EXERCISES COMBINATORICS ON WORDS (UNDER CONSTRUCTION)

1. Basics

(1) Prove that a real number is rational if and only if its base-b expansion is eventually periodic.
(2) Let p / q where $\operatorname{gcd}(p, q)=1$ and $\operatorname{gcd}(q, 10)=1$. Prove that the length of the period of the decimal expansion of $[p / q]_{10}$ is the multiplicative order of 10 modulo q, i.e. $10^{e} \equiv 1$ $(\bmod q)$.
(3) Suppose \mathbf{w} is an eventually periodic infinite word. Show that the frequency of each letter in \mathbf{w} exists and is rational. Does the converse hold?
(4) The run lengths of an infinite word $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}}$ is the (finite or infintie) word $\left(r_{n}\right)_{n} \in$ $\mathbb{N}_{0}^{\mathbb{N}} \cup \mathbb{N}_{0}^{*}\{\omega\}$ defined by

$$
\mathbf{x}=a_{0}^{r_{0}} a_{1}^{r_{1}} a_{2}^{r_{2}} \cdots
$$

where a_{i} 's are letters and $a_{i} \neq a_{i+1}$ for all i.
a) if \mathbf{w} is eventually periodic, then the sequence of run lengths of elements of \mathbf{w} is finite or eventually periodic;
b) the converse is true if \mathbf{w} is over an alphabet with at most 2 letters, but is false for alphabets of size at least 3 .
(5) Prove that an infinite ultimately periodic and recurrent word is (purely) periodic.
(6) What is the factor complexity of $1234567891011 \cdots$, the concatenation of the decimal expansions of the positive integers?
(7) Show that $235711131719232931 \cdots$, the concatenation of the decimal expansions of the prime numbers, has factor complexity 10^{n}. Suggestion: make use of the following result. Let a, b be integers with $1 \leq a<b$ and $\operatorname{gcd}(a, b)=1$. Then there exists a prime $p \equiv a$ $(\bmod b)$ with $p=O\left(b^{11 / 2}\right)$.
(8) Let \mathbf{w} be an infinite word over an alphabet A. Prove that

$$
p_{\mathbf{w}}(n) \leq p_{\mathbf{w}}(n+1) \leq(\# A) p_{\mathbf{w}}(n)
$$

for all $n \geq 0$.
(9) Let \mathbf{w} be an infinite word over an alphabet A. Prove that

$$
p_{\mathbf{w}}(n+1)-p_{\mathbf{w}}(n) \leq(\# A)\left(p_{\mathbf{w}}(n)-p_{\mathbf{w}}(n-1)\right)
$$

for all $n \geq 1$.
(10) Let w be an infinite word over an alphabet A and $h: A^{*} \rightarrow B^{*}$ be a non-erasing morphism. Prove that $p_{h(\mathbf{w})}(n) \leq D p_{\mathbf{w}}(n)$ where $D=\max _{a \in A}|h(a)|$.
(11) What is the factor complexity of the word

$$
1101000100000001 \cdots,
$$

the characteristic sequence of the powers of 2 ?

2. Finite words

(1) Prove the following result. Let w and x be non-empty words. Let $\mathbf{y} \in w\{w, x\}^{\omega}$ and $\mathbf{z} \in x\{w, x\}^{\omega}$ be two infinite words. Then the following conditions are equivalent:
(a) \mathbf{y} and \mathbf{z} agree on a prefix of length at least $|w|+|x|-\operatorname{gcd}(|w|,|x|)$;
(b) $w x=x w$;
(c) $\mathbf{y}=\mathbf{z}$.
(2) Prove that two finite words x and y are powers of the same word if and only if there exists integers $i, j \geq 0$ such that $x^{i}=y^{j}$.
(3) Show that a word $w \in A^{*}$ is primitive if and only if its period is not a proper divisor of its length.
(4) Show that if a primitive word $w \in A^{*}$ is the product of two non-empty palindromes, then this factorization is unique.
(5) Let Γ and Δ be the application from $\{0,1\}^{*} \times\{0,1\}^{*}$ into itself by

$$
\Gamma(u, v)=(u, u v) \quad \text { and } \quad \Delta(u, v)=(v u, v)
$$

A pair of words (u, v) is said to be standard if it is obtained from the pair $(0,1)$ by applying a finite composition of Γ and Δ. For instance, the pair $(10,10101)$ is standard as $(10,10101)=\Gamma^{2}(\Delta(0,1))$. A word $w \in\{0,1\}^{*}$ is standard if it is a component of a standard pair.
(a) Show that every standard word is primitive.
(b) Show that if (u, v) is a standard pair with $|u|,|v| \geq 2$, there exist palindromes p, q, r such that

$$
x=p 10=q r \quad \text { and } \quad y=q 01
$$

or

$$
x=q 10=q r \quad \text { and } \quad y=p 01=q r .
$$

(c) A word w is central if $w 01$ (or equivalently $w 10$) is a standard word. Show that if w is a central word, then it has two periods k and ℓ such that $|w|=k+\ell-2$ and $\operatorname{gcd}(k, \ell)=1$.

3. Topology on $A^{\mathbb{N}}$

(1) Show that the distances d on $A^{\mathbb{N}}$ defined by

$$
d(\mathbf{x}, \mathbf{y})=2^{-\inf \left\{n \in \mathbb{N} \mid x_{n} \neq y_{n}\right\}}
$$

generates the product topology on $A^{\mathbb{N}}$ (where each copy of A is endowed with the discrete topology).
(2) Show that for every real number $\alpha>1$, the distances d_{α} on $A^{\mathbb{N}}$ defined by

$$
d_{\alpha}(\mathbf{x}, \mathbf{y})=\alpha^{-\inf \left\{n \in \mathbb{N} \mid x_{n} \neq y_{n}\right\}}
$$

generates the same topology.
(3) Show that the set of periodic words is dense in $A^{\mathbb{N}}$.
(4) Show that $\left(\mathbf{x}^{(n)}\right)_{n}$ is a Cauchy sequence in $A^{\mathbb{N}}$ if and only if $d\left(\mathbf{x}^{(n)}, \mathbf{x}^{(n+1)}\right)$ goes to 0 as n goes to infinity.
(5) A topological space is connected if it is not the union of two disjoint non-empty open set. A subset Y of a topological space is connected if, endowed with the subspace topology, it is a connected space. A subset Y of a topological space is a connected component if it is connected and maximal for the inclusion (among connected subsets).
What are the connected components of $A^{\mathbb{N}}$?

4. Automatic and morphic words

(1) Consider the period-doubling sequence which is the fixed point pf the morphism $0 \mapsto 01$ and $1 \mapsto 00$. Prove that d_{n} is equal to $\nu_{2}(n+1) \bmod 2$ where $\nu_{2}(k)$ is the exponent of the largest power of 2 dividing k.
(2) Define a sequence of words $v_{0}=a b$ and $v_{i+1}=a v_{0} v_{1} \cdots v_{i} b$ for all $i \geq 0$.

- Show that $h^{i}\left(v_{0}\right)=v_{i}$, where h is the morphism defined by $a \mapsto a a b, b \mapsto b$.
- Show that

$$
h^{i}(a)=a b^{\nu_{2}(1)} a b^{\nu_{2}(2)} a b^{\nu_{2}(3)} \cdots a b^{\nu_{2}\left(2^{i}\right)}
$$

for $i \geq 0$, where ν_{2} is defined as in the previous exercise.
(3) Consider the 4-uniform morphism given by $f: \mathrm{a} \mapsto \mathrm{abcd}, \mathrm{c} \mapsto \mathrm{cdcd}, \mathrm{d} \mapsto \mathrm{cdcd}, \mathrm{b} \mapsto$ eeee, $\mathrm{e} \mapsto \mathrm{bbbb}$ and the coding $g: \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \mathrm{c} \mapsto 1, \mathrm{~d} \mapsto 0$, $\mathrm{e} \mapsto 1$. The first few symbols in $f^{\omega}(\mathrm{a})$ are

$$
\operatorname{abcde}^{4}(c d)^{4} b^{16}(c d)^{16} e^{64} \ldots
$$

Study the frequencies of occurrence of the symbols in $f^{\omega}(\mathrm{a})$ and $g\left(f^{\omega}(\mathrm{a})\right)$ respectively.
(4) Define a sequence $\left(u_{n}\right)_{n \geq 0}$ of words over $\{0,1\}$ as follows: $u_{0}=0$ and

$$
u_{n+1}=u_{n} \tau\left(u_{n}\right), \quad \forall n \geq 0
$$

where the morphism τ is defined by $\tau(j)=1-j, j \in\{0,1\}$. Prove that $\left(u_{n}\right)_{n \geq 0}$ is converging to the Thue-Morse word.
(5) Let \mathbf{t} be the Thue-Morse word obtained as $\mu^{\omega}(0)=0110 \cdots$ where $\mu(0)=01$ and $\mu(1)=$ 10. We define two sequences $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$ of words as follows: $u_{0}=0$ and $v_{0}=1$, and $u_{n+1}=u_{n} v_{n}$ and $v_{n+1}=v_{n} u_{n}$ for all $n \geq 0$. Prove that

- $u_{n}=\mu^{n}(0)$ and $v_{n}=\mu^{n}(1)$;
- $v_{n}=\tau\left(u_{n}\right)$ and $u_{n}=\tau\left(v_{n}\right), \tau$ defined in the previous example;
- for n even, u_{n} and v_{n} are palindromes;
- for n odd, the reversal of u_{n} is equal to v_{n}.
(6) Let $n \geq 2$. Define the generalized Thue-Morse word over $\{0, \ldots, n-1\}$ obtained as $\gamma^{\omega}(0)$ where the images of the letters are cyclic permutations of $012 \cdots n$,

$$
\gamma(i)=i(i+1)(i+2) \cdots n 01 \cdots(i-1)
$$

Prove that w_{k} is the sum-of-digits of the base- n expansion of k, modulo n.
(7) Consider the sequence $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}=1264224288 \cdots$ that gives the least significant nonzero digit in the base-10 expansion of $n!$.

- Prove that for $n \geq 2$, this digit is even.
- Show that a is a 5 -automatic sequence.
- Give a 5 -uniform morphism h and a coding g such that $\mathbf{a}=g\left(h^{\omega}(b)\right)$.
- Show that a is not eventually periodic.
(8) Suppose that a word \mathbf{w} is generated by a k-uniform morphism but also by a ℓ-uniform morphism. Show that \mathbf{w} is generated by a $k \ell$-uniform morphism (and possibly an extra coding).
(9) Show that the Rudin-Shapiro sequence is not the fixed point of any non-trivial morphism.
(10) Define a sequence $\left(u_{n}\right)_{n \geq 0}$ of words as follows: $u_{0}=a, u_{1}=a b$ and

$$
u_{n+2}=u_{n+1} u_{n}, \quad \forall n \geq 0
$$

Prove that $\left(u_{n}\right)_{n \geq 0}$ is converging to the Fibonacci word (fixed point of $\left.a \mapsto a b, b \mapsto a\right)$.

