EXERCISES COMBINATORICS ON WORDS (UNDER CONSTRUCTION)

1. Basics

- (1) Prove that a real number is rational if and only if its base-b expansion is eventually periodic.
- (2) Let p/q where gcd(p,q) = 1 and gcd(q,10) = 1. Prove that the length of the period of the decimal expansion of $[p/q]_{10}$ is the multiplicative order of 10 modulo q, i.e. $10^e \equiv 1 \pmod{q}$.
- (3) Suppose **w** is an eventually periodic infinite word. Show that the frequency of each letter in **w** exists and is rational. Does the converse hold?
- (4) The run lengths of an infinite word $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ is the (finite or infinite) word $(r_n)_n \in \mathbb{N}_0^{\mathbb{N}} \cup \mathbb{N}_0^* \{\omega\}$ defined by

$$\mathbf{x} = a_0^{r_0} a_1^{r_1} a_2^{r_2} \cdots$$

where a_i 's are letters and $a_i \neq a_{i+1}$ for all *i*.

a) if \mathbf{w} is eventually periodic, then the sequence of run lengths of elements of \mathbf{w} is finite or eventually periodic;

b) the converse is true if \mathbf{w} is over an alphabet with at most 2 letters, but is false for alphabets of size at least 3.

- (5) Prove that an infinite ultimately periodic and recurrent word is (purely) periodic.
- (6) What is the factor complexity of $1234567891011\cdots$, the concatenation of the decimal expansions of the positive integers?
- (7) Show that $235711131719232931\cdots$, the concatenation of the decimal expansions of the prime numbers, has factor complexity 10^n . Suggestion: make use of the following result. Let a, b be integers with $1 \le a < b$ and gcd(a, b) = 1. Then there exists a prime $p \equiv a \pmod{b}$ with $p = O(b^{11/2})$.
- (8) Let \mathbf{w} be an infinite word over an alphabet A. Prove that

1

$$p_{\mathbf{w}}(n) \le p_{\mathbf{w}}(n+1) \le (\#A) p_{\mathbf{w}}(n)$$

for all $n \ge 0$.

(9) Let \mathbf{w} be an infinite word over an alphabet A. Prove that

$$p_{\mathbf{w}}(n+1) - p_{\mathbf{w}}(n) \le (\#A) \left(p_{\mathbf{w}}(n) - p_{\mathbf{w}}(n-1) \right)$$

for all $n \ge 1$.

- (10) Let **w** be an infinite word over an alphabet A and $h: A^* \to B^*$ be a non-erasing morphism. Prove that $p_{h(\mathbf{w})}(n) \leq D p_{\mathbf{w}}(n)$ where $D = \max_{a \in A} |h(a)|$.
- (11) What is the factor complexity of the word

 $110100010000001\cdots$,

the characteristic sequence of the powers of 2?

2. Finite words

- (1) Prove the following result. Let w and x be non-empty words. Let y ∈ w{w,x}^ω and z ∈ x{w,x}^ω be two infinite words. Then the following conditions are equivalent:
 (a) y and z agree on a prefix of length at least |w| + |x| gcd(|w|, |x|);
 (b) wx = xw;
 - (c) $\mathbf{y} = \mathbf{z}$.
- (2) Prove that two finite words x and y are powers of the same word if and only if there exists integers $i, j \ge 0$ such that $x^i = y^j$.
- (3) Show that a word $w \in A^*$ is primitive if and only if its period is not a proper divisor of its length.
- (4) Show that if a primitive word $w \in A^*$ is the product of two non-empty palindromes, then this factorization is unique.
- (5) Let Γ and Δ be the application from $\{0,1\}^* \times \{0,1\}^*$ into itself by

$$\Gamma(u, v) = (u, uv)$$
 and $\Delta(u, v) = (vu, v)$

A pair of words (u, v) is said to be *standard* if it is obtained from the pair (0, 1) by applying a finite composition of Γ and Δ . For instance, the pair (10, 10101) is standard as $(10, 10101) = \Gamma^2(\Delta(0, 1))$. A word $w \in \{0, 1\}^*$ is *standard* if it is a component of a standard pair.

- (a) Show that every standard word is primitive.
- (b) Show that if (u, v) is a standard pair with $|u|, |v| \ge 2$, there exist palindromes p, q, r such that

$$x = p10 = qr$$
 and $y = q01$

or

$$x = q10 = qr$$
 and $y = p01 = qr$.

(c) A word w is *central* if w01 (or equivalently w10) is a standard word. Show that if w is a central word, then it has two periods k and ℓ such that $|w| = k + \ell - 2$ and $gcd(k, \ell) = 1$.

3. Topology on $A^{\mathbb{N}}$

(1) Show that the distances d on $A^{\mathbb{N}}$ defined by

$$d(\mathbf{x}, \mathbf{v}) = 2^{-\inf\{n \in \mathbb{N} | x_n \neq y_n\}}$$

generates the product topology on $A^{\mathbb{N}}$ (where each copy of A is endowed with the discrete topology).

(2) Show that for every real number $\alpha > 1$, the distances d_{α} on $A^{\mathbb{N}}$ defined by

$$d_{\alpha}(\mathbf{x}, \mathbf{y}) = \alpha^{-\inf\{n \in \mathbb{N} | x_n \neq y_n\}}$$

generates the same topology.

- (3) Show that the set of periodic words is dense in $A^{\mathbb{N}}$.
- (4) Show that $(\mathbf{x}^{(n)})_n$ is a Cauchy sequence in $A^{\mathbb{N}}$ if and only if $d(\mathbf{x}^{(n)}, \mathbf{x}^{(n+1)})$ goes to 0 as n goes to infinity.
- (5) A topological space is *connected* if it is not the union of two disjoint non-empty open set. A subset Y of a topological space is connected if, endowed with the subspace topology, it is a connected space. A subset Y of a topological space is a *connected component* if it is connected and maximal for the inclusion (among connected subsets). What are the connected components of A^N?

4. Automatic and morphic words

- (1) Consider the *period-doubling sequence* which is the fixed point pf the morphism $0 \mapsto 01$ and $1 \mapsto 00$. Prove that d_n is equal to $\nu_2(n+1) \mod 2$ where $\nu_2(k)$ is the exponent of the largest power of 2 dividing k.
- (2) Define a sequence of words $v_0 = ab$ and $v_{i+1} = av_0v_1 \cdots v_ib$ for all $i \ge 0$.
 - Show that $h^i(v_0) = v_i$, where h is the morphism defined by $a \mapsto aab, b \mapsto b$.
 - Show that

$$h^{i}(a) = ab^{\nu_{2}(1)}ab^{\nu_{2}(2)}ab^{\nu_{2}(3)}\cdots ab^{\nu_{2}(2^{i})}$$

for $i \ge 0$, where ν_2 is defined as in the previous exercise.

(3) Consider the 4-uniform morphism given by f : a → abcd, c → cdcd, d → cdcd, b → eeee, e → bbbb and the coding g : a → 1, b → 0, c → 1, d → 0, e → 1. The first few symbols in f^ω(a) are

$$bcde^{4}(cd)^{4}b^{16}(cd)^{16}e^{64}\cdots$$

Study the frequencies of occurrence of the symbols in $f^{\omega}(\mathbf{a})$ and $g(f^{\omega}(\mathbf{a}))$ respectively.

(4) Define a sequence $(u_n)_{n>0}$ of words over $\{0,1\}$ as follows: $u_0 = 0$ and

$$u_{n+1} = u_n \tau(u_n), \quad \forall n \ge 0$$

where the morphism τ is defined by $\tau(j) = 1 - j$, $j \in \{0,1\}$. Prove that $(u_n)_{n\geq 0}$ is converging to the Thue-Morse word.

- (5) Let **t** be the Thue–Morse word obtained as $\mu^{\omega}(0) = 0110\cdots$ where $\mu(0) = 01$ and $\mu(1) = 10$. We define two sequences $(u_n)_{n\geq 0}$ and $(v_n)_{n\geq 0}$ of words as follows: $u_0 = 0$ and $v_0 = 1$, and $u_{n+1} = u_n v_n$ and $v_{n+1} = v_n u_n$ for all $n \geq 0$. Prove that
 - $u_n = \mu^n(0)$ and $v_n = \mu^n(1)$;
 - $v_n = \tau(u_n)$ and $u_n = \tau(v_n)$, τ defined in the previous example;
 - for n even, u_n and v_n are palindromes;
 - for n odd, the reversal of u_n is equal to v_n .
- (6) Let $n \ge 2$. Define the generalized Thue-Morse word over $\{0, \ldots, n-1\}$ obtained as $\gamma^{\omega}(0)$ where the images of the letters are cyclic permutations of $012 \cdots n$,

 $\gamma(i) = i(i+1)(i+2)\cdots n \, 0 \, 1 \cdots (i-1).$

Prove that w_k is the sum-of-digits of the base-*n* expansion of *k*, modulo *n*.

- (7) Consider the sequence $\mathbf{a} = (a_n)_{n \ge 0} = 1264224288 \cdots$ that gives the least significant non-zero digit in the base-10 expansion of n!.
 - Prove that for $n \ge 2$, this digit is even.
 - Show that **a** is a 5-automatic sequence.
 - Give a 5-uniform morphism h and a coding g such that $\mathbf{a} = g(h^{\omega}(b))$.
 - Show that **a** is not eventually periodic.
- (8) Suppose that a word \mathbf{w} is generated by a k-uniform morphism but also by a ℓ -uniform morphism. Show that \mathbf{w} is generated by a $k\ell$ -uniform morphism (and possibly an extra coding).
- (9) Show that the Rudin–Shapiro sequence is not the fixed point of any non-trivial morphism.
- (10) Define a sequence $(u_n)_{n\geq 0}$ of words as follows: $u_0 = a, u_1 = ab$ and

$$u_{n+2} = u_{n+1}u_n, \quad \forall n \ge 0$$

Prove that $(u_n)_{n>0}$ is converging to the Fibonacci word (fixed point of $a \mapsto ab, b \mapsto a$).