Examen écrit de théorie des automates et langages formels

Master en sciences mathématiques, vendredi 23 janvier 2009

- 1. On considère les langages $L = \{u \in \{a,b\}^* : |u|_a \neq |u|_b\}$ et $M = L^2$.
 - a) Montrer qu'un mot non vide appartient à $\{a,b\}^* \setminus M$ si et seulement si il est de la forme $a(ba)^n$ ou $b(ab)^n$, avec $n \geq 0$. (Suggestion: pour la condition nécessaire, montrer que si $u \in \{a,b\}^* \setminus M$, alors |u| est impair. Ensuite, procéder par récurrence sur la longueur des mots envisagés.)
 - b) Construire l'automate minimal du langage M.
 - c) Donner une expression régulière pour M et une formule close pour $\rho_M(n) = \#(M \cap \{a,b\}^n)$.

Les réponses fournies doivent être justifiées.

2. Soient u, v deux mots sur un alphabet Σ . Le mot v est un conjugué de u, s'il existe $x, y \in \Sigma^*$ tels que u = xy et v = yx.

Montrer que si u et v sont des palindromes et si au moins l'un d'eux est de longueur pair, alors il existe un conjugué de uv qui est un palindrome.

Montrer que si u et v sont des palindromes de longueur impaire, la propriété ci-dessus n'est pas nécessairement vérifiée.

3. Soient $u = u_1 \cdots u_\ell$ un mot où les u_i sont des lettres et $r \leq \ell$. Pour tous i_1, \ldots, i_r tels que $1 \leq i_1 \leq \cdots \leq i_r \leq \ell$, on dit que le mot $u_{i_1} \cdots u_{i_r}$ est une sous-suite de u. Par exemple, bd est une sous-suite de abcd.

Montrer que le langage

 $L = \{x^R cy \mid x, y \in \{a, b\}^*, y \text{ est une sous-suite de } x\} \subseteq \{a, b, c\}^*$ est un langage algébrique qui n'est pas régulier.

- **4.** Soit L_n le langage (régulier) formé des mots de longueur $\geq n$ sur $\{a,b\}$ dont la n-ième lettre en partant de la droite est un a. Montrer que tout automate fini déterministe acceptant L_n possède au moins 2^n états.
- 5. Pour rappel, la clôture commutative d'un langage $L\subseteq \Sigma^*$ est définie par

$$\mathfrak{Com}(L) = \{ w \in \Sigma^* \mid \exists u \in L : \forall a \in \Sigma, |w|_a = |u|_a \}.$$

Si L est un langage régulier, en est-il de même pour $\mathfrak{Com}(L)$? Justifier votre réponse.