not be everywhere
growing. To be clearer, the circuits starting in the right special vertex that
is not vjn also depend on parameters and, as for the circuits starting from
vjn, there are some restrictions on them. Those parameters are partially de-
termined by the morphism ηn. For instance let us consider the evolution of a
graph of type 9 as in Figure 5.2 (Page 139) such that vjn corresponds to the
vertex B in Figure 5.2(a). This evolution implies that all circuits starting
from the vertex R in Figure 5.2(a) go into the loop B → B at least once.

3For instance, when there are two parameters k and ℓ, one of them can sometimes not
be greater than the other one.

4For those graphs, the right label of ϑn(x) starts with x for all x ∈ {0, 1, 2}.
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5.5 Valid paths in C3

This component only contains the vertex 4 in G and this type of graphs
contains two right special vertices. Moreover, these two right special vertices
cannot be bispecial at the same time since there is only one left special factor
of each length. Consequently, we have ηn = γn for all n and, as explained in
Remark 5.4.5, we can locally choose any morphism we want when vjn = Bjn

and we have to be careful when vjn 6= Bjn . In other words, when vjn is the
vertex R in Figure 5.4, the choice of the morphism γn is restrained by the
latest morphism γm, m < n, such that vjm is the vertex B. From Section 4.5
this morphism γm is either

[0xky, xℓy, (0xk−1y)] or [xky, 0xℓy, (xk−1y)]

with {x, y} = {1, 2}, k ≥ 1 and k ≥ ℓ ≥ 0.

R B

Figure 5.4: Rauzy graph of type 4.

Lemma 5.5.1 below expresses the consequences of this morphism γm.

Lemma 5.5.1. Let n ∈ N and Gin be a Rauzy graph of type 4.
Suppose that vin = R and that the two in-circuits ϑin(0) and ϑin(1) pass
respectively through the loop k and ℓ times with k ≥ 1 and k ≥ ℓ ≥ 0.
If the circuit ϑin(2) exists:

i if ℓ = k, the Rauzy graph will evolve to a graph Gim, m > n of type 10
such that vim corresponds to the vertex B in Figure 4.5(j) (page 109)
and the evolution from Gin to Gim is coded by the morphism [1, 0, 2];

ii if ℓ = k − 1, the Rauzy graph will evolve to a graph Gim, m > n of
type 4 such that vim corresponds to the vertex B in Figure 5.4 just
above and the evolution from Gin to Gim is coded by a morphism in
{[1, 0, 2], [1, 2, 0]};

iii if ℓ < k − 1, the Rauzy graph will evolve to a graph Gim, m > n of
type 7 or 8 such that vim corresponds to one of the vertices R and B
in Figure 4.5(g) and to one of the vertices B1 and B2 in Figure 4.5(h).
The evolution from Gin to Gim is coded by the morphism [1, 0, 2] and
we refer to Lemma 5.6.4 with k := k − ℓ − 1 to know what will next
happen.
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If the circuit ϑin(2) does not exist:

i if ℓ = k or ℓ = k − 1, the graph will evolve to a graph Gim, m > n of
type 1 such that vim corresponds to the vertex B in Figure 4.5(a) and
the evolution from Gin to Gim is coded by in morphism in {[0, 1], [1, 0]};

ii if ℓ < k − 1, the graph will evolve to a graph Gim, m > n of type
7 or 8 such that vim corresponds to one of the vertices R and B in
Figure 4.5(g) and to one of the vertices B1 and B2 in Figure 4.5(h).
The evolution from Gin to Gim is coded by the morphism [1, 0] and we
refer to Lemma 5.6.4 with k := k − ℓ− 1 to know what happens next.

Proof. It suffices to see how the graph evolves. Indeed, when the vertex B
explodes, we have eight possibilities represented at Figures 5.5 and 5.6. The
main thing to notice is that if both circuits5 ϑin(0) and ϑin(1) can go through
the loop B → B respectively k and ℓ times with k and ℓ greater than 1
(observe that in this case, the circuit ϑin(2) goes into that loop k− 1 times),
the graph will evolve as in Figure 5.5(a) and the new circuits ϑin+1(0) ϑin+1(1)
will go into the loop respectively k − 1 and ℓ − 1 times (so k − 2 times for
ϑin+1(2)). The computation of the morphisms is left to the reader.

R′

(a) k, ℓ ≥ 2

R′

(b) k ≥ 2, ℓ = 0

R′

(c) k = ℓ = 1

R′

(d) k = 1, ℓ = 0

Figure 5.5: Evolutions of a graph of type 4 with 3 circuits starting from R.

Now we can determine which are the labels of the valid paths in the
component C3. Moreover, in G we can rename the vertex 4 by 4B, meaning
that we always have vin = B.

5The reader is invited to check the definition of ϑin for such graphs on page 117.
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R′

(a) k, ℓ ≥ 2

R′

(b) k ≥ 2, ℓ = 0

R′

(c) k = ℓ = 1

R′

(d) k = 1, ℓ = 0

Figure 5.6: Evolutions of a graph of type 4 with 2 circuits starting from R.

Proposition 5.5.2. Let s = (σn)n∈N be a sequence of morphisms in S. Then
there is an integer N ≥ 0 such that (σn)n≥N is a suffix of a valid directive
word corresponding to a minimal subshift whose Rauzy graphs are ultimately
of type 4 if and only if there is a non-negative integers N ′ ≤ N , a contraction
(Γn)n∈N of (σn)n∈N and a sequence of morphisms (γn)n≥N ′ such that

1. for all n ≥ N ′,

γn ∈ {[0, 10, 20], [0, 20, 10],
[xk−1y, 0xky, 0xk−1y], [xk−1y, 0xk−1y, 0xky],

[0xk−1y, xky, xk−1y], [0xk−1y, xk−1y, xky] | k ≥ 1
}

with {x, y} = {1, 2};

2. for all r ≥ N ′,

(γn)n≥r /∈ {[0, 10, 20], [0, 20, 10]}ω

and

(γn)n≥r /∈
{
[0xk−1y, xky, xk−1y], [0xk−1y, xk−1y, xky] | k ≥ 1

}ω

3. for all integers n ≥ N ′, Γn is either γn or γ(L)n and there are infinitely
many right proper morphisms and infinitely many left proper morphisms
in (Γn)n≥N ′;
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Proof. First let us define the integers N and N ′ of the result. Our aim is to
study the validity of the suffix of s that corresponds to evolutions of Rauzy
graphs of type 4. From Lemma 5.5.1 we can suppose that N ′ is the smallest
integer such that γ′N codes an evolution from a graph of type 4 such that the
starting vertex is the vertex B in Figure 5.4. Indeed, if viN′ is not B, there
is a smallest integer k < N ′ such that Gik is of type 4 and vik is the vertex
R in Figure 5.4. Thus, the morphism γk−1 codes an evolution from a graph
of type 2 to a graph of type 4 (check in Figure 4.8 on page 112) and then
Lemma 5.5.1 determines the sequence of morphisms γkγk+1 · · · until vin is B.

Then, the integer N is the integer such that (Γn)n≥N ′ is a contraction
of (σn)n≥N , where (Γn)n≥N ′ is obtained from (γn)n∈N by contraction and by
replacing some right proper morphisms by their left conjugate.

We have to characterize sequences of morphisms that satisfies conditions
1 and 2 of Proposition 5.1.5 (only for the suffix (σn)n≥N).

Let us start with condition 1. Given a graph Gin of type 4 with vin = B,
the morphism γn coding the evolution to a graph of type 4 and such that

- vin+1 = B are [0, 10, 20] and [0, 20, 10];

- vin+1 = R are [0xky, xℓy, 0xk−1y] and [xky, 0xℓy, xk−1y].

When vin+1 = R, Lemma 5.5.1 impose some conditions on k and ℓ to evolves
to a graph Gim of type 4 with vim = B. Indeed, the exponent k (resp. ℓ)
corresponds to the number of times the circuit ϑin+1(0) (resp. ϑin+1(0)) goes
into the loop B → B. Consequently, we must have ℓ = k − 1 and then the
evolution from Gin+1 to Gim is coded by a morphism in

{[1, 0, 2], [1, 2, 0]} .
By composing these morphisms with the previous ones, we obtain all mor-
phisms coding evolutions of graphs of type 4 to graph of type 4 such that
all vertices vin correspond to vertex B in Figure 5.4 so compositions of these
morphisms provides valid prefixes of (σn)n≥N .

Now let us consider condition 2. It is evident that the third condition
of the result is necessary and sufficient to obtain proper morphisms. Then,
(σn)n≥N is almost primitive if and only if so is (γn)n≥N ′ and this is equivalent
to impose that for all r ≥ N ,

(γn)n≥r /∈ {[0, 10, 20], [0, 20, 10]}ω

and

(γn)n≥r /∈
{
[0xk−1y, xky, xk−1y], [0xk−1y, xk−1y, xky] | k ≥ 1

}ω

with {x, y} = {1, 2}.
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5.6 Valid paths in C4

This component of G contains the vertices 1, 5, 6, 7, 8, 9 and 10. As for
component C3, we need some lemmas to determine the consequences of some
morphisms γn on the sequence (γk)k≥n+1. The difficulty in determining the
valid paths in this component is in the fact that we have to take care of the
length of some paths in the Rauzy graphs to know which morphism we can
choose. Indeed, the morphisms that code the evolutions to Rauzy graphs
of type 5 or 6 (and 7 or 8) are the same and the precise type depends on
the lengths of the path p1 and p2 in Figure 5.7(a) (and of the lengths of
the paths u1, u2, v1 and v2 in Figure 5.7(b). When the Rauzy graph Gin

is of type 6 or 8 (i.e., when |p1| = |p2| or when |u1| = |u2|), we know from
Lemma 5.4.1 that we can decompose the morphism γn into two morphisms,
each one corresponding to the explosion of one bispecial vertex. On the other
hand, if for example |u1| >> |u2| in a graph of type 7 and if we denote by
B1(1), B1(2), . . . (resp. B2(1), B2(2), . . . ) the bispecial vertices (ordered by
increasing length) in the Rauzy graphs or larger order that admit R1 (resp.
R2) as a suffix, we will see that many vertices B1(i) will explode before that
B2(1) explodes. Consequently we cannot choose any morphisms we want.

L1 R1 L2 R2
p1 p2

(a) Type 5 or 6

R1

L2

R2

L1

v1

v2

u2

u1

(b) Type 7 or 8

Figure 5.7: Rauzy graphs of type 5 or 6 and 7 or 8.

First, the following result will be helpful to characterize valid paths that
goes infinitely often through the vertex 1 in the graph of graphs.

Fact 5.6.1. We can suppose without loss of generality that the evolution of
a Rauzy graph of type 1 to a Rauzy graph of type 1 is coded by [0, 10] or by
[01, 1].

Proof. On page 122, we see that the morphisms coding such an evolution are
[0, 10] = D1,0, [10, 0] = D1,0E0,1, [01, 1] = D0,1 and [1, 01] = D0,1E0,1 and that
the morphisms coding an evolution from a graph of type 1 to a graph of type
7 or 8 are [0, 1k0, 1k−10] and [1, 0k1, 0k−11] = E0,1[0, 1

k0, 1k−10].
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By induction, it is easily seen that for all integers n ≥ 0, we have

E0,1 {D0,1, D1,0}nE0,1 = {D0,1, D1,0}n .
To conclude the proof of the result, we have to consider several possibilities.

1. If for all n, γn codes an evolution from a graph of type 1 to a graph of
type 1 and if (γn)n∈N contains infinitely many occurrences of D1,0E0,1

and/or of D0,1E0,1, then the result trivially holds.

2. If for all n, γn codes an evolution from a graph of type 1 to a graph of
type 1 and if (γn)n∈N contains a finite and even number of occurrences
of D1,0E0,1 and/or of D0,1E0,1, then the result trivially holds too.

3. If for all n, γn codes an evolution from a graph of type 1 to a graph of
type 1 and if (γn)n∈N contains a finite and odd number of occurrences of
D1,0E0,1 and/or of D0,1E0,1, then it suffices to insert in (γn)n∈N infinitely
many occurrences of the morphism id = E2

0,1 and the result holds.

4. Finally, if γr · · ·γs ∈ {D1,0, D1,0E0,1, D0,1, D0,1E0,1}∗ codes a finite se-
quence of evolutions from graphs of type 1 to graphs of type 1 and if
γs+1 ∈ {[0, 1k0, 1k−10], E0,1[0, 1

k0, 1k−10]} codes an evolution to a graph
of type 7 or 8, then γr · · · γsγs+1 can be replaced by γ′r · · · γ′sγ′s+1 with
γ′r · · · γ′s ∈ {D0,1, D1,0}∗ and γ′s+1 ∈ {[0, 1k0, 1k−10], E0,1[0, 1

k0, 1k−10]},
depending on the number of occurrences of D1,0E0,1 and of D1,0E0,1 in
γr · · · γs.

Next, Lemma 5.6.2 implies that we can merge the vertices 5 and 6 to one
vertex denoted by 5/6 in G and that the outgoing edges of that vertex are the
same as the outgoing edges of the vertex 6 in G. However, we have to take
care of the lengths of p1 and p2 in Figure 5.7(a) to know which morphism in
the labels of the edges can be applied.

Lemma 5.6.2. Let Gk be a Rauzy graph as in Figure 5.7(a) and let in be
the smallest integer in (in)n∈N such that in ≥ k. We have

{Type of Gin+1 | Gin is of type 6} =

{Type of Gin+2 | Gin is of type 5 and vin is not strong bispecial}
and

{γn | Gin is of type 6} =

{γn ◦ γn+1 | Gin is of type 5 and vin is not strong bispecial}.
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Proof. It suffices to look at the graph of graphs (Figure 4.8 on page 112)
and at the lists of morphisms in Section 4.5 on page 124. The only thing to
observe is that when a graph Gin is of type 5 and if vin corresponds to the
vertex B in Figure 4.5(e) (page 109), then vin cannot be a strong bispecial
factors, otherwise there would be 3 right special vertices in Gin+1 and this
does not correspond to any considered type of graphs.

Remark 5.6.3. In order to describe all valid paths in the component C4, we
sometimes have to know the precise type of a graph corresponding to the
vertex 5/6. Indeed, when going to that vertex in the modified component
(suppose the label of the edge is γn and that vin+1 corresponds to the vertex
R1 in Figure 5.7(a)), we may want to leave it using the morphism γn+1 =
[x, ykx, (yk−1x)] (see Section 4.5). However, the evolution corresponding to
that morphism is such that the smallest bispecial factor that admits vin+1

as a suffix is strong (the other right special vertex is therefore suffix of a
weak bispecial factor). Consequently, we can leave the vertex 5/6 with that
morphism only if vin+1 is not bispecial, i.e., the other right special vertex
becomes bispecial before vin+1. In other words, we must have |p1| ≥ |p2| in
Figure 5.7(a).

Next lemma deals with the same kind of stuffs as in Lemma 5.6.2 but for
Rauzy graphs of type 7 and 8. As for graphs of type 5 and 6, it allows us to
merge the vertices 7 and 8 to one vertex denoted 7/8 in G.

Lemma 5.6.4. Let Gt be a Rauzy graph as in Figure 5.7(b) and let in be the
smallest integer in (im)m∈N such that in ≥ t. Suppose that vt is the vertex R1

and that ϑt(1) goes k times through the loop v2u2. Let ℓ ∈ Z such that

|u1|+(ℓ−1)(|u1|+|v1|) < |u2|+(k−1)(|u2|+|v2|) ≤ |u1|+ℓ(|u1|+|v1|). (5.1)

Then, the graph can evolve to a graph of type

i. 1 and the composition of morphisms coding this evolution is in

{
[0, 10]h {[01, 1], [1, 01]} | 0 ≤ h < max{1, ℓ}

}

∪
{
[0, 10]h[x, y] | {x, y} = {0, 1}, h = max{0, ℓ}

}

ii. 5 or 6 as in Figure 5.7(a) and the composition of morphisms coding this
evolution is in

{
[0, 10, 20]h{[0x, y, (0y)], [x, 0y, (y)]} |

{x, y} = {1, 2}, 0 ≤ h < max{1, ℓ}} ;
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iii. 9 with the starting vertex vm, m > in, corresponding to the vertex B in
Figure 4.5(i) and the composition of morphisms coding this evolution is
in

{
[0, 10, 20]h[0, x, y] | {x, y} = {1, 2}, h = max{0, ℓ}

}
.

Proof. First let us study which are the bispecial vertices we have to deal
with. It is a direct consequence of the definition of Rauzy graphs that for
i and j in N, the words B1(i) = λ (u1(v1u1)

i) and B2(j) = λ (u2(v2u2)
j)

respectively admit L1 and L2 as prefixes and R1 and R2 as suffixes. For all
i, j, we write e1(i) = |B1(i)| = t + |u1| + i(|u1|+ |v1|) and e2(j) = |B2(j)| =
t+ |u2|+ j(|u2|+ |v2|). Inequality (5.1) therefore provides some information
on the order the bispecial vertices B1(ℓ − 1), B2(k − 1) and B1(ℓ) (if they
exist) explode.

By hypothesis, the path u2(v2u2)
k is allowed in Gt (since it is a subpath

of a t-circuit). This implies that B2(j) is a bispecial factor in L(X) for all
j ∈ {0, 1, . . . , k− 1} and this also gives us some information on the way they
explode in their respective Rauzy graphs. Indeed, if there are 2 (resp. 3)
t-circuits starting from R1 in Gt, then in the Rauzy graph Ge2(j), the vertex
B2(j) explodes as in Figure 5.8(b) if j < k − 1 and as in Figure 5.8(c) (resp.
in Figure 5.8(d)) if j = k − 1.

B2(j)

(a) Vertex B2(j) in Ge2(j) (b) j < k − 1

(c) j = k − 1 and 2 circuits (d) j = k − 1 and 3 circuits

Figure 5.8: Explosion of the vertex B2(j) in Ge2(j).

As vt = R1, we know from Lemma 5.4.4 and from Section 4.4 that the
explosion of the vertices B2(j) are coded by the identity morphism for j ∈
{0, . . . , k − 2} and by a letter-to-letter morphism for j = k − 1.
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Now let us study the behaviour of the vertex R1. As we do not have any
information about the circuits starting from R2, there are several possibilities
for the explosion of the vertices B1(i). First, we can observe that, if for some
integer i < ℓ, the word B1(i) belongs to L(X), then for all h < i, the word
B1(h) is a bispecial factor in L(X) and it explodes like B2(j) in Figure 5.8(b).
Each of these evolutions is coded by [0, 10, 20] (or by [0, 10] if there are only
2 circuits). On the other hand, if B1(i) is a bispecial factor of length l <
e2(k−1) in L(X) and if it explodes in Gl similarly to B2(j) in Figure 5.8(d),
then Gl evolves to a graph of type 9 such that the starting vertex of the
circuits corresponds to the vertex R in Figure 4.5(i). Consequently, the right
special vertex in Gl+1 that arises from B1(i) will not become bispecial until
B2(k − 1) has exploded. The evolution from Gl to Gl+1 is coded by the
morphism [01, 1] or [1, 01] if there are only 2 l-circuits and by one of the
four following morphisms if there are three l-circuits: [01, 1, 02], [1, 01, 2],
[01, 2, (02)] and [1, 02, (2)]. Observe that B1(i) cannot explode similarly to
B2(j) in Figure 5.8(c) as that would imply that the sequence of right special
vertices (vn)n∈N is finite.

To conclude the proof, it suffices to list all the possibilities for the explo-
sions of the vertices B1(i). By hypothesis, ℓ is an integer such that

|u1|+ (ℓ− 1)(|u1|+ |v1|) < |u2|+ (k − 1)(|u2|+ |v2|) ≤ |u1|+ ℓ(|u1|+ |v1|)

and we know that the vertices B1(i) and B2(j) respectively have length
e1(i) = t + |u1| + i(|u1| + |v1|) and e2(j) = t + |u1| + j(|u2| + |v2|) for all
non-negative integers i and j. Consequently, while B2(k − 1) has not ex-
ploded yet, the vertex B1(i) (if it exists) has two possibilities: either it makes
the graph evolving to a graph of type 7 or 8 with the morphism [0, 10, (20)],
or it makes it evolving to a graph of type 9 with one of the morphisms
[01, 1, (02)], [1, 01, (2)], [01, 2, (02)] and [1, 02, (2)].

First suppose that the graph is not of type 7 or 8 anymore when the vertex
B2(k−1) explodes. The only possibility is that ℓ ≥ 1 and that a vertex B1(i),
0 ≤ i ≤ ℓ−1, has exploded as in Figure 5.8(d), making the graph evolving to a
graph of type 9 with one of the morphisms [01, 1, (02)], [1, 01, (2)], [01, 2, (02)]
and [1, 02, (2)]. Observe that each of the explosions ofB1(0), B1(1), . . . , B1(i−
1) is coded by [0, 10, 20]. Then, the only bispecial vertices that occur in the
next Rauzy graphs are vertices B2(j) for j ∈ {l′, . . . , k−1} and l′ the smallest
integer such that e2(l′) ≥ e1(i). They imply the following behaviours: for
j < k − 1, the explosions of B2(j) are coded by the identity morphism. For
j = k−1, if there are three circuits starting from B1(i) and if its explosion is
coded by the morphism [01, 1, 02] or [1, 01, 2] (resp. [01, 2, (02)] or [1, 02, (2)]),
then the explosion of B2(k) is coded by [2, 1, 0] (resp. [0, 1, 2]). Consequently,
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the graph eventually evolves to a graph of type 5 or 6 and the composition
of the morphisms is in
{
[0, 10, 20]h {[0x, y, (0y)], [x, 0y, (y)]} |

{x, y} = {1, 2}, 0 ≤ h < max{1, ℓ}} . (5.2)

Still for j = k − 1, if there are 2 circuits starting from B1(i), then the
morphism coding its explosion is [01, 1] or [1, 01] and then the graph will
evolve to a graph of type 1 with the morphism [0, 1] or [1, 0] (by exploding
vertices B2(j)). Consequently, the composition of morphisms coding this
sequence of evolutions is in

{
[0, 10]h {[01, 1], [1, 01]} | 0 ≤ i < max{1, ℓ}

}
. (5.3)

Now suppose that the graph is still of type 7 or 8 when the vertex B2(k−1)
has exploded. If ℓ ≥ 1, this implies that the vertices B1(i) have exploded
with the morphism [0, 10, (20)] for i = 0, . . . , ℓ− 1 (so we have [0, 10, (20)]ℓ).
Then, when the vertex B2(k − 1) explodes, it makes the graph evolving to
a graph Gim of type 1 or 9 depending on the number of circuits (2 or 3
respectively). If the vertex B1(ℓ) has the same length, we can suppose from
Lemma 5.4.1 that it does not explode at the same time so we can suppose
that the graph does not evolve to a graph of type 7 or 8 (like it actually
could with the morphism [x, ymx, (ym−1x)]). Consequently, we only have to
consider the evolutions to graphs of type 1 or 9. They are respectively coded
by [0, 1] or [1, 0] and by [0, 1, 2] or [0, 2, 1] and once this evolution is done, the
next bispecial vertex is in (vn)n∈N.

The next lemma will allow us to delete the vertex 9 in G. Indeed, we can
see in Figure 4.8 (page 112) that the only types of graphs that can evolve to
a graph of type 9 are types 9 and 7 or 8. The next lemma states that we can
modify the outgoing edges of the vertex 7/8 such that the vertex 9 is isolated
in G.

Lemma 5.6.5. In Lemma 5.6.4, we can delete the third case of all possible
evolutions (the one to graphs of type 9) by replacing the set of morphisms
coding the evolutions to graphs of type 5 or 6 (the second case) by

{
[0, 10, 20]h{[0x, y, (0y)], [x, 0y, (y)]} | {x, y} = {1, 2}, h ∈ N

}
.

We can also replace the morphisms coding the evolution to graphs of type 1
(the first case) by
{
[0, 10]h {[01, 1], [1, 01]} | h ∈ N

}

∪
{
[0, 10]h[x, y] | {x, y} = {0, 1}, h ≥ max{0, ℓ}

}
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Proof. Indeed, in Lemma 5.6.4 the morphisms coding the evolution to a graph
of type 9 are in

{
[0, 10, 20]h[0, x, y] | {x, y} = {1, 2}, h = max{0, ℓ}

}
.

But, once the graph is of type 9 with vin = B, it can only evolve either to a
graph of type 9 with vin+1 = B, or to a graph of type 5 or 6 with a morphism
in {[0x, y, (0y)], [x, 0y, (y)] | {x, y} = {1, 2}}. Consequently, the composition
of evolution

7/8(→ 9)j → 5/6

is coded by a morphism in

{
[0, 10, 20]h[0, x, y][0, x0, y0]j{[0x, y, (0y)], [x, 0y, (y)]} |

{x, y} = {1, 2}, h = max{0, ℓ}} .

Since j can be arbitrarily large, this set is equal to
{
[0, 10, 20]h{[0x, y, (0y)], [x, 0y, (y)]} | {x, y} = {1, 2}, h ∈ N

}
.

For the second part (evolution to graphs of type 1), it suffices to observe that
all considered morphisms also code evolutions from a graph of type 1 to a
graph of type 1. Consequently, if h is chosen greater than max{0, ℓ}, the
morphism [0, 10]h−max{0,ℓ} is simply coding h − max{0, ℓ} evolutions from 1
to 1.

The last type of graph that has not been treated yet is the type 10. The
next lemma does it.

Lemma 5.6.6. Let Gin be a Rauzy graph of type 10. Suppose that vin cor-
responds to the vertex R in Figure 4.5(j) and that the two in-circuits ϑin(0)
and ϑin(1) respectively go through the loop k and ℓ times with k, ℓ ≥ 0 and
k + ℓ ≥ 1.
If the circuit ϑin(2) exists and starts like ϑin(0) does (recall that ℓ ≤ k in this
case), then

i. if ℓ = k, Gin will evolve to a Rauzy graph Gim, m > n, of type 10 such
that vim corresponds to the vertex B in Figure 4.5(j). This evolution is
coded by the morphism [1, 0, 2];

ii. if ℓ < k, Gin will evolve to a Rauzy graph Gim, m > n, of type 7 or
8 such that the im-circuit ϑin(1) starting from vim goes through the loop
k′ = k − ℓ times. This evolution is also coded by the morphism [1, 0, 2].
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If the circuit ϑin(2) exists and starts like ϑin(1) do (recall that k ≤ ℓ − 1 in
this case), then

i. if k = ℓ−1, Gin will evolve to a Rauzy graph Gim, m > n, of type 10 such
that vim corresponds to the vertex B in Figure 4.5(j). This evolution is
coded by the morphism [0, 1, 2];

ii. if k < ℓ− 1, Gin will evolve to a Rauzy graph Gim, m > n, of type 7 or
8 such that the im-circuit ϑin(1) starting from vim goes through the loop
k′ = ℓ − k − 1 times. This evolution is again coded by the morphism
[0, 1, 2].

If the circuit ϑin(2) does not exist, then

i. if ℓ ∈ {k, k + 1} , Gin will evolve to a Rauzy graph Gim, m > n, of type
1. This evolution is coded by a morphism in {[0, 1], [1, 0]};

ii. if ℓ < k, Gin will evolve to a Rauzy graph Gim, m > n, of type 7 or
8 such that the im-circuit ϑin(1) starting from vim goes through the loop
k′ = k − ℓ times. This evolution is coded by the morphism [1, 0].

iii. if ℓ > k + 1, Gin will evolve to a Rauzy graph Gim, m > n, of type 7 or
8 such that the im-circuit ϑin(1) starting from vim goes through the loop
k′ = ℓ− k − 1 times. This evolution is coded by the morphism [0, 1].

Proof. Indeed, if the vertex B in Figure 4.5(j) explodes as in Figure 5.9(a),
the new graph is still of type 10. This evolution is coded by the morphism
[1, 0, (2)]. Moreover, if we denote by kin(0) (resp. kin(1), kin(2)) the number
of times that the in-circuit ϑin(0) (resp. ϑin(1), ϑin(2)) goes through the
loop, then we have kin+1(0) = kin(1)− 1 and kin+1(1) = kin(0). We also have
kin+1(2) = kin(2) if the in-circuit ϑin(2) starts like ϑin(0) does and kin+1(2) =
kin(2) − 1 if the in-circuit ϑin(2) starts like ϑin(1) does. Consequently, this
evolution is repeated until either kin′ (1) = 0 or kin′ (0) = 0 and kin′ (1) = 1
for some n′ ≥ n. Then the graph Gin′ evolves to a Rauzy graph of type 1, 7,
8 or 9 depending on kin′ (0), kin′ (1) and kin′ (2) (if the circuit ϑin(2) exists).
The computation of the morphism coding this last evolution is left to the
reader.

Modification of Component C4

Now we can modify the component C4 of G.
First let us modify the vertices. Lemmas 5.6.2 and 5.6.4 respectively allow

to merge the vertices 5 and 6 to one vertex 5/6 and the vertices 7 and 8 to one
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R′

(a) either ϑin(2) starts like
ϑin(0) does and k, ℓ ≥ 1, or
ϑin(2) starts like ϑin(1) does
and ℓ ≥ 2

R′

(b) ϑin(2) starts like ϑin(0)
does and k ≥ 1, ℓ = 0

R′

(c) ϑin(2) starts like ϑin(1)
does and k = 0, ℓ = 1

Figure 5.9: Evolutions of a graph of type 10 with 3 circuits starting from R.

R′

(a) k, ℓ ≥ 1 or ℓ ≥ 2

R′

(b) k ≥ 1, ℓ = 0

R′

(c) k = 0, ℓ = 1

Figure 5.10: Evolutions of a graph of type 10 with 2 circuits starting from
R.
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vertex 7/8. As already mentioned, the vertex 9 can also be deleted (thanks
to Lemma 5.6.5). Finally, Lemma 5.6.6 describes the sequence of evolutions
while vin corresponds to the vertex R in a graph of type 10. Consequently,
if a graph evolves to a graph of type 10 such that vin = R, there is only
one possible finite sequence of evolutions, the one given by Lemma 5.6.6.
Consequently, we can simply treat these evolutions by modifying the edges
in C4 as explained just below and we rename vertex 10 by 10B, meaning that
the vertex vin always corresponds to the vertex B in Figure 4.5(j).

Now let us modify the edges and/or their labels. All modifications are
direct consequences of Fact 5.6.1, Lemma 5.6.2, Lemma 5.6.4, Lemma 5.6.5
and Lemma 5.6.6:

• Fact 5.6.1 implies that we can consider only two morphisms to label
the loop on vertex 1.

• Lemma 5.6.2 implies that the edges starting from 5/6 are the same as
those starting from 6 in G.

• By Lemma 5.6.6, we can replace each morphism γn labelling an edge
coming to 10 in G such that vin+1 = R by the corresponding be-
haviour given in that lemma. For instance, in G, the morphism γn =
[12k0, 2ℓ0, 12k−10] labels an edge from 6 to 10. By Lemma 5.6.6, this
morphisms makes the graph of type 10 evolving to a graph of type 7 or
8 or 10 depending on k and ℓ. Consequently, we delete this morphism
and add two morphisms: the morphism γn ◦ [1, 0, 2] from 5/6 to 10B
with k = ℓ (case i.) and the morphism γn◦ [1, 0, 2] from 5/6 to 7/8 with
ℓ < k. To keep working with the same notation, this new morphisms
are still denoted by γn.

• In Lemma 5.6.4 (so also in Lemma 5.6.5), as the behaviours depend on
some lengths in Rauzy graphs, we simply consider the needed outgoing
edges of the vertex 7/8 to be able to follow all described behaviours
and put some restrictions on the choices in Proposition 5.6.8.

We then obtain the modified component C4 represented in Figure 5.11
with labels as given below; those are trivially compositions of morphisms of
S. We will also see that it is more convenient to modify a bit more that
component.

1. Morphisms starting from the vertex 1:

From 1 to Morphisms γn Conditions
1 [0, 10], [01, 1]
7/8 [x, ykx, (yk−1x)] k ≥ 2
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5/6

7/8

1

10B

Figure 5.11: First attempt to modify the component C4 in G.

2. Morphisms starting from the vertex 5/6:

From 5/6 to Morphisms γn Conditions
1 [x, yx], [yx, x]

[12k0, 2k0], [2k0, 12k0] k ≥ 1
[12k0, 2k+10], [2k+10, 12k0] k ≥ 0

7/8 [1, 0k2, (0k−12)] k ≥ 1
[x, ykx, (yk−1x)] k ≥ 2
[2ℓ0, 12k0, (12k−10)] k > ℓ ≥ 0
[12k0, 2ℓ0, (2ℓ−10)] ℓ > k + 1 ≥ 1

10B [1, 01, 2]
[2k0, 12k0, 12k−10] k ≥ 1
[12k0, 2k+10, 2k0] k ≥ 0

3. Morphisms starting from the vertex 7/8:

From 7/8 to Morphisms γn Conditions
1 [01, 1], [1, 01], [x, y]
5 or 6 [0x, y, (0y)], [x, 0y, (y)]
7/8 [0, 10, (20)]

4. Morphisms starting from the vertex 10B:
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From 10B to Morphisms γn Conditions
1 [01k2, 1k2], [1k2, 01k2] k ≥ 1

[01k2, 1k+12], [1k+12, 01k2] k ≥ 0
7/8 [0, 2k1, 2k−11] k ≥ 1

[1ℓ2, 01k2, (01k−12)] k > ℓ ≥ 0
[01k2, 1ℓ2, (1ℓ−12)] ℓ > k + 1 ≥ 1

10B [0, 20, 1]
[1k2, 01k2, 01k−12] k ≥ 1
[01k2, 1k+12, 1k2] k ≥ 0

The next lemma describes paths in Figure 5.11 whose label are almost
primitive.

Lemma 5.6.7. A sequence of morphisms (γn)n≥N labelling an infinite path p
in Figure 5.11 is almost primitive if and only if one of the following conditions
is satisfied:

1. p ultimately stays in vertex 1 and both morphisms [0, 10] and [01, 1]
occur infinitely often in (γn)n≥N ;

2. p ultimately stays in the subgraph {1, 7/8}, goes through both vertices
infinitely often and for all suffixes p′ of p starting in vertex 7/8, the
label of p′ is not only composed of finite sub-sequences of morphisms in

(
[0, 10]∗[0, 1][0, 10]∗{[0, 1k0] | k ≥ 2}

)

∪
(
[0, 10]∗[1, 0][01, 1]∗{[1, 0k1] | k ≥ 2}

)
;

3. p contains infinitely many occurrences of sub-paths q that start in vertex
1 and end in vertex 5/6.

4. p ultimately stays in the subgraph {5/6, 7/8, 10B} and does not ulti-
mately correspond to one of the two following configurations:

(a) the path ultimately stays in vertex 7/8;

(b) • the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by [01, 2, 02];
• the edge from 5/6 to 7/8 is labelled by [1, 02, 2];
• the edge from 5/6 to 10B is labelled by [1, 01, 2];
• for all sub-paths q uniquely composed of loops over 10B, the

label of q contains only occurrences of morphisms in
{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}
;
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• for all finite sub-paths q composed of loops over 10B and fol-
lowed by the edge from 10B to 7/8, the label of q is in
{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}∗

{[2, 012, 02], [0, 20, 1][0, 21, 1]};
(c) • the paths does not go through the loop over vertex 7/8;

• the loop over vertex 10B is labelled by [12k0, 2k+10, 2k0] for
some integer k ≥ 0;

• the edge from 5/6 to 7/8 is labelled either by [1, 0k2, 0k−12] for
some integer k ≥ 1 or by [12k0, 2ℓ0, 2ℓ−10] for some integers k
and ℓ such that ℓ > k + 1 ≥ 1;

• the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by [2, 01, 1];
• the edge from 10B to 7/8 is labelled by [0, 2k1, 2k−11] for some

integer k ≥ 1.

Proof. The proof of this lemma is not really hard, but quite long so it is given
in Appendix C page 213.

Of course, we will also have to consider left conjugates of right proper
morphisms. In the above list, their decompositions into compositions of
morphisms in S can be easily computed using those given in Section 4.6
to Section 4.6 (from page 133 to page 136). But, it is still possible to con-
sider valid directive words containing only non-right proper morphisms (so
that make left conjugates impossible to compute directly). For instance, any
path oscillating between 5/6 and 7/8 such that the edge from 5/6 to 7/8 is
labelled by [1, 0k2, 0k−12] can be a suffix of a valid path: Lemma 5.6.2 and
Lemma 5.6.4 ensure that the local condition of Proposition 5.1.5 is satisfied
and if the morphism labelling the edge from 7/8 to 5/6 is [01, 2, 02], then the
composition of it with [1, 0k2, 0k−12] provides

[1, 0k2, 0k−12] ◦ [01, 2, 02] = [10k2, 0k−12, 10k−12].

This last morphism is right proper and would label a loop on 5/6 in Fig-
ure 5.11. Moreover, it can be trivially decomposed into morphisms in S since
so are [1, 0k2, 0k−12] and [01, 2, 02]. It is also right proper, primitive and its
left conjugate admits the following decomposition:

[210k, 20k−1, 210k−1] = Dk−1
1,0 ◦G1,2 ◦Dk−1

2,0 ◦G0,1 ◦ [0, 2, 1].
As proved by Proposition 5.6.8, this kind of problem can be solved by

adding two edges in Figure 5.11 labelled by the following additional mor-
phisms. We then obtain the modified component as represented in Fig-
ure 5.12.
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1. additional loop on 5/6 labelled by the following morphisms:

Morphisms γn Conditions
[10k2, 0k−12, 10k−12] k ≥ 1
[10k−12, 0k2, 10k2]
[0k2, 10k−12, 0k−12]
[0k−12, 10k2, 0k2]

2. additional edge from 10B to 5/6 labelled by the following morphisms:

Morphisms γn Conditions
[02k1, 2k−11, 02k−11] k ≥ 1
[02k−11, 2k1, 02k1]
[2k1, 02k−11, 2k−11]
[2k−11, 02k1, 2k1]

5/6

7/8

1

10B

Figure 5.12: Graph corresponding to the component C4 in G.

Proposition 5.6.8. Let s = (σn)n∈N be a sequence of morphisms in S. Then
there is an integer N ≥ 0 such that (σn)n≥N is a suffix of a valid directive
word corresponding to a minimal subshift whose Rauzy graphs are ultimately
of type 1, 5, 6, 7, 8, 9 or 10 if and only if there is a non-negative integers
N ′ ≤ N , a contraction (Γn)n∈N of (σn)n∈N and a sequence of morphisms
(γn)n≥N ′ such that

1. there are infinitely many right proper morphisms in (γn)n≥N ′ and for all
integers n ≥ N ′, Γn is either γn or γ(L)n and there are infinitely many
right proper morphisms and infinitely many left proper morphisms in
(Γn)n≥N ′;
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2. (γn)n≥N ′ labels an infinite path p in the graph represented in Figure 5.12
(whose labels are given on page 162 and on page 165) such that

(A) if for some integer n ≥ N ′, γn labels an edge to 5/6, then γn+1 can
be in {[x, ykx, (yk−1x)] | {x, y} = {0, 1}, k ≥ 2} only if |p1| ≥ |p2|
where |p1| and |p2| are computed in Section B.2 (on page 209);

(B) if for some integer n ≥ N ′, γn labels an edge to 7/8 but not from
7/8, then it is equal to [w1, w2w

k
3w4, w2w

k−1
3 w4] for some words

w1, w2, w3 and w4 and for an integer k ≥ 1 which corresponds to
the number of times that the (in + 1)-circuit ϑin+1(1) goes through
the loop v2u2 in Figure 5.7(b). Then, if h is the greatest integer
such that γn+i = [0, 10] for all i = 1, . . . , h, then h is finite and
γn+h+1 can be in {[0, 1], [1, 0]} if only if |u1| + h(|u1| + |v1|) ≥
|u2|+(k−1)(|u2|+ |v2|) where |u1|, |v1|, |u2| and |v2| are computed
in Section B.1 (on page 200);

and such that one of the following conditions is satisfied

(i) p ultimately stays in vertex 1 and both morphisms [0, 10] and [01, 1]
occur infinitely often in (γn)n≥N ;

(ii) p ultimately stays in the subgraph {1, 7/8}, goes through both ver-
tices infinitely often and for all suffixes p′ of p starting in vertex
7/8, the label of p′ is not only composed of finite sub-sequences of
morphisms in

(
[0, 10]∗[0, 1][0, 10]∗{[0, 1k0] | k ≥ 2}

)

∪
(
[0, 10]∗[1, 0][01, 1]∗{[1, 0k1] | k ≥ 2}

)
;

(iii) p contains infinitely many occurrences of sub-paths q that start in
vertex 1 and end in vertex 5/6.

(iv) p ultimately stays in the subgraph {5/6, 7/8, 10B} and does not
ultimately correspond to one of the two following configurations:

(a) the path ultimately stays in vertex 7/8;

(b) • the loop over 5/6 is labelled by [02, 12, 2] or by [102, 2, 12];

• the edge from 5/6 to 7/8 is labelled by [1, 02, 2];

• the edge from 5/6 to 10B is labelled by [1, 01, 2];

• the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by
[01, 2, 02];



168 Chapter 5. S-adic characterization of subshifts with complexity 2n

• for all sub-paths q uniquely composed of loops over 10B,
the label of q contains only occurrences of morphisms in

{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}
;

• for all finite sub-paths q composed of loops over 10B and
followed by the edge from 10B to 5/6, the label of q is in

{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}∗

[0, 20, 1]{[21, 01, 1], [021, 1, 01]};

(c) • the paths does not go through the loop over vertex 7/8;

• the loop over 5/6 is labelled by [0k2, 10k−12, 0k−12] or by
[0k−12, 10k2, 0k2] for some integer k ≥ 1;

• the loop over 10B is labelled by [12k0, 2k+10, 2k0] for some
integer k ≥ 0;

• the edge from 5/6 to 7/8 is labelled either by [1, 0k2, 0k−12]
for some integer k ≥ 1 or by [12k0, 2ℓ0, 2ℓ−10] for some
integers k and ℓ such that ℓ > k + 1 ≥ 1;

• the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by
[2, 01, 1];

• the edge from 10B to 5/6 is labelled by [2k1, 02k−11, 2k−11]
or by [2k−11, 02k1, 2k1] for some integer k ≥ 1;

• the edge from 10B to 7/8 is labelled by [0, 2k1, 2k−11] for
some integer k ≥ 1.

Proof. First let us define the integers N and N ’ of the result. As in Propo-
sition 5.3.1 and in Proposition 5.5.2, our aim is to study the validity of the
suffix of s that corresponds to evolutions of Rauzy graphs of type 1, 5, 6, 7,
8, 9 or 10. From all previous modifications of the component C4, we consider
that N ′ is the smallest integer such that γ′N codes the evolution of a Rauzy
graph of type 1, 5, 6, 7, 8 or 10 and, for Rauzy graphs of type 10, we also
suppose that the vertex viN′ is the vertex B in Figure A.21.

Then, the integer N is the integer such that (Γn)n≥N ′ is a contraction of
(σn)n≥N , where (Γn)n≥N ′ is obtained from (γn)n∈N by replacing some right
proper morphisms by their left conjugate.

We have to characterize sequences of morphisms that satisfies conditions 1
and 2 of Proposition 5.1.5 (only for the suffix (σn)n≥N). The proper property
in Proposition 5.1.5 is equivalent to the last condition of the result. But, this
last one suppose that (γn)n≥N ′ contains infinitely many occurrences of right



5.6 Valid paths in C4 169

proper morphisms (which is actually supposed in the first condition of the
result). As explained above, working with Figure 5.11 does not ensure that
this condition is satisfied and this lead us to modify that graph as explained
just below.

We would like that any valid labelled path p in Figure 5.11, there is a
valid labelled path in Figure 5.12 whose label is a contraction of the label of
p and contains infinitely many right proper morphisms. In Figure 5.11, the
valid labelled path that contains only non-right proper morphisms are paths
represented in Figure 5.13 where

1. the edge from 5/6 to 10B is labelled by [1, 01, 2];

2. the edge from 5/6 to 7/8 is labelled by [1, 0k2, 0k−12];

3. the edge from 7/8 to 5/6 is labelled by [0x, y, 0y] and [x, 0y, x];

4. the edge from 10B to 7/8 is labelled by [0, 2k1, 2k−11];

5. the loop on 10B is labelled by [0, 20, 1].

5/6

7/810B

Figure 5.13: Part of Figure 5.11 where there might be some valid labelled
path with only non-right proper morphisms as labels.

It is easily seen that labelled path in Figure 5.13 that ultimately stay in
vertex 10B are not valid. Moreover, the labels of the path of length 2 from
5/6 to 5/6 (passing through 7/8) are right proper and equal to

[1, 0k2, 0k−12] ◦ [01, 2, 02] = [10k2, 0k−12, 10k−12]

[1, 0k2, 0k−12] ◦ [02, 1, 01] = [10k−12, 0k2, 10k2]

[1, 0k2, 0k−12] ◦ [1, 02, 2] = [0k2, 10k−12, 0k−12]

[1, 0k2, 0k−12] ◦ [2, 01, 1] = [0k−12, 10k2, 0k2]
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Similarly, the labels of the path of length 2 from 10B to 5/6 (passing through
7/8) are right proper and equal to

[0, 2k1, 2k−11] ◦ [01, 2, 02] = [02k1, 2k−11, 02k−11]

[0, 2k1, 2k−11] ◦ [02, 1, 01] = [02k−11, 2k1, 02k1]

[0, 2k1, 2k−11] ◦ [1, 02, 2] = [2k1, 02k−11, 2k−11]

[0, 2k1, 2k−11] ◦ [2, 01, 1] = [2k−11, 02k1, 2k1]

To our aim, it suffices therefore to add two edges in Figure 5.11: one loop on
5/6 labelled by the first four morphisms above and one edge from 10B to 5/6
labelled by the last four morphisms above. Indeed, if p is a valid labelled path
in Figure 5.13 that contains only non-right proper morphisms in its label, it
suffices to replace each subpath of length 2 from 5/6 to 5/6 by the new loop
on 5/6 and each subpath of length 2 from 10B to 5/6 by the new edge from
10B to 5/6.

We still have to prove that the left conjugates of the new 8 morphisms
above can be decomposed into elements of S. One can check that the follow-
ing decompositions hold.

[210k, 20k−1, 210k−1] = G1,2 ◦Dk−1
1,0 ◦Dk−1

2,0 ◦G0,1 ◦ [0, 2, 1]
[210k−1, 20k, 210k] = G1,2 ◦Dk−1

1,0 ◦Dk
2,0 ◦G0,1 ◦ [1, 2, 0]

[20k, 210k−1, 20k−1] = G1,2 ◦Dk−1
2,0 ◦Dk−1

1,0 ◦G0,2 ◦ [0, 1, 2]
[20k−1, 210k, 20k] = G1,2 ◦Dk−1

2,0 ◦Dk
1,0 ◦G0,2 ◦ [2, 1, 0]

[102k, 12k−1, 102k−1] = [2, 0, 1] ◦ [210k, 20k−1, 210k−1]

[102k−1, 12k, 102k] = [2, 0, 1] ◦ [210k−1, 20k, 210k]

[12k, 102k−1, 12k−1] = [2, 0, 1] ◦ [20k, 210k−1, 20k−1]

[12k−1, 102k, 12k] = [2, 0, 1] ◦ [20k−1, 210k, 20k]

With that modification of Figure 5.11, the proper condition of Proposi-
tion 5.1.5 is equivalent to the condition 1 of the result. For the first condition
of Proposition 5.1.5 (the local one), it is a direct consequence of all previous
lemmas and modifications of C4:

1. any finite path passing only through the vertex 1 is trivially valid;

2. the condition 2A of the result summarizes what is allowed according to
Lemma 5.6.2 for vertex 5/6;

3. the condition 2B summarizes what is allowed with vertex 7/8 according
to Lemma 5.6.4 and Lemma 5.6.5;
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4. the edges going to the vertex 10 in Figure 4.8 (page 112) have been
modified according to Lemma 5.6.6.

It remains therefore to check the almost primitive property. It is easily
seen that conditions 2i to 2iv are exactly those obtained in Lemma 5.6.7, but
modified according to the added edges.

5.7 Links between components

Now that we know how the suffixes of valid paths in each component must
behave, it remains to describe all links between them. To this aim, it suffices
to look at the graph of graphs G (Figure 4.8 page 112) and, like we did in
each component, to study the consequences of a given morphism γn on the
sequel in the directive word. For instance, in G there is an edge from 2 to 4
which is labelled by morphisms γn depending on some exponents k and ℓ (see
on page 123). Then, Lemma 5.5.1 (page 149) states that, depending on k and
ℓ, the graph will evolve to a graph of type 1, 4, 7 or 8 and 10 (with vim = B)
and it provides the morphism τ coding this evolution. Consequently, we add
edges (if necessary) from 2 to {1, 4B, 7/8, 10B} labelled by γn ◦ τ . This yield
to the modified graph of graphs G ′ represented in Figure 5.14 (gray edges are
simply those inner components). Labels of black edges are given below. In
the list of morphisms, we express in the column "Trough" if the morphism is
the result of a contraction like just explained. In the previous example, we
would write 4R in the column "Through", meaning that the morphisms is a
composition of γn and τ and that γn codes an evolution to a Rauzy graph of
type 4 such that vin+1 corresponds to the vertex R in Figure 4.5(d).

Observe that, since black edges can only occur in a finite prefix of any
valid path in G ′, we do not have to compute left conjugates of morphisms.

Remark 5.7.1. It is important to notice that the exponents k and ℓ in mor-
phisms γn do not always correspond to the integers k and ℓ in Lemma 5.5.1,
Lemma 5.6.4 and Lemma 5.6.6. Indeed, if for instance we consider the evolu-
tion of a Rauzy graph of type 2 to a Rauzy graph of type 4 as represented in
Figure 5.15. The morphism coding this evolution is either [yzkx, zℓx, yzk−1x]
or [zkx, yzℓx, zk−1x] for some integers k and ℓ. But, the circuits ϑin+1(0) and
ϑin+1(1) go respectively k − 1 and ℓ− 1 times through the loop.
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C1

C2

C3

C4

2

4B

V0

V1 V2

1

10B 7/8

5/6

Figure 5.14: Modified graph of graphs.
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vin

ϑin(x)

ϑin(y)

ϑin(z)

(a) Before evolution

vin+1

(b) After evolution

Figure 5.15: Evolution of a graph of type 2 to a graph of type 4.

Morphisms labelling the black edge from 2 to 4B in G ′

Through Morphisms Conditions
/ [x, yx, yzx], [y, yzx, yx]
4R [yk−1z, xykz, xyk−1z] k ≥ 2

[yk−1z, xyk−1z, xykz]
[xyk−1z, ykz, yk−1z]
[xyk−1z, yk−1z, ykz]

Morphisms labelling the black edge from 2 to Vi, i ∈ {0, 1, 2}, in G ′

Through To Morphisms Conditions
/ V0 [0, 120, 20], [0, 10, 210]

V1 [01, 1, 201], [021, 1, 21]
V2 [02, 102, 2], [012, 12, 2]

Morphisms labelling the black edge from 2 to 1 in G ′

Through Morphisms Conditions
/ [x, yzx], [yzx, x], [xy, zy]

[xy, zxy], [zxy, xy]
4R [yzkx, zkx], [zkx, yzkx] k ≥ 2

[yzkx, zk−1x], [zk−1x, yzkx]
[yzk−1x, zkx], [zkx, yzk−1x]

10R [(xy)kz, y(xy)kz], [y(xy)kz, (xy)kz] k ≥ 1
[(xy)kz, y(xy)k−1z], [y(xy)k−1z, (xy)kz] k ≥ 2
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Morphisms labelling the black edge from 2 to 10B in G ′

Through Morphisms Conditions
/ [xy, zxy, zy]
4R [zkx, yzkx, yzk−1x] k ≥ 2

[yzkx, zkx, zk−1x]
10R [y(xy)k−1z, (xy)kz, (xy)k−1z] k ≥ 2

[(xy)kz, y(xy)kz, y(xy)k−1z]

Morphisms labelling the black edge from 2 to 7/8 in G ′

Through Morphisms Conditions
/ [x, ykzx, (yk−1zx)] k ≥ 2

[x, zykx, (zyk−1x)]

[x, (yz)kx, ((yz)k−1x)]
[xy, zkxy, (zk−1xy)]
[xy, zky, (zk−1y)]

[x, (yz)kyx, ((yz)k−1yx)] k ≥ 1
4R [zℓx, yzkx, yzk−1x] k − 1 > ℓ ≥ 1

[yzℓx, zkx, zk−1x]
10R [y(xy)ℓz, (xy)kz, (xy)k−1z] k − 1 > ℓ ≥ 0

[(xy)kz, y(xy)ℓz, y(xy)ℓ−1z] ℓ > k ≥ 1

Morphisms labelling the black edge from Vi, i ∈ {0, 1, 2} to 1 in G ′

Through Morphisms Conditions
/ [x, iy], [iy, x], [xi, yi]

10R [xyki, yki], [yki, xyki] k ≥ 1
[xyki, yk−1i], [yk−1i, xyki] k ≥ 2

Morphisms labelling the black edge from Vi, i ∈ {0, 1, 2} to 10B in G ′

Through Morphisms Conditions
/ [x, ix, iy]

10R [xyk−1i, yki, yk−1i] k ≥ 2
[yki, xyki, xyk−1i] k ≥ 1
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Morphisms labelling the black edge from Vi, i ∈ {0, 1, 2} to 7/8 in G ′

Through Morphisms Conditions
/ [i, xyki, xyk−1i] k ≥ 1

[x, iky, ik−1y] k ≥ 2
10R [xyℓi, yki, yk−1i] k ≥ 2, k − 1 > ℓ ≥ 0

[yki, xyℓi, xyℓ−1i] ℓ > k ≥ 1

Morphisms labelling the black edge from 4B to 1 in G ′

Through Morphisms Conditions
4R [xky, 0xky], [0xky, xky] k ≥ 1

[xk−1y, 0xky], [0xky, xk−1y]
[xky, 0xk−1y], [0xk−1y, xky]

10R [0(x0)ky, (x0)ky], [(x0)ky, 0(x0)ky] k ≥ 1
[0(x0)k−1y, (x0)ky], [(x0)ky, 0(x0)k−1y]

Morphisms labelling the black edge from 4B to 10B in G ′

Through Morphisms Conditions
4R [xky, 0xky, 0xk−1y] k ≥ 1

[0xky, xky, xk−1y]
10R [(x0)ky, 0(x0)ky, 0(x0)k−1y] k ≥ 1

[0(x0)k−1y, (x0)ky, (x0)k−1y]

Morphisms labelling the black edge from 4B to 7/8 in G ′

Through Morphisms Conditions
/ [0, xky0, xk−1y0] k ≥ 1
4R [xℓy, 0xky, 0xk−1y] k − 1 > ℓ ≥ 0

[0xℓy, xky, xk−1y]
10R [(x0)ℓy, 0(x0)ky, 0(x0)k−1y] k > ℓ ≥ 0

[0(x0)ky, (x0)ℓy, (x0)ℓ−1y] ℓ− 1 > k ≥ 0

5.8 Final Result

Now we can give an S-adic characterization of minimal and aperiodic subshift
with first difference of complexity bounded by 2. It suffices to put together
all what we proved until now.

Theorem 5.8.1. Let (X, T ) be a subshift over an alphabet A and let

S = {G,D,M,E01, E12}
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be the set of 5 morphisms as defined on page 103. Then, (X, T ) is minimal
and satisfies 1 ≤ pX(n + 1) − pX(n) ≤ 2 for all n if and only if (X, T )
is S-adic such that there exists a contraction (Γn)n∈N of its directive word
(σn)n∈N ∈ SN and a sequence of morphisms (γn)n∈N that labels an infinite
path p in the graph represented at Figure 5.14 and such that

1. there are infinitely many right proper morphisms in (γn)n∈N and for all
integers n ≥ 0, Γn is either γn or γ(L)n and there are infinitely many
right proper morphisms and infinitely many left proper morphisms in
(Γn)n∈N;

2. if p ultimately stays in the component C1, then the three morphisms
[0, 10, 20], [01, 1, 21] and [02, 12, 2] occur infinitely often in (γn)n∈N;

3. if p ultimately stays in the component C2, then the edges in C2 are the
following

(a) for all x ∈ {0, 1, 2}, the loop on Vx is labelled by morphisms in

Fx = {Dy,xDz,x, Gy,xGz,x, Gx,yGz,y | {x, y, z} = {0, 1, 2}} ;

(b) for all x, y ∈ {0, 1, 2}, x 6= y, the edge from Vx to Vy is labelled by
morphisms in

Fx→y = {Dx,z, Dy,xGx,zGz,y | z /∈ {x, y}} ;

and if N is the smallest integer such that γN labels an edge in C2, then
for all x ∈ {0, 1, 2}, there are infinitely many integers n ≥ N such that
Dy,x is a factor of γn for some y ∈ {0, 1, 2};

4. if p ultimately stays in the component C3 and if N is the smallest integer
such that γN labels an edge in C3, then

(a) for all n ≥ N ,

γn ∈
{
[0, 10, 20], [0, 20, 10], [xk−1y, 0xky, 0xk−1y],

[xk−1y, 0xk−1y, 0xky], [0xk−1y, xky, xk−1y],

[0xk−1y, xk−1y, xky] | {x, y} = {1, 2}, k ≥ 1
}
;

(b) for all r ≥ N ,

(γn)n≥r /∈ {[0, 10, 20], [0, 20, 10]}N
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and

(γn)n≥r /∈
{
[0xk−1y, xky, xk−1y], [0xk−1y, xk−1y, xky] |

{x, y} = {1, 2}, k ≥ 1}N

5. if p ultimately stays in the component C4 and if N is the smallest integer
such that γN labels an edge in C4, then

(A) if for some integer n ≥ N , γn labels an edge to 5/6, then γn+1 can
be in {[x, ykx, (yk−1x)] | {x, y} = {0, 1}, k ≥ 2} only if |p1| ≥ |p2|
where |p1| and |p2| are computed in Section B.2 (on page 209);

(B) if for some integer n ≥ N , γn labels an edge to 7/8 but not from
7/8, then it is equal to [w1, w2w

k
3w4, w2w

k−1
3 w4] for some words

w1, w2, w3 and w4 and for an integer k ≥ 1 which corresponds to
the number of times that the (in + 1)-circuit ϑin+1(1) goes through
the loop v2u2 in Figure 5.7(b). Then, if h is the greatest integer
such that γn+i = [0, 10] for all i = 1, . . . , h, then h is finite and
γn+h+1 can be in {[0, 1], [1, 0]} if only if |u1| + h(|u1| + |v1|) ≥
|u2|+(k−1)(|u2|+ |v2|) where |u1|, |v1|, |u2| and |v2| are computed
in Section B.1 (on page 200);

and one of the following conditions is satisfied

(i) p ultimately stays in vertex 1 and both morphisms [0, 10] and [01, 1]
occur infinitely often in (γn)n≥N ;

(ii) p ultimately stays in the subgraph {1, 7/8}, goes through both ver-
tices infinitely often and for all suffixes p′ of p starting in vertex
7/8, the label of p′ is not only composed of finite sub-sequences of
morphisms in

(
[0, 10]∗[0, 1][0, 10]∗{[0, 1k0] | k ≥ 2}

)

∪
(
[0, 10]∗[1, 0][01, 1]∗{[1, 0k1] | k ≥ 2}

)
;

(iii) p contains infinitely many occurrences of sub-paths q that start in
vertex 1 and end in vertex 5/6.

(iv) p ultimately stays in the subgraph {5/6, 7/8, 10B} and does not
ultimately correspond to one of the two following configurations:

(a) the path ultimately stays in vertex 7/8;
(b) • the loop over 5/6 is labelled by [02, 12, 2] or by [102, 2, 12];
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• the edge from 5/6 to 7/8 is labelled by [1, 02, 2];
• the edge from 5/6 to 10B is labelled by [1, 01, 2];
• the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by
[01, 2, 02];

• for all sub-paths q uniquely composed of loops over 10B,
the label of q contains only occurrences of morphisms in

{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}
;

• for all finite sub-paths q composed of loops over 10B and
followed by the edge from 10B to 5/6, the label of q is in

{
[0, 20, 1]2n, [02, 12, 2] | n ∈ N

}∗

[0, 20, 1]{[21, 01, 1], [021, 1, 01]};

(c) • the paths does not go through the loop over vertex 7/8;
• the loop over 5/6 is labelled by [0k2, 10k−12, 0k−12] or by
[0k−12, 10k2, 0k2] for some integer k ≥ 1;

• the loop over 10B is labelled by [12k0, 2k+10, 2k0] for some
integer k ≥ 0;

• the edge from 5/6 to 7/8 is labelled either by [1, 0k2, 0k−12]
for some integer k ≥ 1 or by [12k0, 2ℓ0, 2ℓ−10] for some
integers k and ℓ such that ℓ > k + 1 ≥ 1;

• the edge from 7/8 to 5/6 is labelled by [1, 02, 2] or by
[2, 01, 1];

• the edge from 10B to 5/6 is labelled by [2k1, 02k−11, 2k−11]
or by [2k−11, 02k1, 2k1] for some integer k ≥ 1;

• the edge from 10B to 7/8 is labelled by [0, 2k1, 2k−11] for
some integer k ≥ 1.

To obtain the exact complexities p(n) = 2n or p(n) = 2n + 1, it suffices
to impose respectively that p(1) = 2 or p(1) = 3 and that for all n ≥ 1,
p(n + 1) − p(n) = 2. This can be expressed by the fact the Rauzy graphs
cannot be of type 1 (because these graphs are such that p(n+1)−p(n) = 1).
Consequently, one just has to impose that the path p of the theorem does no
go through vertex 1 except in some particular cases depending on the lengths
|u1|, |u2|, |v1|, |v2|, |p1| and |p2|.
Corollary 5.8.2. A subshift (X, T ) is minimal and has complexity p(n) = 2n
(resp. p(n) = 2n + 1) for all n ≥ 1 if and only if it is an S-adic subshift
satisfying Theorem 5.8.1 and the following additional conditions:
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1. the path p of Theorem 5.8.1 starts in vertex 1 (resp. vertex 2);

2. in Condition 5B of Theorem 5.8.1, the inequality

|u1|+ h(|u1|+ |v1|) ≥ |u2|+ (k − 1)(|u2|+ |v2|)

is replaced by

|u1|+ h(|u1|+ |v1|) = |u2|+ (k − 1)(|u2|+ |v2|)

and in that case, γn+h+2 must label the edge from 1 to 7/8;

3. in Condition 5A of Theorem 5.8.1, the inequality |p1| ≥ |p2| is replaced
by |p1| = |p2|.



180 Chapter 5. S-adic characterization of subshifts with complexity 2n



Conclusions

The S-adic characterization obtained in Chapter 4 and Chapter 5 is obviously
a valuable improvement in the study of subshifts with very low complexity.
The amount of given details will probably be very helpful to solve other prob-
lems related to these complexities such as giving a geometrical representation
of subshifts with those complexities. On the other hand, the involved meth-
ods are too much technical to hope using them in a more general case. Indeed,
even for minimal subshifts with a first difference of complexity bounded by 3
(instead of 2), computations are getting considerably more difficult. Further-
more, some crucial results seem to be closely linked to these low complexities
(see Lemma 4.3.4 page 114 and Example 4.3.5 page 115).

However, one could try to highlight some general properties of the ob-
tained S-adic representations and check whether they can be generalized in
a more general case. For instance, the next result states that the subshift
generated by the set of all S-adic representations of minimal subshifts with
first complexity bounded by 2 is not sofic, i.e., L(XS) is not a regular lan-
guage. But, one could prove that L(XS) is computable. A natural question is
therefore whether there are some other properties that can be satisfied and,
if yes, whether they are generalizable to a more general case.

Proposition 5.8.3. The subshift XS generated by all S-adic representations
of minimal subshifts such that 1 ≤ p(n + 1)− p(n) ≤ 2 is not sofic.

Proof. Let us define the notion of follower set. If X is a subshift and u
belongs to L(X), then the follower set FX(u) is the set of all words in L(X)
that can follow u in X, i.e.,

FX(u) = {v ∈ L(X) : uv ∈ L(X)}.

Follower sets can be used to characterize sofic subshifts: a subshift is
sofic if and only if it has a finite number of follower sets (see Theorem 3.2.10
in [LM95]).

Let u = u1 · · ·u|u| be a words in L(XS). Thus u is a finite sequence of
morphisms labelling a finite path q in Figure 5.14 page 172. If i(q) is the
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vertex 7/8 and u|u| 6= [0, 10, 20], then Theorem 5.8.1 implies that the family
of words that can follow u in XS depend on some lengths in Rauzy graphs
(Condition 5B of the result). More precisely, u can be followed in XS by
[0, 10]h[0, 1] if and only if h is greater than a constant C that depends on
some lengths in Rauzy graphs. When we consider a finite path in Figure 5.14
that starts and stays in vertex 1 before going to vertex 7/8, we see that
the constant C can be chosen arbitrarily large. Indeed, it suffices to always
consider the same morphism to label the loop over vertex 1 because in Rauzy
graphs of type 1, this makes one loop becoming much longer than the other
one. The set of follower sets is therefore infinite for XS .

Another idea is to try to make stronger the necessary conditions obtained
in Chapter 3. A first important work would be to make the almost primitivity
necessary in all cases and not only when there are no constant segments. With
notations of Chapter 3, we think (although we have no proof of it) that it
should be possible to consider a sequence of sub-alphabets (B̃n ⊂ Bn)n∈N
such that the directive word (τn : B̃∗

n+1 → B̃∗
n) is almost primitive.

An additional result that would generalize Durand’s work would be to
characterize the set of sequences for which the S-adic representation of The-
orem 3.0.3 (page 76) is ultimately periodic. We are currently trying to solve
this question with Štěpán Starosta.

Finally, beyond the conjecture, it would be interesting to improve the
work initiated by Proposition 2.4.1 (page 72). This result provides a bound
(n log n) over the complexity of expansive S-adic sequences with Card(S) <
+∞. What could we say if we replace the expansivity by the condition of
being everywhere growing? Could we say for instance that the complexity
will be at most polynomial?



Appendix A

Evolution of Rauzy graphs such
that 1 ≤ p(n + 1)− p(n) ≤ 2

A.1 Evolution of a Rauzy graph of type 1

A graph of type 1 is represented in Figure A.1. The possible evolutions are
represented in Figure A.2.

Figure A.1: Graph of type 1

(a) To a graph of type 1 (b) To a graph of type 7 or 8

Figure A.2: Possible evolutions for a graph of type 1
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A.2 Evolution of a Rauzy graph of type 2

A graph of type 2 is represented in Figure A.3. The possible evolutions are
represented in Figure A.4, Figure A.5 and Figure A.6.

Figure A.3: Graph of type 2



A.2 Evolution of a Rauzy graph of type 2 185

(a) To a graph of type 1 (b) To a graph of type 1

(c) To a graph of type 1

Figure A.4: Evolutions from 2 to 1
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(a) To a graph of type 2 (b) To a graph of type 3

(c) To a graph of type 4

Figure A.5: Evolutions from 2 to {1, 2, 3, 4}



A.2 Evolution of a Rauzy graph of type 2 187

(a) To a graph of type 7 or 8 (b) To a graph of type 7 or 8

(c) To a graph of type 7 or 8 (d) To a graph of type 10

Figure A.6: Evolutions from 2 to {7, 8, 10}
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A.3 Evolution of a Rauzy graph of type 3

A graph of type 3 is represented in Figure A.7. The possible evolutions are
represented in Figure A.8.

Figure A.7: Graph of type 3
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(a) To a graph of type 1 (b) To a graph of type 1

(c) To a graph of type 3 (d) To a graph of type 3

(e) To a graph of type 7 or
8

(f) To a graph of type 10

Figure A.8: Possible evolutions of a graph of type 3
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A.4 Evolution of a Rauzy graph of type 4

A graph of type 3 is represented in Figure A.9. The possible evolutions are
represented in Figure A.10.

Figure A.9: Graph of type 4
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(a) To a graph of type 1 (b) To a graph of type 1

(c) To a graph of type 4 (d) To a graph of type 4

(e) To a graph of type 7 or 8 (f) To a graph of type 10

Figure A.10: Possible evolutions of a graph of type 4
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A.5 Evolution of a Rauzy graph of type 5

A graph of type 3 is represented in Figure A.11. The possible evolutions are
represented in Figure A.12.

Figure A.11: Graph of type 5

(a) To a graph of type 1 (b) To a graph of type 10

Figure A.12: Possible evolutions of a graph of type 5
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A.6 Evolution of a Rauzy graph of type 6

A graph of type 3 is represented in Figure A.13. The possible evolutions are
represented in Figure A.14.

Figure A.13: Graph of type 6

(a) To a graph of type 1 (b) To a graph of type 7 or 8

(c) To a graph of type 7 or 8 (d) To a graph of type 10

Figure A.14: Possible evolutions of a graph of type 6
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A.7 Evolution of a Rauzy graph of type 7

A graph of type 3 is represented in Figure A.15. The possible evolutions are
represented in Figure A.16.

Figure A.15: Graph of type 7

(a) To a graph of type 1 (b) To a graph of type 7 or 8

(c) To a graph of type 9

Figure A.16: Possible evolutions of a graph of type 7
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A.8 Evolution of a Rauzy graph of type 8

A graph of type 3 is represented in Figure A.17. The possible evolutions are
represented in Figure A.18.

Figure A.17: Graph of type 8

(a) To a graph of type 1 (b) To a graph of type 1

(c) To a graph of type 5 or 6 (d) To a graph of type 7 or 8

(e) To a graph of type 7 or 8 (f) To a graph of type 9

Figure A.18: Possible evolutions of a graph of type 7
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A.9 Evolution of a Rauzy graph of type 9

A graph of type 3 is represented in Figure A.19. The possible evolutions are
represented in Figure A.20.

Figure A.19: Graph of type 9

(a) To a graph of type 1 (b) To a graph of type 5 or 6

(c) To a graph of type 9

Figure A.20: Possible evolutions of a graph of type 9
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A.10 Evolution of a Rauzy graph of type 10

A graph of type 3 is represented in Figure A.21. The possible evolutions are
represented in Figure A.22.

Figure A.21: Graph of type 10

(a) To a graph of type 1 (b) To a graph of type 7 or 8

(c) To a graph of type 10 (d) To a graph of type 10

Figure A.22: Possible evolutions of a graph of type 10
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Appendix B

Computation of length of paths in
Rauzy graphs

To complete the proof of Theorem 5.8.1, we need to be able to compute some
lengths in Rauzy graphs. However, when computing the S-adic representa-
tion of our subshifts, we do not keep track of the order n of Gn. Consequently,
we cannot simply compute the desired Rauzy graph and count the number
of edges in the paths we are interested in. Moreover, that technique would
not be efficient since the Rauzy graphs are getting bigger and bigger, making
them harder to compute. To avoid this problem, we will compute lengths
using the morphisms already computed. In other words, if for instance τ
is a morphism labelling an edge to the vertex 7/8 and coding a loop (i.e.,
containing an exponent k or ℓ), we will express the lengths |u1|, |u2|, |v1| and
|v2| using τ and morphisms preceding τ in the directive word.

Let us introduce some notations. We consider that (γn)n∈N is the sequence
of morphisms as in Theorem 5.8.1 and for all n ≥ 0, we let γ[0,n] denote the
morphism γ0 · · · γn. For any two words (or paths) u and v, we also let CP(u, v)
and CS(u, v) respectively denote the longest common prefix and suffix of u
and v.

The computation of lengths in Rauzy graphs is based on the following
fact which is a direct consequence of the constructions.

Fact B.0.1. Let Gin+1 be a Rauzy graph of a minimal subshift whose first
difference of complexity satisfies 1 ≤ p(n+1)− p(n) ≤ 2 for all n. If γ[0,n] is
the morphism coding the evolution from G0 to Gin+1, then for all x ∈ {0, 1, 2},
we have

γ[0,n](x) = λR,in+1 ◦ ϑin+1(x).

Observe that this result does not hold anymore if we replace γ[0,n] by Γ[0,n].
We will also need the following lemma.
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Lemma B.0.2. Let (X, T ) be a subshift over A. For all words u ∈ L(X),
there is at most one return word r to u such that |w| ≤ |u|

2
. As a corollary,

for all n at most one n-circuit has for length at most n
2
.

Proof. The last part of the lemma is a direct consequence of Remark 3.1.12
(page 81). Let us recall that LRWX(u) and RRWX(u) respectively denote
the set of left and right return words to u. Since for all u ∈ L(X) we have

{|r| | r ∈ LRWX(u)} = {|r| | r ∈ RRWX(u)},

it is sufficient to prove this for left return words.
Let u ∈ L(X) and let r be a return word to u with minimal length. By

definition, u is prefix of ru. Therefore, if |r| ≤ |u|
2

, r is a prefix of u and we can
write u = rkr[1,j] with k ∈ N, k ≥ 1 and j ∈ {0, . . . , |r| − 1}. Consequently,
u is |r|-periodic, i.e., ui+|r| = ui for all i ∈ {1, . . . , |u| − |r|}.

If there is another return word s to u such that |s| ≤ |u|
2

, we deduce
similarly that s is a prefix of u and that u is |s|-periodic. Moreover, since
|s| ≥ |r|, we have s = rqr[1,t] with q ∈ N, q ≥ 1 and t ∈ {0, . . . , |r| − 1}.
By Fine and Wilf’s Theorem (see Theorem 8.1.4 in [Lot02]) the word u is
therefore also p-periodic with p = gcd(|r|, |s|). Consequently, there is a word
v of length p such that u = vlv[1,i] with l ≥ 1 and i ∈ {0, . . . , p− 1}. We also
have r = vm for an integer m ≥ 1. Therefore, the word u is prefix of vu and
does not occur more than twice in vu. So, by definition v is a return word
to u and, by hypothesis on the length of r, we have v = r hence p = |r|.
Thus s = rq so there are q + 1 occurrences of u in su (because u = rkr[1,j]).
Consequently, s is a return word to u if and only if s = r.

B.1 Computation of |u1|, |u2|, |v1| and |v2|
First let us compute the length of paths u1, u2, v1 and v2 in Rauzy graphs as
represented in Figure B.1. We let k denote the exponent k of Lemma 5.6.4,
i.e., k is the number of times the circuit ϑin+1(1) goes through the loop v2u2.

B.1.1 Coming from C1

In the modified graph of graphs (Figure 5.14 on page 172), the unique vertex
in C1 is the vertex 2 and the corresponding graph is represented in Figure B.2.

1. γn = [x, ykzx, (yk−1zx)] with k ≥ 2 coming from the vertex 2. The evo-
lution corresponding to this morphism is represented in Figure A.6(a)
(page 187) with vin+1 corresponding to the right special vertex on the
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R1

L2

R2

L1

v1

v2

u2

u1

Figure B.1: Rauzy graphs of type 7 or 8

Figure B.2: Graph of type 2

top. We immediately obtain |v1| = |v2| = 1, |u1| = |γ[0,n−1](x)| − 1,
|u2| = |γ[0,n−1](y)| − 1 and k = k − 1.

2. γn = [x, zykx, (zyk−1x)] with k ≥ 2 coming from the vertex 2. The evo-
lution corresponding to this morphism is represented in Figure A.6(a)
(page 187) with vin+1 corresponding to the right special vertex at the
bottom. We immediately obtain |v1| = |v2| = 1, |u1| = |γ[0,n−1](x)| − 1,
|u2| = |γ[0,n−1](y)| − 1 and k = k − 1.

3. γn = [x, (yz)kx, ((yz)k−1x)] with k ≥ 2 coming from the vertex 2.
The evolution corresponding to this morphism is represented in Fig-
ure A.6(b) (page 187) with vin+1 corresponding to the right special
vertex on the top. We immediately obtain |v1| = |v2| = 1, |u1| =
|γ[0,n−1](x)| − 1, |u2| = |γ[0,n−1](yz)| − 1 and k = k − 1.

4. γn = [xy, zkxy, (zk−1xy)] with k ≥ 2 coming from the vertex 2. The evo-
lution corresponding to this morphism is represented in Figure A.6(b)
(page 187) with vin+1 corresponding to the right special vertex at the
bottom. We immediately obtain |v1| = |v2| = 1, |u1| = |γ[0,n−1](xy)|−1,
|u2| = |γ[0,n−1](z)| − 1 and k = k − 1.

5. γn = [x, (yz)kyx, ((yz)k−1yx)] with k ≥ 1 coming from the vertex 2.
The evolution corresponding to this morphism is represented in Fig-
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ure A.6(c) (page 187) with vin+1 corresponding to the right special ver-
tex on the top. We immediately obtain |v1| = 1, |v2| = |γ[0,n−1](z)|+1,
|u1| = |γ[0,n−1](x)| − 1, |u2| = |γ[0,n−1](y)| − 1 and k = k.

6. γn = [xy, zky, (zk−1y)] with k ≥ 2 coming from the vertex 2. The evo-
lution corresponding to this morphism is represented in Figure A.6(c)
(page 187) with vin+1 corresponding to the right special vertex at the
bottom. We immediately obtain |v1| = |γ[0,n−1](x)| + 1, |v2| = 1,
|u1| = |γ[0,n−1](y)| − 1, |u2| = |γ[0,n−1](z)| − 1 and k = k − 1.

7. γn = [zℓx, yzkx, yzk−1x] with k − 1 > ℓ ≥ 1 coming from the vertex 2.
The sequence of evolutions corresponding to that morphisms is the fol-
lowing. First, the graph evolves to a graph of type 4 as in Figure A.5(c)
(page 186) such that ϑin+1(0) and ϑin+1(1) go respectively k − 1 and
ℓ − 1 times through the loop. Then, the graph becomes a graph as in
Figure A.9 and it evolves ℓ− 1 times as represented in Figure A.10(c).
Finally, it evolves to a a graph of type 7 or 8 as in Figure A.10(e).
It is obviously seen that we have |v2| = 1, |u2| = |γ[0,n−1](z)| − 1 and
|u1|+ |v1| = |γ[0,n−1](z

ℓx)|. Moreover, the path in Figure A.9 that will
become u1 corresponds to the segment which is not curved. After the
first evolution (from 2 to 4), this path has for length |γ[0,n−1](z)| (check
in Figure A.5(c)) and at each evolution to a graph of type 4 (as in
Figure A.10(c)), its length increases by |γ[0,n−1](z)|. With the last evo-
lution, we obtain |u1| = ℓ|γ[0,n−1](z)| + 1. Finally we can check that
k = k − ℓ− 1.

8. γn = [yzℓx, zkx, zk−1x] with k − 1 > ℓ ≥ 1 coming from the vertex 2.
The computation is the same as for the previous morphism. In this case
we obtain |v2| = 1, |u2| = |γ[0,n−1](z)| − 1, |u1| + |v1| = |γ[0,n−1](yz

ℓx)|,
|u1| = |γ[0,n−1](y)|+ ℓ|γ[0,n−1](z)| + 1 and k = k − ℓ− 1.

9. γn = [y(xy)ℓz, (xy)kz, (xy)k−1z] with k − 1 > ℓ ≥ 1 coming from the
vertex 2. The sequence of evolutions corresponding to that morphisms
is the following. First, the graph evolves to a graph of type 10 as in
Figure A.6(d) (page 187) such that ϑin+1(0) and ϑin+1(1) go respectively
k−1 and ℓ times through the loop. Then, the graph becomes a graph as
in Figure A.21 and it evolves 2ℓ times as represented in Figure A.22(c).
Finally, it evolves to a a graph of type 7 or 8 as in Figure A.22(b).
It is obviously seen that we have |u1| + |v1| = |γ[0,n](0)| and |u2| +
|v2| = |γ[0,n−1](xy)|. In Figure A.21, the path that will become u1 is the
segment from the bispecial vertex to the right special vertex. Once the
graph has evolved as in Figure A.6(d), it has for length |γ[0,n−1](z)| and
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we can see in Figure A.22(c) that, during the 2ℓ evolutions to graphs
of type 10, it keeps the same length. With the final evolution as in
Figure A.22(b), we obtain |u1| = |γ[0,n−1](z) − 1|. For |u2| and |v2|,
we see in Figure A.21 that the path that will become u2 is the path
from the left special vertex to the bispecial vertex. Once the graph
has evolved as in Figure A.6(d), we also see that it has for length
|γ[0,n−1](x)|. Then, when the graph evolves as in Figure A.22(c), we see
that the path that will become u2 and v2 always keep the same length
but are exchanged at each time. However, since this evolution occurs
2ℓ times, we obtain (with the last evolution) |u2| = |γ[0,n−1](x)−1|. We
finally have k = k − ℓ− 1.

10. γn = [(xy)kz, y(xy)ℓz, y(xy)ℓ−1z] with ℓ > k ≥ 1 coming from the
vertex 2. The computation is the same as for the previous morphism.
We still have |u1| + |v1| = |γ[0,n](0)|, |u2| + |v2| = |γ[0,n−1](xy)| and
|u1| = |γ[0,n−1](z) − 1|. However, once the graph has evolved as in
Figure A.6(d), it evolves an odd number of times as in Figure A.22(c)
(2(k−1)+1 times). Consequently we have |v2| = |γ[0,n−1](x)−1| instead
of |u2|. We also have k = ℓ− k.

B.1.2 Coming from C2

For that kind of evolutions, we need to know the length of the path from
the left special vertex to the right special vertex in Figure A.7. Indeed, for
instance in Figure A.8(e), we see that this path will become either u1 or u2,
depending on the choice of the starting vertex vin+1. This is achieved by the
following lemma.

Lemma B.1.1. Let Gin be a Rauzy graph of type 3 and let γ[0,n−1] be the mor-
phism coding the evolution from G0 to Gin. Suppose that {x, y, z} = {0, 1, 2}
and that ϑin(x) is the top loop in Figure A.7. Let also M be the length of the
longest in+1-circuit. If i and j are such that min{|γ[0,n−1](x

i)|, |γ[0,n−1](y
j)|} ≥

2M , then the path from the left special vertex to the bispecial vertex has for
length

|CS(γ[0,n−1](y), γ[0,n−1](z))| − |CS(γ[0,n−1](x
i), γ[0,n−1](y

j))|.

Proof. Indeed, by Proposition 1.5.5 (page 37) we immediately deduce that
the length of the path from the left special vertex to the bispecial vertex is

|CS(γ[0,n−1](y), γ[0,n−1](z))| − in.
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Consequently, it suffices to prove that in = |CS(γ[0,n−1](x
i), γ[0,n−1](y

j))|.
By Lemma B.0.2 we know that 2M is greater than in and that so are
|γ[0,n−1](x

i))| and |γ[0,n−1](y
j))|. Consequently, Proposition 1.5.5 implies that

both γ[0,n−1](x
i)) and γ[0,n−1](y

j)) admit the bispecial vertex B as a suffix.
Moreover, it is easily seen that if they have a longer common suffix, B would
not be bispecial so the result holds.

In this section, we let q denote the path from the left special vertex to
the bispecial vertex in Figure A.7.

1. γn = [i, xyki, xyk−1i] with k ≥ 1 coming from the vertex Vi, i ∈ {0, 1, 2}.
The evolution corresponding to that morphism is represented in Fig-
ure A.8(e) with vertex vin+1 corresponding to the right special vertex
on the top. In that case we immediately have |u1| = |γ[0,n−1](i)| − 1,
|v1| = 1, |u2|+ |v2| = |γ[0,n−1](y)| and |u2| = |q|−1. We also have k = k.

2. γn = [x, iky, ik−1y] with k ≥ 2 coming from the vertex Vi, i ∈ {0, 1, 2}.
The evolution corresponding to that morphism is represented in Fig-
ure A.8(e) with vertex vin+1 corresponding to the right special vertex
at the bottom. In that case we immediately have |u2| = |γ[0,n−1](i)| − 1,
|v2| = 1, |u1| + |v1| = |γ[0,n−1](x)| and |u1| = |q| − 1. We also have
k = k − 1.

3. γn = [xyℓi, yki, yk−1i] with k−1 > ℓ ≥ 0 coming from the vertex Vi, i ∈
{0, 1, 2}. The sequence of evolutions corresponding to that morphism
is the following. First the graph evolves to a graph of type 10 as in
Figure A.8(f) with starting vertex corresponding to the right special
vertex on the top. Then, the graph becomes a graph as in Figure A.21
and evolves 2ℓ times to graphs of type 10 as in Figure A.22(c). Finally,
the graph evolves as in Figure A.22(b). For this morphism, we directly
see that |u1| + |v1| = |γ[0,n](0)| and that |u2| + |v2| = |γ[0,n−1](y)|. We
also see in Figure A.21 that the path that will become u2 is the path
from the left special vertex to the bispecial vertex. Once the graph
has evolved as in Figure A.8(f), we see that this path has for length
|γ[0,n−1](y)| − |q| − 1. Then, we see that its length is unchanged after 2
evolutions as in Figure A.22(c) (such an evolution exchanged the curved
part of the loop in Figure A.21 with the other part). Consequently, we
obtain |u2| = |γ[0,n−1](y)|− |q|−1. Next, in Figure A.21 we see that the
path that will become u1 is the segment from the bisepcial vertex to the
right special vertex. Once the graph has evolved as in Figure A.8(f),
we see that it has for length |γ[0,n−1](i)|. We also see in Figure A.22(c)
that it keeps the same length while these 2ℓ evolutions. While the last
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evolution as in Figure A.22(b), we have |u1| = |γ[0,n−1](i)| − 1. Finally,
we have k = k − ℓ− 1.

4. γn = [yki, xyℓi, xyℓ−1i] with ℓ > k ≥ 1 coming from the vertex Vi, i ∈
{0, 1, 2}. The computation is the same as for the previous morphism.
In this case we still have |u1|+ |v1| = |γ[0,n](0)|, |u2|+ |v2| = |γ[0,n−1](y)|
and |u1| = |γ[0,n−1](i)| − 1. However, in this case the graph evolves an
odd number of times as in Figure A.22(c) (2(k − 1) + 1 times) so we
have |v2| = |γ[0,n−1](y)| − |q| − 1 instead of |u2|. We also have k = ℓ− k.

B.1.3 Coming from C3

1. γn = [0, xky0, xk−1y0] with k ≥ 1 coming from the vertex 4B. The evo-
lution corresponding to that morphism is represented in Figure A.10(e).
In this case we immediately obtain |u1| = |γ[0,n−1](0) − 1|, |v1| = 1,
|u2| + |v2| = |γ[0,n−1](x)|, |u2| = |CP(γ[0,n−1](x), γ[0,n−1](y))| − 1 and
k = k.

2. γn = [xℓy, 0xky, 0xk−1y] with k − 1 > ℓ ≥ 0 coming from the vertex
4B. The sequence of evolutions corresponding to that morphism is the
following: first the graph evolves to graph of type 4 as in Figure A.10(d).
Then it becomes a graph as in Figure A.9 such that the starting vertex
is not the bispecial vertex. It then evolves ℓ times as in Figure A.10(c)
and finally evolves as in Figure A.10(e). It is obviously seen that we
have |u1| + |v1| = |γ[0,n](0)|, |u2| = |γ[0,n−1](x)| − 1 and that |v2| = 1.
We also see that the path in Figure A.9 that will become u1 is the
segment from the bispecial vertex to the right special vertex. We see
in Figure A.10(c) that, during this evolution, it always keeps the same
length. So, its has the same length than the path in Figure A.10(d)
from the leftmost right special vertex to the right special vertex on the
top. This path has for length |γ[0,n−1](y)| − |CP(γ[0,n−1](x), γ[0,n−1](y))|.
With the last evolution (as in Figure A.10(e)), we finally obtain |u1| =
|γ[0,n−1](y)|−|CP(γ[0,n−1](x), γ[0,n−1](y))|−1. We also have k = k−1−ℓ.

3. γn = [0xℓy, xky, xk−1y] with k − 1 > ℓ ≥ 0 coming from the vertex
4B. The computation and the lengths are exactly the same as for the
previous morphism.

4. γn = [(x0)ℓy, 0(x0)ky, 0(x0)k−1y] with k > ℓ ≥ 0 coming from the
vertex 4B. The sequence of evolutions corresponding to that morphism
is the following. First the graph evolves to a graph of type 10 as in
Figure A.10(f) and becomes a graph as in Figure A.21 such that the
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starting vertex is not the bispecial one. Then, the graph evolves 2ℓ times
as in Figure A.22(c) and it finally evolves as in Figure A.22(b). We
immediately have |u1|+ |v1| = |γ[0,n](0)| and |u2|+ |v2| = |γ[0,n−1](x0)|.
Moreover, we see that the path in Figure A.21 that will become u1 is
the segment from the bispecial vertex to the right special vertex. Once
the graph has evolved as in Figure A.10(f), we see that this path has for
length |CP(γ[0,n−1](x), γ[0,n−1](y))|. Then, we see in Figure A.22(c) that
after 2 such evolutions, this path still have the same length (the two
segments starting from the right special vertex which is not bispecial
get simply exchanged). Consequently, it still have the same length
after the 2ℓ evolutions to graphs of type 10. With the last evolution
as in Figure A.22(b) we obtain |u1| = |CP(γ[0,n−1](x), γ[0,n−1](y))| − 1.
We see that the paths in Figure A.21 that will become u2 and v2 are
respectively the path q from the left special vertex to the bispecial
vertex and the path q′ from the bispecial vertex to the left special
vertex. Once the graph has evolved as in Figure A.10(f), the path
that will become q has for length |γ[0,n−1](0)|. Then, at each evolution
as in Figure A.22(c), q and q′ are exchanged. As there is an even
number of such evolutions, we finally get (after the last evolution as in
Figure A.22(b)) |u2| = |γ[0,n−1](0)| − 1. We also have k = k − ℓ.

5. γn = [0(x0)ky, (x0)ℓy, (x0)ℓ−1y] with ℓ − 1 > k ≥ 0 coming from the
vertex 4B. The computation is the same as for the previous morphism.
In this case we still have |u1|+|v1| = |γ[0,n](0)|, |u2|+|v2| = |γ[0,n−1](x0)|
and |u1| = |CP(γ[0,n−1](x), γ[0,n−1](y))| − 1. For u2, in this case the
graph evolves an odd number of times as in Figure A.22(c) so we have
|v2| = |γ[0,n−1](0)| − 1 instead of |u2|. We also have k = ℓ− k − 1.

B.1.4 Coming from C4

To compute lengths in this component, we have to be careful with the vertex
5/6. Indeed, this vertex corresponds to the evolution from a graph of type
5 or 6 depending on the length of p1 and p2 in Figure 5.7(a) (page 153).
To clearly explain how graphs evolve and how we compute lengths, we will
always consider that the starting graph is of type 6. The reader is invited to
check that all computations also hold when the graph is of type 5.

In the computations given below, we sometimes need to know the order
of the starting Rauzy graph when it is of type 10. For this type of graph, we
also need to know the length of the simple path from the left special vertex
to the bispecial vertex. These information are given in the following lemma
whose proof is similar to the proof of Lemma B.1.1 and left to the reader.
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Lemma B.1.2. Let Gin be a Rauzy graph of type 10 as in Figure A.21. Let
γ[0,n−1] be the morphism coding the evolution from G0 to Gin and suppose that
vin is the bispecial vertex. If x ∈ {0, 1, 2} is such that |ϑin(x)| = max{|ϑin(i)| |
i ∈ {0, 1, 2}} and if l0, l1 and l2 are the smallest positive integers such that

min{li|γ[0,n−1](i)| | i ∈ {0, 1, 2}} ≥ 2|γ[0,n−1](x)|,

then we have
in =

∣
∣CS

(
γ[0,n−1](1

l1), γ[0,n−1](2
l2)
)∣
∣ .

Moreover, the simple path from the left special vertex to the bispecial vertex
in Gin has for length

∣
∣CS

(
γ[0,n−1](0

l0), γ[0,n−1](1
l1)
)∣
∣− in.

Now let us compute the lengths |u1|, |u2|, |v1| and |v2|.

1. γn = [x, ykx, yk−1x] with k ≥ 2 coming from the vertex 1 or from
the vertex 5/6. The evolutions corresponding to that morphism are
represented in Figure A.2(b) and in Figure A.14(b). We can easily see
that |u1| = |γ[0,n−1](x)|−1, |v1| = 1, |u2| = |γ[0,n−1](y)|−1 and |v2| = 1.
We also have k = k − 1.

2. γn = [1, 0k2, (0k−12)] with k ≥ 1 coming from the vertex 5/6. For
this evolution, we directly have |u1| + |v1| = |γ[0,n](0)|, |u2| + |v2| =
|γ[0,n−1](0)|, |u2| = |CP(γ[0,n−1](0), γ[0,n−1](2))| − 1, |u1| = |γ[0,n−1](2)| −
|CP(γ[0,n−1](0), γ[0,n−1](2))| − 1 and k = k.

3. γn = [2ℓ0, 12k0, (12k−10)] with k > ℓ ≥ 0 coming from the vertex
5/6. The sequence of evolutions corresponding to that morphism is
the following. First the graph evolves to a graph of type 10 as in
Figure A.14(d) and becomes a graph as in Figure A.21 such that the
starting vertex is not the bispecial one. Then, the graph evolves 2ℓ
times as in Figure A.22(c) and it finally evolves as in Figure A.22(b).
We immediately have |u1|+|v1| = |γ[0,n](0)| and |u2|+|v2| = |γ[0,n−1](2)|.
Moreover, we see that the path in Figure A.21 that will become u1 is
the segment from the bispecial vertex to the right special vertex. Once
the graph has evolved as in Figure A.14(d), we see that this path has for
length |γ[0,n−1](0)| − |CP(γ[0,n−1](0), γ[0,n−1](1))|. Then, we see in Fig-
ure A.22(c) that after two such evolutions, this path still have the same
length (because with such an evolution, the two segments starting from
the right special vertex which is not bispecial simply get exchanged).
Consequently, it still have the same length after the 2ℓ evolutions to
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graphs of type 10. With the last evolution as in Figure A.22(b) we ob-
tain |u1| = |γ[0,n−1](0)| − |CP(γ[0,n−1](0), γ[0,n−1](2))| − 1. For u2 and v2
we see that the paths in Figure A.21 that will become them are respec-
tively the path q from the left special vertex to the bispecial vertex and
the path q′ from the bispecial vertex to the left special vertex. Once the
graph has evolved as in Figure A.14(d), the path that will become q has
for length |γ[0,n−1](2)| − |CP(γ[0,n−1](0), γ[0,n−1](2))|. Then, at each evo-
lution as in Figure A.22(c), q and q′ are exchanged. Since there are an
even number of such evolutions, we finally get (after the last evolution
as in Figure A.22(b)) |u2| = |γ[0,n−1](2)|−|CP(γ[0,n−1](0), γ[0,n−1](2))|−1.
We also have k = k − ℓ.

4. γn = [12k0, 2ℓ0, (2ℓ−10)] with ℓ > k + 1 ≥ 1 coming from the vertex
5/6. The computation is the same as for the previous morphism. In
this case we still have |u1| + |v1| = |γ[0,n](0)|, |u2| + |v2| = |γ[0,n−1](2)|
and |u1| = |γ[0,n−1](0)| − |CP(γ[0,n−1](0), γ[0,n−1](2))| − 1. For u2, in this
case the graph evolves an odd number of times as in Figure A.22(c) so
we have |v2| = |γ[0,n−1](2)| − |CP(γ[0,n−1](0), γ[0,n−1](2))| − 1 instead of
|u2|. We also have k = ℓ− k − 1.

5. γn = [0, 2k1, 2k−11] with k ≥ 1 coming from the vertex 10B. The evolu-
tion corresponding to that morphism is represented in Figure A.22(b).
We immediately see that |u1|+|v1| = |γ[0,n](0)|, |u1|+|v1| = |γ[0,n−1](2)|,
|u2| = |CP(γ[0,n−1](1), γ[0,n−1](2))| − 1. Moreover, by Lemma B.1.2 we
have (with the same notation) |u1| =

∣
∣CS

(
γ[0,n−1](0

l0), γ[0,n−1](1
l1)
)∣
∣ −

∣
∣CS

(
γ[0,n−1](1

l1), γ[0,n−1](2
l2)
)∣
∣− 1. We also have k = k.

6. γn = [1ℓ2, 01k2, (01k−12)] with k > ℓ ≥ 0 coming from the vertex
10B. The sequence of evolutions corresponding to that morphism is
the following. First the graph evolves to a graph of type 10 as in
Figure A.22(d) and becomes a graph as in Figure A.21 such that the
starting vertex is not the bispecial one. Then, the graph evolves 2ℓ
times as in Figure A.22(c) and it finally evolves as in Figure A.22(b).
We immediately have |u1|+|v1| = |γ[0,n](0)| and |u2|+|v2| = |γ[0,n−1](1)|.
Moreover, we see that the path in Figure A.21 that will become u1 is
the segment from the bispecial vertex to the right special vertex. Once
the graph has evolved as in Figure A.22(d), we see that this path has for
length |γ[0,n−1](2)| − |CP(γ[0,n−1](1), γ[0,n−1](2))|. Then, we see in Fig-
ure A.22(c) that after two such evolutions, this path still have the same
length (because with such an evolution, the two segments starting from
the right special vertex which is not bispecial simply get exchanged).
Consequently, it still has the same length after the 2ℓ evolutions to
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graphs of type 10. With the last evolution as in Figure A.22(b) we ob-
tain |u1| = |γ[0,n−1](2)| − |CP(γ[0,n−1](1), γ[0,n−1](2))| − 1. We see in Fig-
ure A.21 that the paths that will become u2 and v2 are respectively the
path q from the left special vertex to the bispecial vertex and the path q′

from the bispecial vertex to the left special vertex. Once the graph has
evolved as in Figure A.22(d), we know from Lemma B.1.2 that q has for
length

∣
∣CS

(
γ[0,n−1](0

l0), γ[0,n−1](1
l1)
)∣
∣−
∣
∣CS

(
γ[0,n−1](1

l1), γ[0,n−1](2
l2)
)∣
∣.

Then, at each evolution as in Figure A.22(c), q and q′ are exchanged. As
there are an even number of such evolutions, we finally get (after the last
evolution as in Figure A.22(b)) |u2| =

∣
∣CS

(
γ[0,n−1](0

l0), γ[0,n−1](1
l1)
)∣
∣−

∣
∣CS

(
γ[0,n−1](1

l1), γ[0,n−1](2
l2)
)∣
∣− 1. We also have k = k − ℓ.

7. γn = [01k2, 1ℓ2, (1ℓ−12)] with ℓ > k+1 ≥ 1 coming from the vertex 10B.
The computation is the same as for the previous morphism. In this case
we still have |u1|+ |v1| = |γ[0,n](0)|, |u2|+ |v2| = |γ[0,n−1](1)| and |u1| =
|γ[0,n−1](2)| − |CP(γ[0,n−1](1), γ[0,n−1](2))| − 1. For u2, in this case the
graph evolves an odd number of times as in Figure A.22(c) so we have
|v2| =

∣
∣CS

(
γ[0,n−1](0

l0), γ[0,n−1](1
l1)
)∣
∣−
∣
∣CS

(
γ[0,n−1](1

l1), γ[0,n−1](2
l2)
)∣
∣−

1 instead of |u2|. We also have k = ℓ− k − 1.

B.2 Computation of |p1| and |p2|
The aim of this section is to compute the length of the paths p1 and p2 of
Figure 5.7(a) when evolving to such a graph, i.e., when considering an edge
to the vertex 5/6 in Figure 5.12. These lengths do not only depend on the
last morphism applied but on a finite number of morphisms. First, the next
lemma shows how to compute these lengths when passing through the vertex
7/8 in Figure 5.12. The other cases will be particular cases of this one.
Indeed, morphisms labelling the loop on vertex 5/6 in Figure 5.12 are simply
compositions of the morphism [1, 0k2, 0k−12] (labelling the edge from 5/6 to
7/8) with a morphism in {[0x, y, 0y], [x, 0y, y]} (labelling the edge from 7/8 to
5/6). In other words, it simply corresponds to the case h = 0 in Lemma B.2.1
below. For morphisms labelling the edge from 10B to 5/6 in Figure 5.12, the
reasoning is the same but this time, the morphisms labelling the edge from
10B to 5/6 are compositions of the morphism [0, 2k1, 2k−11] (labelling the
edge from 10B to 7/8) with a morphism in {[0x, y, 0y], [x, 0y, y]} (labelling
the edge from 7/8 to 5/6).

Lemma B.2.1. Let Gin+1 be a Rauzy graph as represented in Figure 5.7(b)
(page 153) and let γ[0,n−1] be the morphism coding the evolution from G0

to Gin+1 (so to Gin+1). Suppose that vin+1 corresponds to the vertex R1 in
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Figure 5.7(b) and that the circuit ϑin+1(1) goes exactly k times through the
loop v2u2.

Let ℓ be the unique integer such that

|u1|+ (ℓ− 1)(|u1|+ |v1|) < |u2|+ (k − 1)(|u2|+ |v2|) ≤ |u1|+ ℓ(|u1|+ |v1|)

and let h be the greatest integer such that for all i ∈ {0, . . . , h− 1}, γn+i ∈=
[0, 10, 20]. Suppose that γn+h labels the edge from 7/8 to 5/6 (so belongs
to {[0x, y, (0y)], [x, 0y, (y)] | {x, y} = {1, 2}}), then Gin+h+1 is a graph as
represented in Figure 5.7(a) (page 153) and the lengths of p1 and p2 are as
follows.

If h < ℓ, we have

|p1| =
∣
∣CP

(
γ[0,n−1](1), γ[0,n−1](2)

)∣
∣− (k − 1− k′)(|u2|+ |v2|)

−(|u2|+ k′(|u2|+ |v2|)− (|u1|+ h(|u1|+ |v1|)))− 1

|p2| = |γ[0,n−1](2)| −
∣
∣CP

(
γ[0,n−1](1), γ[0,n−1](2)

)∣
∣− 1

and if h ≥ ℓ, we have

|p1| =
∣
∣CP(γ[0,n−1](1), γ[0,n−1](2))

∣
∣− 1

|p2| =
∣
∣γ[0,n−1](2)

∣
∣−
∣
∣CP(γ[0,n−1](1), γ[0,n−1](2))

∣
∣

−(|u1|+ ℓ(|u1|+ |v1|)− (|u2|+ (k − 1)(|u2|+ |v2|)))− 1.

Proof. Let us recall notation introduced in the proof of Lemma 5.6.4. For
all non-negative integers i and j, B1(i) and B2(j) are respectively the words
λ(u1(v1u1)

i) and λ(u2(v2u2)
j). For j ∈ {0, . . . , k − 1}, B2(j) is a bispecial

vertex in G|B2(j)| and B2(k) does not belong to the language of the considered
subshift. Also, for all non-negative integers i, if B1(i) is in the language of
the considered subshift, then it is a bispecial vertex in G|B1(i)|.

Now let us determine the sequence of evolutions corresponding to the
sequence of morphisms (γm)n≤m≤n+h. The graph Gt will evolve to a graph
of type 7 or 8 depending on |u1| and |v1|. Thanks to Lemma 5.4.1 we can
suppose without loss of generality that it evolves to a graph of type 7.

Let us start studying the behaviours of vertices B2(j). The hypothesis on
ϑt(1) implies that for all j ∈ {0, . . . , k−2}, B2(j) will explode as represented
in Figure 5.8(b) (page 156). Then, the hypothesis on γn+h implies that B2(k−
1) will explode as in Figure 5.8(d) (because there are three distinct letters in
its images).

Now let us study the behaviours of vertices B1(i). By constructions of
the morphisms γm, for i ∈ {0, . . . , h}, the hypothesis on γn+i implies that
B1(i) is a bispecial vertex of the subshift and that for i ∈ {0, . . . , h − 1},
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B1(i) explodes like B2(j) does in Figure 5.8(b). However, the hypothesis on
ℓ implies that at most the first ℓ vertices among B1(0), . . . , B1(h) can explode
strictly before that B2(k− 1) explodes. Also, the hypothesis on γn+h implies
that B1(h) explodes like B2(j) does in Figure 5.8(d).

Now let us exactly describe the sequence of evolution depending on h and
ℓ.

When h < ℓ, vertex B1(h) explodes before B2(k − 1). Let k′ be the
smallest integer such that |B2(k

′)| ≥ |B1(h)|. We obviously have k′ ≤ k − 1.
Then, all bispecial vertices B1(0), . . . , B1(h−1), B2(0), . . . , B2(k

′−1) explode
and make the graph keeping type 7 or 8. Then, the explosion of B1(h) makes
the graph G|B1(h)| evolve as represented in1 Figure A.16(c) (page 194) so the
graph evolves to a graph of type 9 as in Figure A.19. Then, the explosions
of B2(k

′), . . . , B2(k− 2) make the graph evolve as in Figure A.20(c). Finally,
the explosion of B2(k − 1) makes the graph evolve as in Figure A.20(b).

When h ≥ ℓ, it means that vertex B1(h) will not explode strictly before
that B2(k − 1) explodes. In that case, Lemma 5.4.1 allows us to suppose
that B1(ℓ) explodes strictly after that B2(k − 1) has exploded and, as a
consequence, that so does B1(h). Consequently, vertices B1(0), . . . , B1(ℓ −
1), B2(0), . . . , B2(k−2) explode and make graphs keeping type 7 or 8. Then,
the explosion of B2(k − 1) makes the graph G|B2(k−1)| evolve as in Fig-
ure A.16(c) so it evolves to a graph of type 9 as in Figure A.19. Then, vertices
B1(ℓ), . . . , B1(h−1) make graphs keeping type 9 as in Figure A.20(c). Finally,
the explosion of B1(h) makes the graph G|B1(h)| evolve as in Figure A.20(b).

Now let us compute |p1| and |p2|. In Figure A.20(b), we see that the
two paths in Figure A.19 that will become p1 and p2 are the path from the
left special vertex to the bispecial vertex and the path from the bispecial
vertex to the right special vertex2. In Figure A.20(c), we also see that, while
graphs keep being graphs of type 9, these paths always have the same length
(because, in Figure A.20(c), they are paths from a left special vertex to a left
special vertex and from a right special vertex to a right special vertex to a
right special vertex). Consequently, the lengths of the paths in Figure A.19
that will become p1 and p2 can be computed in the evolution from the last
graph of type 7 to the first graph of type 9, i.e., in the evolution of G|B1(h)|

when h < ℓ and of G|B2(k−1)| otherwise.
Suppose that h is smaller than ℓ. It means that G|B1(h)| is a graph of type

7 as represented in Figure A.15 v|B1(h)| = B1(h) is the bispecial vertex. It is
easily seen that in Figure A.15, the path from the left special vertex to the

1Thanks to Lemma 5.4.1, we can still suppose that the graph os of type 7.
2Which one is p1 depends on the starting vertex for the circuits.
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right special vertex has for length

|B2(k
′)| − |B1(h)| = |u2|+ k′(|u2|+ |v2|)− (|u1|+ h(|u1|+ |v1|)).

We also see in Figure A.16(c) that the path in G|B1(h)| that will become p1
(resp. that will become p2) is the path from B1(h) to the left special vertex
(resp. from the right special vertex to B1(h)). Consequently, we directly
have

|p2| = |γ[0,n−1](2)| −
∣
∣CP

(
γ[0,n−1](1), γ[0,n−1](2)

)∣
∣− 1.

To compute, |p1|, we can notice that the longest common prefix of ϑt(1) and
ϑt(2) has the same length as the path starting from B1(h), going k − 1− k′

times through the loop with label λL(v2u2) and ending in the right special
vertex which is not B1(h). Consequently, the path from B1(h) to the left
special vertex has for length
∣
∣CP

(
γ[0,n−1](1), γ[0,n−1](2)

)∣
∣− (k − 1− k′)(|u2|+ |v2|)− (|B2(k

′)| − |B1(h)|)

so

|p1| =
∣
∣CP

(
γ[0,n−1](1), γ[0,n−1](2)

)∣
∣− (k − 1− k′)(|u2|+ |v2|)

−(|u2|+ k′(|u2|+ |v2|)− (|u1|+ h(|u1|+ |v1|)))− 1

Now suppose that h is not smaller than ℓ. It means that G|B2(k−1)| is a
graph of type 7 as represented in Figure A.15 v|B2(k−1)| is not the bispecial
vertex. It is easily seen that in Figure A.15, the path from the left special
vertex to the right special vertex has for length

|B1(ℓ)| − |B2(k − 1)| = |u1|+ ℓ(|u1|+ |v1|)− (|u2|+ (k − 1)(|u2|+ |v2|)).

From what precedes, we know that the paths in G|B2(k−1)| that will become
p1 and p2 are respectively the segment from v|B2(k−1)| to B2(k − 1) and the
path from B2(k−1) to the left special vertex. Consequently, we directly have

|p1| =
∣
∣CP(γ[0,n−1](1), γ[0,n−1](2))

∣
∣− 1

and

|p2| =
∣
∣γ[0,n−1](2)

∣
∣−
∣
∣CP(γ[0,n−1](1), γ[0,n−1](2))

∣
∣

−(|u1|+ ℓ(|u1|+ |v1|)− (|u2|+ (k − 1)(|u2|+ |v2|)))− 1.
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Proof of Lemma 5.6.7

Let us prove the following result which is equivalent to Lemma 5.6.7 but with
more details.

Lemma C.0.2. A sequence of morphisms (γn)n≥N labelling an infinite path p
in Figure 5.11 is almost primitive if and only if one of the following conditions
is satisfied:

1. p ultimately stays in vertex 1 and both morphisms [0, 10] and [01, 1]
occur infinitely often in (γn)n≥N ;

2. p ultimately stays in vertex 10B and for all integers r ≥ N , (γ)n≥r does
not only contain occurrences of [0, 20, 1], neither of [01k2, 1k+12, 1k2] for
k ∈ N and is not only composed of finite sub-sequences of morphisms
in

{
[0, 20, 1]2n, [02, 12, 2]n | n ∈ N \ {0}

}
;

3. p ultimately stays in the subgraph {1, 7/8}, goes through both vertices
infinitely often and for all suffixes p′ of p starting in vertex 7/8, the
label of p′ is not only composed of finite sub-sequences of morphisms in
(
[0, 10]∗[0, 1][0, 10]∗{[0, 1k0] | k ≥ 2}

)

∪
(
[0, 10]∗[1, 0][01, 1]∗{[1, 0k1] | k ≥ 2}

)
;

4. p ultimately stays in the subgraph {5/6, 7/8}, goes through both vertices
infinitely often and for all suffixes p′ of p starting in vertex 7/8, the
label of p′ is not only composed of finite sub-sequences of morphisms in

[0, 10, 20]∗ {[1, 02, 2], [01, 2, 02]} [1, 02, 2]
and not only composed of finite sub-sequences of morphisms in

{[2, 01, 1], [1, 02, 2]}
{
[1, 0k2, 0k−12], [12k−10, 2ℓ0, 2ℓ−10] | ℓ > k ≥ 1

}
;
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5. p ultimately stays in the subgraph {5/6, 7/8, 10B}, goes through the
three vertices infinitely often and if (qn)n∈N (resp. (tn)n∈N) is the se-
quence of finite sub-paths or p that start and end in 7/8 and go through
10B (resp. that start and end in 7/8 and do not go through 10B), then
for all integers r ≥ N , the following holds true:

- if for all n ≥ r, the label of qn is in

{[1, 02, 2], [01, 2, 02]}[1, 01, 2]{[0, 20, 1]2n, [02, 12, 2] | n ∈ N}∗
{[2, 012, 02], [0, 20, 1][0, 21, 1]},

then the sequence (tn)n∈N is infinite and contains infinitely many
occurrences of finite paths whose label is not in

{[1, 02, 2], [01, 2, 02]} [1, 02, 2];

- if for all n ≥ r, the label of qn is in

{[1, 02, 2], [2, 01, 1]}{[12k0, 2k+10, 2k0] | k ≥ 0}
{[01k2, 1k+12, 1k2] | k ≥ 0}{[0, 2k1, 2k−11] | k ≥ 2},

then the path p goes infinitely often through the loop on 7/8 or,
the sequence (tn)n∈N is infinite and contains infinitely many oc-
currences of finite paths whose label is not in

{[2, 01, 1], [1, 02, 2]}
{
[1, 0k2, 0k−12], [12k−10, 2ℓ0, 2ℓ−10] | ℓ > k ≥ 1

}
;

6. p contains infinitely many occurrences of sub-paths q that start in 1 and
end in 5/6.

Proof. The method to prove this result is to study the almost primitivity in
each subgraph of Figure 5.11. Among all these subgraphs, those in which
there exist some infinite paths are

{1}, {7/8}, {10B}, {1, 7/8}, {5/6, 7/8},
{1, 5/6, 7/8}, {5/6, 7/8, 10B} and {1, 5/6, 7/8, 10B}.

It is easily seen that all valid paths in the subgraph {7/8} do not have
almost primitive labels. Also, for the subgraphs {1}, {10B}, the given con-
ditions of the result are trivially equivalent to the almost primitivity.
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Let us study the subgraph {1, 7/8}. If q is a path starting in vertex 7/8,
going through vertex 1, possibly staying in it for a while and then coming
back to vertex 7/8, then its label belongs to the set

Q = {[x, y][x, yx], [xy, y] | {x, y} = {0, 1}} {[0, 10], [01, 1]}∗
{
[0, 1k0, 1k−10], [1, 0k1, 0k−11] | k ≥ 2

}
.

If p ultimately stays in the subgraph {1, 7/8}, it means that its label is
ultimately composed of finite subsequences of morphisms in that set and
of occurrences of the morphism [0, 10, 20] labelling the loop on vertex 7/8.
However, morphisms labelling the edge from 7/8 to 1 do not contain the letter
2 in their images. Consequently, the third component of all morphisms can
be ignored. Now it can be checked that for all finite sequences of morphisms
γ1 · · · γm in Q, γ1 · · · γm(1) contains some occurrences of both 0 and 1. Since
the morphism labelling the loop on 7/8 is [0, 10], the label (γn)n≥N of any
infinite path p in {1, 7/8} is not almost primitive if and only if there is an
integer r ≥ N such that for all n ≥ r, γrγr+1 · · · γn(0) = 0. To conclude the
proof for the subgraph {1, 7/8}, it suffices to notice that the finite sequences
of morphisms γ′1 · · · γ′m in

[0, 1][0, 10]∗[0, 1k0] ∪ [1, 0][01, 1]∗[1, 0k1]

are the only ones in Q such that γ′1 · · · γ′m(0) = 0.

Let us study the subgraph {5/6, 7/8}. For any word u over {0, 1, 2} we let
Alph(u) be the smallest lexicographic word over {0, 1, 2} such that all letters
occurring in u occur in Alph(u) too. By abuse of notation, for any path q
with label σ = γ1 · · · γm we write

Alph(q) = (Alph(σ(0)),Alph(σ(1)),Alph(σ(2))).

It can be algorithmically checked that, if q is a path of length two that
starts in 7/8 and goes through 5/6 before coming back to 7/8, then Alph(q)
is one of the following:

(01,12,1) (01,12,12) (012,12,12) (02,12,12) (02,12,2)
(012,012,012) (01,012,012) (02,012,012) (12,012,012) (1,012,012)
(2,012,012) (1,012,01) (2,012,02)

Table C.1: List of Alph(q) for q = 7/8 → 5/6 → 7/8.

We letQ1 denote the set of paths q of length 2 that start in 7/8, go through
5/6 and come back to 7/8 and such that Alph(q) is one of the following:
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(012,012,012) (01,012,012) (02,012,012) (12,012,012)
(1,012,012) (2,012,012) (1,012,01)

Obviously, the label (γn)n∈N of any infinite path p in the subgraph {5/6, 7/8}
that contains infinitely many occurrences of sub-paths q in Q1 is almost prim-
itive. Indeed, if p is a finite path in the subgraph {5/6, 7/8} that contains
two occurrences of paths in Q1, then the letter 1 occurs in the three compo-
nents of Alph(p) which makes (γn)n∈N almost primitive because for all paths
q in Q1, the second component of Alph(q) contains occurrences of the three
letters.

Let us consider an infinite path p such that all sub-paths q of length 2
that start in 7/8 and go through 5/6 do not belong to Q1, so are such that
Alph(q) is one of the following:

(01,12,1) (01,12,12) (012,12,12)
(02,12,12) (02,12,2) (2,012,02)

For suc paths q, we can see two problems for the almost primitivity:

- except for paths q such that Alph(q) = (2, 012, 02), the letter 0 never
occurs in the two last components of Alph(q);

- for paths q such that Alph(q) ∈ {(02, 12, 2), (2, 012, 02)}, the letter 1
never occurs in the first and in the last component of Alph(q).

Consequently, the following holds true: the label of any infinite path p in
{5/6, 7/8} such that all sub-paths q : 7/8 → 5/6 → 7/8 are such that

1. Alph(q) ∈ {(02, 12, 2), (2, 012, 02)} cannot be almost primitive;

2. Alph(q) ∈ {(01, 12, 1), (01, 12, 12), (012, 12, 12), (02, 12, 12), (02, 12, 2)}
is almost primitive if and only if Alph(q) is not ultimately (02, 12, 2)
and the path p goes infinitely often through the loop on 7/8 (because
it is labelled by [0, 10, 20]).

One can also check that if there are infinitely many occurrences of paths q
and q′ in p such that Alph(q) = (2, 012, 02) and

Alph(q′) ∈ {(01, 12, 1), (01, 12, 12), (012, 12, 12), (02, 12, 12)},

then the label of p is almost primitive.
To conclude the proof for the subgraph {5/6, 7/8}, it suffices now to study

which labelled paths q = 7/8 → 5/6 → 7/8 correspond to the "forbidden
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cases" listed just above. If q is such a path and if γ1 (resp. γ2) labels the
edge 7/8 → 5/6 (resp. 5/6 → 7/8), then we have

Alph(q) = (02, 12, 2) ⇔
{

γ1 = [1, 02, 2]

γ2 = [1, 02, 2]

Alph(q) = (2, 012, 02) ⇔
{

γ1 = [01, 2, 02]

γ2 = [1, 02, 2]

and

Alph(q) ∈ {(01, 12, 1), (01, 12, 12), (012, 12, 12), (02, 12, 12), (02, 12, 2)}
m

{

γ1 ∈ {[1, 02, 2], [2, 01, 1]}
γ2 ∈ {[1, 0k2, 0k−12] | k ≥ 1} ∪ {[12k0, 2ℓ0, 2ℓ−10] | ℓ > k + 1 ≥ 1}

Let us study the subgraph {5/6, 7/8, 10B}. As for {5/6, 7/8}, it can
be algorithmically checked that, if q is a finite path in {5/6, 7/8, 10B} that
starts and ends in 7/8 and that goes through 10B, then Alph(q) is one of the
following:

(01,012,01) (01,012,012) (012,012,012) (012,12,12) (02,012,012)
(02,012,02) (1,012,01) (1,012,012) (2,012,012) (2,012,02)

Table C.2: List of Alph(q) for q = 7/8 → 5/6 → 10B(→ 10B)∗ → 7/8.

Let us start by determining some non-almost primitive infinite labelled
paths. First, it is easily seen that if p1 is an infinite path in {5/6, 7/8, 10B}
whose sub-paths q1,1 = 7/8 → 5/6 → 10B(→ 10B)∗ → 7/8 are ultimately
such that Alph(q1,1) ∈ {(2, 012, 02), (02, 012, 02)}, then the label of p1 is
almost primitive if and only if p1 contains infinitely many occurrences of
sub-paths q1,2 = 7/8 → 5/6 → 7/8 such that1

Alph(q1,2) /∈ {(02, 12, 2), (2, 012, 02)}.

Next, one can also see that if p2 is an infinite path in {5/6, 7/8, 10B}
whose sub-paths q2,1 = 7/8 → 5/6 → 10B(→ 10B)∗ → 7/8 are ultimately
such that Alph(q2,1) = (012, 12, 12), then the label of p2 is almost primitive

1The problem is the same as the one met in the subgraph {5/6, 7/8}: the letter 1 never
occurs in the image of 02.
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if and only if p2 contains infinitely many occurrences of loops 7/8 → 7/8 or
of sub-paths q2,2 = 7/8 → 5/6 → 7/8 such that2

Alph(q2,2) /∈ {(01, 12, 1), (01, 12, 12), (012, 12, 12), (02, 12, 12), (02, 12, 2)}.
Now let us show that all other infinite paths p3 in {5/6, 7/8, 10B} that

goes infinitely often through the three vertices have an almost primitive label.
We can see that in all remaining values of Alph(q), i.e., for all paths q =
7/8 → 5/6 → 10B(→ 10B)∗ → 7/8 with

Alph(q) /∈ {(2, 012, 02), (02, 012, 02), (012, 12, 12)},
the second component of Alph(q) is 012. This makes the label of p3 almost
primitive becaus if p′ is a finite path in {5/6, 7/8, 10B} that contains two
occurrences of paths q = 7/8 → 5/6 → 10B(→ 10B)∗ → 7/8 with

Alph(q) /∈ {(2, 012, 02), (02, 012, 02), (012, 12, 12)},
then each component of Alph(p′) contains an occurrence of the letter 1.

To conclude the proof for the subgraph {{5/6, 7/8, 10B}, it suffices (like
for the subgraph {5/6, 7/8}) to study which labelled paths q = 7/8 → 5/6 →
10B(→ 10B)∗ → 7/8 correspond to the "forbidden cases", i.e., which ones
are such that

Alph(q) ∈ {(2, 012, 02), (02, 012, 02), (012, 12, 12)}.
If the label of q = 7/8 → 5/6 → 10B(→ 10B)∗ → 7/8 is γ1γ2 · · · γm with
m ≥ 3 such that γ1 (resp. γ2, γm) labels the edge 7/8 → 5/6 (resp. 5/6 →
10B, 10B → 7/8) and γ3 · · · γm−1 labels the loop 10B → 10B, then it is not
difficult (though a bit long) to check that the following holds true:

Alph(q) ∈ {(2, 012, 02), (02, 012, 02)}
m







γ1γ2 ∈ {[1, 02, 2], [01, 2, 02]}[1, 01, 2]
γ3 · · · γm−2 ∈

{
[0, 20, 1]2n, [02, 12, 2]n | n ∈ N

}∗

γm = [2, 012, 02] or (m ≥ 4 and γm−1γm = [0, 20, 1][0, 21, 1])

and

Alph(q) = [012, 12, 12]

m






γ1γ2 ∈ {[1, 02, 2], [2, 01, 2]}
{
[12k0, 2k+10, 2k0] | k ≥ 0

}

γ3 · · · γm−1 ∈
{
[01k2, 1k+12, 1k2] | k ≥ 0

}

γm ∈
{
[0, 2k1, 2k−11] | k ≥ 2

}
.

2This is again a problem met in the subgraph {5/6, 7/8}: the letter 0 never occurs in
the image of 12.
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To conclude the whole proof, it remains to show that the label of any
path that goes infinitely often through the four vertices or that ultimately
stays in the subgraph {1, 5/6, 7/8} is almost primitive. This can be easily
seen: any such path must contain infinitely many occurrences of finite paths
1 → 7/8 → 5/6 and all these paths have a strongly primitive label.
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