Overview of the S-adic Conjecture

Julien Leroy

Université de Picardie Jules Verne
Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées

28 juin 2011
Basic notions and notations

\[A = \{0, 1, \ldots, k - 1\} = \text{alphabet} \]
\[w = w_0 w_1 w_2 \cdots \in A^\mathbb{N} \]
Basic notions and notations

\(A = \{0, 1, \ldots, k - 1\} = \text{alphabet} \)

\(w = w_0 w_1 w_2 \cdots \in A^\mathbb{N} \)

Example

\(A = \{0, 1\} \)

\(w \) defined by

\[
 w_n = \begin{cases}
 0 & \text{if } |\langle n \rangle_2|_0 \equiv 0 \pmod{2} \\
 1 & \text{if } |\langle n \rangle_2|_0 \equiv 1 \pmod{2}
 \end{cases}
\]
Basic notions and notations

\[A = \{0, 1, \ldots, k - 1\} = \text{alphabet} \]
\[w = w_0w_1w_2 \cdots \in A^\mathbb{N} \]

Example
\[A = \{0, 1\} \]
\[w \text{ defined by} \]
\[w_n = \begin{cases}
0 & \text{if } |\langle n \rangle_2|_0 \equiv 0 \mod 2 \\
1 & \text{if } |\langle n \rangle_2|_0 \equiv 1 \mod 2
\end{cases} \]
\[w = 011010011001011010 \cdots \]
Basic notions and notations

\[A = \{0, 1, \ldots, k - 1\} = \text{alphabet} \]
\[w = w_0 w_1 w_2 \ldots \in A^{\mathbb{N}} \]

Example

\[A = \{0, 1\} \]
\[w \text{ defined by} \]

\[w_n = \begin{cases}
0 & \text{if } |\langle n \rangle_2|_0 \equiv 0 \pmod{2} \\
1 & \text{if } |\langle n \rangle_2|_0 \equiv 1 \pmod{2}
\end{cases} \]

\[w = 011010011001011010 \ldots \]

\[w \text{ is called the } \text{Thue-Morse} \text{ sequence}. \]
Purely morphic sequences

Definition

\[A^* = \bigcup_{n \in \mathbb{N}} A^n \]

\[\sigma : A^* \rightarrow A^* \text{ is a morphism if } \forall u, v \in A^* \quad \sigma(uv) = \sigma(u)\sigma(v). \]
Purely morphic sequences

Definition

\[A^* = \bigcup_{n \in \mathbb{N}} A^n \]

\(\sigma : A^* \to A^* \) is a morphism if \(\forall u, v \in A^* \) \(\sigma(uv) = \sigma(u)\sigma(v) \).

Example

\[\mu : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases} \]
Purely morphic sequences

Definition

\[A^* = \bigcup_{n \in \mathbb{N}} A^n \]

\[\sigma : A^* \to A^* \text{ is a morphism if } \forall u, v \in A^* \quad \sigma(uv) = \sigma(u)\sigma(v). \]

Example

\[\mu : \begin{cases}
0 & \mapsto 01 \\
1 & \mapsto 10
\end{cases} \]

\[
\begin{array}{|c|c|c|}
\hline
\mu(0) & \mu(01) & 01 \\
\mu^2(0) & \mu(01) & 0110 \\
\mu^3(0) & \mu(0110) & 01101001 \\
\hline
\end{array}
\]
Purely morphic sequences

Definition

\(A^* = \bigcup_{n \in \mathbb{N}} A^n \)

\(\sigma : A^* \to A^* \) is a morphism if \(\forall u, v \in A^* \quad \sigma(uv) = \sigma(u)\sigma(v) \).

Example

\[\begin{align*}
\mu : & \quad \begin{cases}
0 & \mapsto 01 \\
1 & \mapsto 10
\end{cases} \\
\mu(0) & = 01 \\
\mu^2(0) & = \mu(01) = 0110 \\
\mu^3(0) & = \mu(0110) = 01101001
\end{align*} \]

\((\mu^n(0))_{n \in \mathbb{N}} \) converges to the Thue-Morse sequence.
Purely morphic sequences

Definition

\[A^* = \bigcup_{n \in \mathbb{N}} A^n \]

\(\sigma : A^* \to A^* \) is a morphism if \(\forall u, v \in A^* \) \(\sigma(uv) = \sigma(u)\sigma(v) \).

Example

\[
\mu : \begin{cases}
0 \mapsto 01 \\
1 \mapsto 10
\end{cases}
\]

\[
\begin{array}{c|c|c}
\mu(0) & \mu(0) & 01 \\
\mu^2(0) & \mu(01) & 0110 \\
\mu^3(0) & \mu(0110) & 01101001 \\
\end{array}
\]

\((\mu^n(0))_{n \in \mathbb{N}} \) converges to the Thue-Morse sequence.

Definition

\(w \) is purely morphic if \(\exists \sigma \) s.t. \(w = \sigma^\omega(a) = \lim_{n \to +\infty} \sigma^n(a) \).
Factor complexity

Let $w \in A^N$.

Definition
The *complexity function* of w is

$$p_w : \mathbb{N} \rightarrow \mathbb{N}, \quad n \mapsto \# \{ u \in A^n \mid u \text{ occurs in } w \}.$$
Factor complexity

Let \(w \in A^\mathbb{N} \).

Definition

The *complexity function* of \(w \) is

\[
\rho_w : \mathbb{N} \to \mathbb{N}, \ n \mapsto \# \{ u \in A^n \mid u \text{ occurs in } w \}.
\]

Example (Thue-Morse sequence)

\(w = 011010011001011010010110011010 \cdots \)
Factor complexity

Let \(w \in A^\mathbb{N} \).

Definition

The *complexity function* of \(w \) is

\[
p_w : \mathbb{N} \rightarrow \mathbb{N}, \ n \mapsto \#\{ u \in A^n \mid u \text{ occurs in } w \}.
\]

Example (Thue-Morse sequence)

\(w = 011010011001011010010110011010 \ldots \)

\(L_1(w) = \{0, 1\} \quad \Rightarrow \quad p_w(2) = 2 \)
Factor complexity

Let $w \in A^\mathbb{N}$.

Definition
The *complexity function* of w is

$$p_w : \mathbb{N} \rightarrow \mathbb{N}, \ n \mapsto \# \{ u \in A^n \mid u \text{ occurs in } w \}.$$

Example (Thue-Morse sequence)

$w = 011010011001011010010110011010 \cdots$

$L_1(w) = \{0, 1\}$ \quad \Rightarrow \quad $p_w(2) = 2$

$L_2(w) = \{00, 01, 10, 11\}$ \quad \Rightarrow \quad $p_w(2) = 4$
Factor complexity

Let \(w \in A^\mathbb{N} \).

Definition
The *complexity function* of \(w \) is

\[
p_w : \mathbb{N} \rightarrow \mathbb{N}, \quad n \mapsto \# \{ u \in A^n \mid u \text{ occurs in } w \}.
\]

Example (Thue-Morse sequence)

\(w = 011010011001011010010110011010 \ldots \)

\[
\begin{align*}
L_1(w) &= \{0, 1\} & \Rightarrow & & p_w(2) = 2 \\
L_2(w) &= \{00, 01, 10, 11\} & \Rightarrow & & p_w(2) = 4 \\
L_3(w) &= \{001, 010, 011, 100, 101, 110\} & \Rightarrow & & p_w(2) = 6
\end{align*}
\]
Factor complexity

Let \(w \in A^\mathbb{N} \).

Definition

The \textit{complexity function} of \(w \) is

\[
p_w : \mathbb{N} \rightarrow \mathbb{N}, \ n \mapsto \# \{ u \in A^n \mid u \text{ occurs in } w \}.
\]

Example (Thue-Morse sequence)

\(w = 011010011001011010010110011010 \cdots \)

\[
L_1(w) = \{0, 1\} \quad \Rightarrow \quad p_w(2) = 2
\]

\[
L_2(w) = \{00, 01, 10, 11\} \quad \Rightarrow \quad p_w(2) = 4
\]

\[
L_3(w) = \{001, 010, 011, 100, 101, 110\} \quad \Rightarrow \quad p_w(2) = 6
\]

\(\forall n \geq 2, \ p_w(n) \leq 4(n - 1). \)
Factor complexity of (purely) morphic sequences

Theorem (Pansiot)

Let \(w = \sigma^\omega(a) \) with \(\sigma \) non-erasing \((\sigma(a) \neq \varepsilon)\). Then,

\[
\rho_w(n) \in \{\Theta(1), \Theta(n), \Theta(n \log \log n), \Theta(n \log n), \Theta(n^2)\}.
\]
Factor complexity of (purely) morphic sequences

Theorem (Pansiot)

Let \(w = \sigma^\omega(a) \) with \(\sigma \) non-erasing (\(\sigma(a) \neq \varepsilon \)). Then,

\[p_w(n) \in \{ \Theta(1), \Theta(n), \Theta(n \log \log n), \Theta(n \log n), \Theta(n^2) \}. \]

Theorem (Cobham - Pansiot)

If \(\sigma \) is erasing, then \(w = \phi(\tau^\omega(b)) \) with \(\tau \) non-erasing and \(\phi \) letter-to-letter.
Factor complexity of (purely) morphic sequences

Theorem (Pansiot)
Let $w = \sigma^\omega(a)$ with σ non-erasing ($\sigma(a) \neq \varepsilon$). Then,

$$p_w(n) \in \{\Theta(1), \Theta(n), \Theta(n \log \log n), \Theta(n \log n), \Theta(n^2)\}.$$

Theorem (Cobham - Pansiot)
If σ is erasing, then $w = \phi(\tau^\omega(b))$ with τ non-erasing and ϕ letter-to-letter.

Theorem (Deviatov)
If w is morphic ($w = \phi(\tau^\omega(b))$), then either $\exists k \in \mathbb{N}^* \text{ s.t. } p_w \in \Theta(n^{1+\frac{1}{k}})$ or $p_w \in O(n \log n)$.
General properties of ρ_w

$w \in A^N$
General properties of ρ_w

$w \in A^\mathbb{N}$

$\forall n \quad 1 \leq \rho_w(n) \leq (\#A)^n$;
General properties of p_w

$w \in A^\mathbb{N}$

- $\forall n \quad 1 \leq p_w(n) \leq (\#A)^n$;
- $\forall m, n \quad p_w(m + n) \leq p_w(m)p_w(n)$;
General properties of ρ_w

$w \in A^\mathbb{N}$

- $\forall n \quad 1 \leq \rho_w(n) \leq (\#A)^n$;
- $\forall m, n \quad \rho_w(m + n) \leq \rho_w(m)\rho_w(n)$;
- ρ_w is non-decreasing.
General properties of ρ_w

$w \in A^\mathbb{N}$

- $\forall n \quad 1 \leq \rho_w(n) \leq (#A)^n$;
- $\forall m, n \quad \rho_w(m + n) \leq \rho_w(m)\rho_w(n)$;
- ρ_w is non-decreasing.

Theorem (Morse-Hedlund)

The following are equivalent:
1. w is ultimately periodic, i.e., $w = uvvvv \cdots$;
2. $\exists n_0 \quad \rho_w(n_0) \leq n_0$;
3. ρ_w is ultimately constant.
Sturmian sequences

Sturmian sequences are binary sequences w satisfying $\rho_w(n) = n + 1$ for all n.
Sturmian sequences

Sturmian sequences are binary sequences w satisfying $\rho_w(n) = n + 1$ for all n.

Define the 4 substitutions:

$L_0 : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \end{cases}$

$R_0 : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 10 \end{cases}$

$L_1 : \begin{cases} 0 \mapsto 10 \\ 1 \mapsto 1 \end{cases}$

$R_1 : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 1 \end{cases}$
Sturmian sequences

Sturmian sequences are binary sequences w satisfying $p_w(n) = n + 1$ for all n.

Define the 4 substitutions:

$L_0 : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 01 \end{cases} \quad R_0 : \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 10 \end{cases}$

$L_1 : \begin{cases} 0 \mapsto 10 \\ 1 \mapsto 1 \end{cases} \quad R_1 : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 1 \end{cases}$

Then

$$w = L_0^{n_1} R_0^{n_2} L_1^{n_3} R_1^{n_4} L_0^{n_5} R_0^{n_6} \ldots (0).$$
S-adicity

Definition

\(w \in A^\mathbb{N} \) is \textit{S-adic} if there are

- a finite set of non-erasing morphisms \(\sigma \);
- a sequence \((\sigma_n : A_{n+1}^* \to A_n^*)_n\) in \(S^\mathbb{N} \);
- a sequence \((a_n \in A_n)_n\) of letters;

such that:

\[
 w = \lim_{n \to +\infty} \sigma_0 \sigma_1 \cdots \sigma_n(a_{n+1}).
\]
S-adicity

Definition

\(w \in A^\mathbb{N} \) is **S-adic** if there are

- \(S = \) finite set of non-erasing morphisms \(\sigma \);
- a sequence \((\sigma_n : A_{n+1}^* \rightarrow A_n^*)_n \) in \(S^\mathbb{N} \);
- a sequence \((a_n \in A_n)_n \) of letters;

such that:

\[
 w = \lim_{n \to +\infty} \sigma_0 \sigma_1 \cdots \sigma_n(a_{n+1}).
\]

Remark

If \(\sigma_n(a_{n+1}) = x_1 x_2 x_3 \):

\[
 \sigma_0 \cdots \sigma_n(a_{n+1}) = \sigma_0 \cdots \sigma_{n-1}(x_1 x_2 x_3) = \sigma_0 \cdots \sigma_{n-1}(x_1) \sigma_0 \cdots \sigma_{n-1}(x_2) \sigma_0 \cdots \sigma_{n-1}(x_3)
\]
S-adicity

Example

\[\varphi : \begin{cases}
0 & \mapsto 01 \\
1 & \mapsto 0
\end{cases} \]

\[\mu : \begin{cases}
0 & \mapsto 01 \\
1 & \mapsto 10
\end{cases} \]

\[w = \lim_{n \to +\infty} \varphi \mu \varphi^2 \mu^2 \cdots \varphi^n \mu^n(0) \]
S-adicity

Example

\[\varphi : \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 0 \end{cases} \quad \mu : \begin{cases} 0 & \mapsto 01 \\ 1 & \mapsto 10 \end{cases} \]

\[w = \lim_{n \to +\infty} \varphi \mu \varphi^2 \mu^2 \ldots \varphi^n \mu^n (0) \]

\[\varphi \mu (0) = \begin{bmatrix} \varphi (0) \\ \varphi (1) \end{bmatrix} = \begin{bmatrix} 01 \\ 0 \end{bmatrix} \]

\[\varphi \mu \varphi^2 (0) = \begin{bmatrix} \varphi \mu (0) \\ \varphi \mu (1) \\ \varphi \mu (0) \end{bmatrix} = \begin{bmatrix} 010 \\ 001 \\ 010 \end{bmatrix} \]
S-adicity

Example

\(\varphi : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases} \quad \mu : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases} \)

\[w = \lim_{n \to +\infty} \varphi \mu \varphi^2 \mu^2 \cdots \varphi^n \mu^n(0) \]

\[\varphi \mu(0) = \begin{array}{c|c} \varphi(0) & \varphi(1) \end{array} = \begin{array}{c} 01 \end{array} \]

\[\varphi \mu \varphi^2(0) = \begin{array}{c|c|c} \varphi \mu(0) & \varphi \mu(1) & \varphi \mu(0) \end{array} = \begin{array}{c|c|c} 01 & 01 & 01 \end{array} \]

\[(\varphi \mu \varphi^2 \mu^2 \cdots \varphi^n \mu^n(0))_n \text{ converges in } A^\mathbb{N}. \]
Many classical examples are S-adic
Many classical examples are S-adic

- ultimately periodic sequences are *morphic*, i.e.,
 \[w = \tau(\sigma^\omega(a)); \]
Many classical examples are S-adic

- ultimately periodic sequences are *morphic*, i.e., $w = \tau(\sigma^\omega(a))$;
- k-*automatic sequences* are morphic with σ k-uniform and τ letter-to-letter;
Many classical examples are \(S \)-adic

- ultimately periodic sequences are *morphic*, i.e., \(w = \tau(\sigma^\omega(a)) \);
- \(k \)-automatic sequences are morphic with \(\sigma \) \(k \)-uniform and \(\tau \) letter-to-letter;
- *codings of rotations* of parameters \((\alpha, \beta) \) are \(S \)-adic (with \(\text{Card}(S) = 5) \);
Many classical examples are S-adic

A sequence \mathbf{w} is Sturmian if and only $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $x \in [0, 1]$ such that

$$w_k = \begin{cases} 0 & \text{if } R_\alpha^k(x) \in [0, 1 - \alpha[\\ 1 & \text{if } R_\alpha^k(x) \in [1 - \alpha, 1[\end{cases}$$
Many classical examples are S-adic

Rotations of parameters \((\alpha, \beta)\):
Many classical examples are S-adic

- ultimately periodic sequences are *morphic*, i.e., \(w = \tau(\sigma^\omega(a)) \);
- *\(k \)-automatic sequences* are morphic with \(\sigma \) \(k \)-uniform and \(\tau \) letter-to-letter;
- *codings of rotations* of parameters \((\alpha, \beta)\) are S-adic (with \(\text{Card}(S) = 5 \));
- *codings of 3-IET* are S-adic (with \(\text{Card}(S) = 5 \));
Many classical examples are S-adic

Sturmian rotation view as an IET:

$$R_\alpha$$
Many classical examples are S-adic

Sturmian case:

\[R_\alpha \]

\[T \]

3-IET:
Many classical examples are S-adic

- ultimately periodic sequences are *morphic*, i.e., $w = \tau(\sigma^w(a))$;
- k-automatic sequences are morphic with σ k-uniform and τ letter-to-letter;
- *codings of rotations* of parameters (α, β) are S-adic (with $\text{Card}(S) = 5$);
- *codings of 3-IET* are S-adic (with $\text{Card}(S) = 5$);
- *Arnoux-Rauzy sequences* are S-adic (with $\text{Card}(S) = \text{Card}(A)$);
Many classical examples are S-adic

- ultimately periodic sequences are *morphic*, i.e., $w = \tau(\sigma^\omega(a))$;
- *k-automatic sequences* are morphic with σ k-uniform and τ letter-to-letter;
- *codings of rotations* of parameters (α, β) are S-adic (with $\text{Card}(S) = 5$);
- *codings of 3-IET* are S-adic (with $\text{Card}(S) = 5$);
- *Arnoux-Rauzy sequences* are S-adic (with $\text{Card}(S) = \text{Card}(A)$);
- *episturmian sequence* are S-adic (with $\text{Card}(S) = 2\text{Card}(A)$);
Many classical examples are S-adic

- ultimately periodic sequences are morphic, i.e., \(w = \tau(\sigma^w(a)) \);
- \(k \)-automatic sequences are morphic with \(\sigma \) \(k \)-uniform and \(\tau \) letter-to-letter;
- codings of rotations of parameters \((\alpha, \beta)\) are S-adic (with \(\text{Card}(S) = 5 \));
- codings of 3-IET are S-adic (with \(\text{Card}(S) = 5 \));
- Arnoux-Rauzy sequences are S-adic (with \(\text{Card}(S) = \text{Card}(A) \));
- episturmian sequence are S-adic (with \(\text{Card}(S) = 2\text{Card}(A) \));
- linearly recurrent sequences;
S-adic conjecture

All examples previously cited have a sub-linear complexity \(\rho(n) \leq Cn \)

Question: Is there any relation between "S-adic" and "low complexity"?
S-adic conjecture

All examples previously cited have a sub-linear complexity \(\rho(n) \leq Cn \)

Question: Is there any relation between "S-adic" and "low complexity"?

Conjecture

There is a condition C such that w has an at most linear complexity if and only if it is a S-adic sequence satisfying the condition C.
We cannot avoid C

For $\text{Card}(S) = 1$, it is possible to get a quadratic complexity (Pansiot).
We cannot avoid C.

For $\text{Card}(S) = 1$, it is possible to get a quadratic complexity (Pansiot).

Proposition (Cassaigne)

$A = \text{alphabet}$.
$\exists S$ with $\text{Card}(S) = \text{Card}(A) + 1$ s.t. any $w \in A^\mathbb{N}$ is S-adic.
We cannot avoid C

For $\text{Card}(S) = 1$, it is possible to get a quadratic complexity (Pansiot).

Proposition (Cassaigne)

$A = \text{alphabet}.
\exists S \text{ with } \text{Card}(S) = \text{Card}(A) + 1 \text{ s.t. any } w \in A^\mathbb{N} \text{ is } S\text{-adic.}$

Proof.

$l \notin A.$

$\forall a \in A : \sigma_a : \begin{cases} \ell \mapsto \ell a \\ b \mapsto b \ \forall b \neq \ell \end{cases}$

$\phi : \begin{cases} \ell \mapsto w_0 \\ b \mapsto b \ \forall b \neq \ell \end{cases}$

$w = \phi \sigma_{w_2} \sigma_{w_3} \sigma_{w_4} \sigma_{w_5}(\ell) \cdots$
Example of condition C

Theorem (Durand)

w is linearly recurrent if and only if it is a primitive and proper S-adic sequence with $\text{Card}(S) < \infty$.
Example of condition C

Theorem (Durand)

w is linearly recurrent if and only if it is a primitive and proper S-adic sequence with $\text{Card}(S) < \infty$.

Primitive S-adic: $\exists s_0$ such that $\forall r, \forall b \in A_r, c \in A_{r+s_0+1}$: b occurs in $\sigma_r \sigma_{r+1} \cdots \sigma_{r+s_0}(c)$.
Example of condition \(C \)

Theorem (Durand)

\(w \) is linearly recurrent if and only if it is a primitive and proper \(S \)-adic sequence with \(\text{Card}(S) < \infty \).

Primitive \(S \)-adic: \(\exists s_0 \) such that \(\forall r, \forall b \in A_r, c \in A_{r+s_0+1} :
\quad b \text{ occurs in } \sigma_r \sigma_{r+1} \cdots \sigma_{r+s_0}(c). \)

Proper \(S \)-adic: \(\forall \sigma \in S, \exists b, c \in A \) such that \(\sigma(a) \in bA^*c \ \forall a \in A. \)
First difficulty to find C: the growth rate of the images

For one morphism σ:

$$|\sigma^n(a)| \in \Theta(n^\alpha \beta^n)$$

and the complexity only depends on

$$\max_{a,b} \frac{|\sigma^n(a)|}{|\sigma^n(b)|}$$
First difficulty to find C: the growth rate of the images

For one morphism σ:

$$|\sigma^n(a)| \in \Theta(n^\alpha \beta^n)$$

and the complexity only depends on

$$\max_{a,b} \frac{|\sigma^n(a)|}{|\sigma^n(b)|}$$

For S-adic sequences:

$$|\sigma^n| \sim |\sigma_0 \sigma_1 \cdots \sigma_n|$$

but $|\sigma_0 \sigma_1 \cdots \sigma_n|$ does not have any analytic description.
Generalizing Pansiot’s conditions only provides a sufficient condition

Theorem (Pansiot)

If \(\min_a |\sigma^n(a)| \to +\infty \), *then*

\[
p(n) \leq Kn \iff \max_{a,b} \frac{|\sigma^n(a)|}{|\sigma^n(b)|}.
\]
Generalizing Pansiot’s conditions only provides a sufficient condition

Theorem (Pansiot)

If \(\min_a |\sigma^n(a)| \to +\infty \), then

\[
p(n) \leq Kn \iff \max_a, b \frac{|\sigma^n(a)|}{|\sigma^n(b)|}.
\]

Theorem (Durand)

If \(\min_a |\sigma_0\sigma_1\cdots\sigma_n(a)| \to +\infty \), then

\[
p(n) \leq Kn \iff \max_{a, b} \left| \frac{|\sigma_0\sigma_1\cdots\sigma_n(a)|}{|\sigma_0\sigma_1\cdots\sigma_n(b)|} \right|.
\]

Sturmian
There are some good sets S

Corollary

If S contains only strongly primitive or uniform morphisms, then

$$p(n) \leq Kn.$$
There are some good sets S

Corollary

If S contains only strongly primitive or uniform morphisms, then

$$p(n) \leq Kn.$$

Proposition

If $S = \{\varphi, \mu\}$ with

$$
\varphi : \begin{cases}
0 \mapsto 01 \\
1 \mapsto 0
\end{cases}
\quad \mu : \begin{cases}
0 \mapsto 01 \\
1 \mapsto 10
\end{cases},
$$

then any S-adic sequence has a sub-linear complexity.
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let

\[
\alpha : \begin{cases}
 a \mapsto aab \\
 b \mapsto b
\end{cases} \quad \text{and} \quad E : \begin{cases}
 a \mapsto b \\
 b \mapsto a
\end{cases}
\]

and consider

\[
w = \lim_{n \to \infty} \alpha E \alpha^2 E \alpha^3 E \cdots \alpha^{n-1} E \alpha^n (aaa \cdots).
\]
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let $S = \{\alpha E, E\alpha\}$. We have

\[
\begin{align*}
\alpha E : & \quad \begin{cases} a \mapsto b \\ b \mapsto aab \end{cases} \\
E\alpha : & \quad \begin{cases} a \mapsto bba \\ b \mapsto a \end{cases}
\end{align*}
\]
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)
Let $S = \{αE, Eα\}$. We have

$$αE : \begin{cases} a \mapsto b \\ b \mapsto aab \end{cases} \quad \text{and} \quad Eα : \begin{cases} a \mapsto bba \\ b \mapsto a \end{cases}$$

► w is S-adic:

$$αEα²Eα³Eα⁴E \ldots$$

$$(αE)(αE)(Eα)(Eα)(αE)(Eα)(Eα)(αE)(Eα)(αE) \ldots$$
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let $S = \{\alpha E, E\alpha\}$. We have

\[
\begin{align*}
\alpha E & : \begin{cases}
 a \mapsto b \\
 b \mapsto aab
\end{cases} \\
E\alpha & : \begin{cases}
 a \mapsto bba \\
 b \mapsto a
\end{cases}
\end{align*}
\]

- w is S-adic:

\[
\alpha E \alpha^2 E \alpha^3 E \alpha^4 E \cdots \\
(\alpha E)(\alpha E)(E\alpha)(E\alpha)(\alpha E)(E\alpha)(\alpha E)(E\alpha)(\alpha E) \cdots
\]
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)
Let $S = \{\alpha E, E\alpha\}$. We have

\[
\begin{align*}
\alpha E : \quad &\begin{cases}
a \mapsto b \\
b \mapsto aab
\end{cases} \\
E\alpha : \quad &\begin{cases}
a \mapsto bba \\
b \mapsto a
\end{cases}
\end{align*}
\]

- w is S-adic:

\[
\alpha E \alpha^2 E \alpha^3 E \alpha^4 E \cdots
\]

$(\alpha E)(\alpha E)(E\alpha)(E\alpha)(\alpha E)(E\alpha)(\alpha E)(E\alpha)(\alpha E) \cdots$
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let $S = \{\alpha E, E\alpha\}$. We have

\[
\begin{align*}
\alpha E &: \begin{cases}
a &\mapsto b
\end{cases}
\text{and}
E\alpha &: \begin{cases}
a &\mapsto bba
b &\mapsto a
\end{cases}
\end{align*}
\]

w is S-adic:

\[
\alpha E \alpha^2 E \alpha^3 E \alpha^4 E \cdots
\]

\[
(\alpha E)(\alpha E)(E\alpha)(E\alpha)(\alpha E)(E\alpha)(\alpha E)(E\alpha)(\alpha E) \cdots
\]
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let \(S = \{ \alpha E, E\alpha \} \). We have

\[
\begin{align*}
\alpha E : & \begin{cases}
a \mapsto b \\
b \mapsto aab
\end{cases} \\
E\alpha : & \begin{cases}
a \mapsto bba \\
b \mapsto a
\end{cases}
\end{align*}
\]

\(w \) is S-adic:

\[
\begin{align*}
\alpha E \alpha^2 E \alpha^3 E \alpha^4 E \cdots \\
(\alpha E)(\alpha E)(E\alpha)(E\alpha)(\alpha E)(E\alpha)(\alpha E)(\alpha E) \cdots
\end{align*}
\]
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If \(S\) is finite and contains only morphisms that creates sub-linear complexity, then any \(S\)-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let \(S = \{\alpha E, E\alpha\}\). We have

\[\begin{align*}
\alpha E &: \begin{cases}
a \mapsto b \\
b \mapsto aab
\end{cases} \\
E\alpha &: \begin{cases}
a \mapsto bba \\
b \mapsto a
\end{cases}
\end{align*}\]

- \(w\) is \(S\)-adic:
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)

Let $S = \{\alpha E, E\alpha\}$. We have

$\alpha E : \begin{cases} a \mapsto b \\ b \mapsto aab \end{cases}$ and $E\alpha : \begin{cases} a \mapsto bba \\ b \mapsto a \end{cases}$

- w is S-adic:
- αE and $E\alpha$ are primitive;
Naive idea 1: take only "good morphisms" yields to sub-linear complexity

Conjecture (Boshernitzan)

If S is finite and contains only morphisms that creates sub-linear complexity, then any S-adic sequence has a sub-linear complexity.

Counter-Example (Boshernitzan)
Let $S = \{ \alpha E, E\alpha \}$. We have

$$
\begin{align*}
\alpha E & : \begin{cases}
a \mapsto b \\
b \mapsto aab
\end{cases} \\
E\alpha & : \begin{cases}
a \mapsto bba \\
b \mapsto a
\end{cases}
\end{align*}
$$

- w is S-adic:
- αE and $E\alpha$ are primitive;
- w does not have a sub-linear complexity.
Naive idea 2: a "bad morphism" in S creates too much complexity.
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 1

$\alpha : \begin{cases} a \mapsto aab \\ b \mapsto b \end{cases}$ and $\mu : \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}$

$w = \lim_{n \to \infty} \alpha^k \mu \alpha^k \mu \alpha^k \mu \cdots \alpha^k \mu \alpha^k \mu \alpha^k \mu \alpha \mu (aaa \cdots)$.
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 1

$$\alpha : \begin{cases} a \mapsto aab \\ b \mapsto b \end{cases} \quad \text{and} \quad \mu : \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}$$

$$w = \lim_{n \to \infty} \alpha^{k_0} \mu \alpha^{k_1} \mu \alpha^{k_2} \mu \cdots \alpha^{k_{n-1}} \mu \alpha^{k_n}(aaa \cdots).$$

$\Rightarrow \alpha^\omega(a)$ has a quadratic complexity;
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 1

$$\alpha : \begin{cases} a \mapsto aab \\ b \mapsto b \end{cases} \text{ and } \mu : \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases}$$

$$w = \lim_{n \to \infty} \alpha^k \mu \alpha^k \mu \alpha^k \mu \cdots \alpha^{k_{n-1}} \mu \alpha^k (aaa \cdots).$$

- $\alpha^\omega (a)$ has a quadratic complexity;
- w has a sub-linear complexity if and only if $(k_n)_{n \in \mathbb{N}}$ is bounded.
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 2

$$
\beta : \begin{cases}
a \mapsto aab \\
b \mapsto bbc \\
c \mapsto c
\end{cases}
\quad \text{and} \quad
M : \begin{cases}
a \mapsto a \\
b \mapsto b \\
c \mapsto b
\end{cases}
$$

$$
\mathbf{w} = \lim_{n \to \infty} M\beta M\beta^2 M\beta^3 M \cdots \beta^{n-1} M\beta^n(aaa \cdots)
$$
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 2

$$\beta : \begin{cases}
 a \mapsto aab \\
 b \mapsto bbc \\
 c \mapsto c
\end{cases} \quad \text{and} \quad M : \begin{cases}
 a \mapsto a \\
 b \mapsto b \\
 c \mapsto b
\end{cases}$$

$$w = \lim_{n \to \infty} M\beta M\beta^2 M\beta^3 M \cdots \beta^{n-1} M\beta^n (aaa \cdots).$$

- $\beta^\omega (a)$ has a quadratic complexity and occurs in arbitrary long ranges in the sequence of morphisms;
Naive idea 2: a "bad morphism" in S creates too much complexity

Counter-Example 2

$$\beta : \begin{cases} a \mapsto aab \\ b \mapsto bbc \\ c \mapsto c \end{cases} \text{ and } M : \begin{cases} a \mapsto a \\ b \mapsto b \\ c \mapsto b \end{cases}$$

$$w = \lim_{n \to \infty} M\beta M\beta^2 M\beta^3 M \cdots \beta^{n-1} M\beta^n(aaa \cdots).$$

- $\beta^\omega(a)$ has a quadratic complexity and occurs in arbitrary long ranges in the sequence of morphisms;
- w has a sub-linear complexity.
Conclusions

1. There are some "good sets" S: all sequences $(\sigma_n)_{n \in \mathbb{N}} \in S^\mathbb{N}$ create sub-linear complexity
Conclusions

1. There are some "good sets" S: all sequences $(\sigma_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ create sub-linear complexity.

2. For some sets S, the sequence of morphisms is really important (counter-example 1).
Conclusions

1. There are some "good sets" S: all sequences $(\sigma_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ create sub-linear complexity

2. For some sets S, the sequence of morphisms is really important (counter-example 1)

3. Even if S contains only "good morphisms", there might be some S-adic sequences with high complexity (Boshernitzan’s counter-example)
Conclusions

1. There are some "good sets" S: all sequences $(\sigma_n)_{n \in \mathbb{N}} \in S^\mathbb{N}$ create sub-linear complexity

2. For some sets S, the sequence of morphisms is really important (counter-example 1)

3. Even if S contains only "good morphisms", there might be some S-adic sequences with high complexity (Boshernitzan’s counter-example)

4. Even when a "bad morphism" occurs very often in $(\sigma_n)_{n \in \mathbb{N}}$, the complexity can be sub-linear (counter-example 2)
Thank you