Cardinalité des ensembles infinis

Exercice 1. Montrer que les ensembles suivants sont dénombrables : \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, $\mathbb{Z} \times \mathbb{Z}$ et \mathbb{Q} .

Exercice 2. Montrer que l'ensemble

$$A = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \le n\}$$

est dénombrable en donnant une bijection de A dans $\mathbb{N} \times \mathbb{N}$.

Exercice 3. Donner une partition de \mathbb{N} en:

- 1. deux ensembles infinis dénombrables,
- 2. trois ensembles infinis dénombrables,
- 3. un nombre infinis d'ensembles infinis dénombrables.

Exercice 4. Déterminer si l'ensemble

$$A = \{(n, r) \in \mathbb{N} \times \mathbb{R} : r = \pi n\}$$

est dénombrable.

Exercice 5. Montrer que [0,1] et $[1,+\infty[$ sont équipotents.

Exercice 6. Montrer que les ensembles suivants sont équipotents :

- 1. $]-\frac{\pi}{2},\frac{\pi}{2}[$ et $\mathbb{R},$
- 2.]0,1[et]a,b[pour $a,b \in \mathbb{R}$ tels que a < b,
- 3.]0,1[et \mathbb{R} .

Exercice 7. Montrer que les ensembles suivants sont équipotents :

- 1. \mathbb{N} et \mathbb{N}_0 ,
- 2. [0,1],]0,1], [0,1[et]0,1[.

Exercice 8. Soient A et B deux ensembles équipotents. Montrer que $\mathcal{P}(A)$ et $\mathcal{P}(B)$ sont aussi équipotents.

Exercice 9 (Théorème de Cantor-Bernstein). Soient E et F deux ensembles quelconques. Montrer que si il existe une injection $f: E \longrightarrow F$ et une injection $g: F \longrightarrow E$, alors il existe une bijection de E dans F (et donc une de F dans E).

Exercice 10. Soit A et B deux ensembles tels que $A \subseteq B$ et tels qu'il existe une injection $g: B \hookrightarrow A$. Montrer que #A = #B.

Exercice 11. Utiliser l'exercice précédent pour montrer qu'il existe des ensembles infinis avec un sous-ensemble propre de même cardinal.

Exercice 12. Montrer que $\{0,1\}^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N})$ et \mathbb{R} sont équipotents.

Exercice 13. Soit A un ensemble non-dénombrable quelconque. Déterminer si $\#A = \#\mathbb{R}$.

Exercice 14. Montrer que l'ensemble des nombres irrationnels est nondénombrable.