Université de Liège

Année académique 2025 - 2026

Mathématiques élémentaires

Bloc 1 – Sciences Physiques

Titulaire : Michel Rigo m.rigo@uliege.be Assistant.e.s: Safia Bennabi; Antoine Renard s.bennabi@uliege.be; antoine.renard@uliege.be

1 Théorie des ensembles

Exercices au tableau

Définition 1.1. Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E, i.e.,

$$\mathcal{P}(E) = \{A : A \subset E\}.$$

Exercice 1.1. Soit E un ensemble. Démontrer les assertions suivantes.

- (a) $\forall A, B \in \mathcal{P}(E), \ \mathbf{C}_E(A \cup B) = \mathbf{C}_E A \cap \mathbf{C}_E B.$
- (b) $\forall A, B \in \mathcal{P}(E), (A \cap B = A \cup B) \Rightarrow A = B.$
- (c) $\forall A, B \in \mathcal{P}(E), A = B \Leftrightarrow (A \cap \mathcal{C}_E B) \cup (B \cap \mathcal{C}_E A) = \emptyset.$

Définition 1.2. Soit E un ensemble. Des parties A_j $(j \in J)$ de E forment une partition de E si elles sont disjointes 2 à 2 et si leur union est égale à E.

Définition 1.3. Soient E et F deux ensembles. Le produit cartésien de E et F est l'ensemble

$$E \times F = \{(e, f) : e \in E \land f \in F\}.$$

Exercice 1.2. Démontrer que si A, B, C sont des ensembles non-vides tels que $A \subset C$, alors les ensembles

$$(C \setminus A) \times C$$
, $A \times (C \setminus B)$ et $A \times (C \cap B)$

forment une partition de $C \times C$.

Exercices en autonomie

Définition 1.4. Soient A et B deux ensembles. On note $A\Delta B$ la différence symétrique de A et B, i.e.,

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

Exercice 1.3. Soit E un ensemble. Démontrer les assertions suivantes.

- (a) $\forall A, B \in \mathcal{P}(E), \, \mathcal{C}_E(A \cap B) = \mathcal{C}_E A \cup \mathcal{C}_E B.$
- (b) $\forall A, B \in \mathcal{P}(E), A\Delta B = (A \cap \mathcal{C}_E B) \cup (B \cap \mathcal{C}_E A).$
- (c) $\forall A, B, C \in \mathcal{P}(E), ((A \cap B = A \cap C) \land (A \cup B = A \cup C)) \Rightarrow B = C.$
- (d) $\forall A, B, C \in \mathcal{P}(E), (A\Delta B)\Delta C = (C\Delta A)\Delta B.$

Exercice 1.4. Soient A_1, \ldots, A_n des parties d'un ensemble E. On note $A = \bigcup_{i=1}^n A_i$. Démontrer que les ensembles

$$B_1 = A_1$$
 et $B_j = A_j \cap \mathbb{C}_A \left(\bigcup_{i=1}^{j-1} A_i \right), j = 2, \dots, n,$

forment une partition de A.

2 Nombres complexes

Exercices au tableau

Exercice 2.1. Pour chacun des nombres complexes donnés ci-après, calculer la partie réelle, la partie imaginaire, le module et le conjugué.

- (a) $z_0 = i$,
- (b) $z_1 = -2$,
- (c) $z_2 = 1 + \sqrt{3}i$.

Exercice 2.2. Soient $z_1 = 2 + 3i$ et $z_2 = -1 + 2i$. Calculer $z_1 + z_2$ et $z_1.z_2$. Calculer les inverses de z_1 et z_2 .

Exercice 2.3. Soient $z_1 = 3 + 2i$ et $z_2 = 4 - 3i$. Calculer $z_1 + z_2$, $z_1 \cdot z_2$, $\overline{z_1}$ et $\frac{z_1}{z_2}$.

Exercice 2.4. Mettre sous forme algébrique les quotients

(a) $\frac{3+i}{4-i}$,

(b) $\frac{i+5}{i-5}$.

Exercice 2.5. Soit $z = 1 + i\sqrt{3}$. Calculer le module de z et mettre z sous forme exponentielle. Déterminer z^2 et $\frac{z^6}{32}$ et les représenter dans le plan complexe.

Exercice 2.6. Mettre sous forme algébrique le nombre $4e^{i\frac{\pi}{4}}$.

Exercice 2.7. Résoudre les équations suivantes dans $\mathbb C$:

(a) $(1+i)z^2 + iz - 1 = 0$,

(c) $z^3 = -1$,

(b) $z^2 = 5 + 12i$,

(d) $z^4 + z^2 - 12 = 0$.

Exercice 2.8. Représenter graphiquement le lieu des point $z \in \mathbb{C}$ tels que

(a) $z + \bar{z} = 1$,

(b) |z+i-2| > 2.

Exercices en autonomie

Exercice 2.9. Pour chacun des nombres complexes donnés ci-après, calculer la partie réelle, la partie imaginaire, le module et le conjugué.

(a) $z_0 = \sqrt{2} - i$,

(d) $z_3 = 1 + i$,

(b) $z_1 = -3 + \frac{i}{2}$,

(e) $z_4 = 2i + 3$,

(c) $z_2 = 2(1-2i)$,

(f) $z_5 = -5 - 4i$.

Exercice 2.10. Donner, pour chacun des nombres complexes suivants, sa partie réelle, sa partie imaginaire et son module.

 $z_1 = \frac{3+6i}{3-4i}$ $z_2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$ $z_3 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$

Exercice 2.11. Soient $z_1 = i$, $z_2 = 1 + i$, $z_3 = 2 + 2i$ et $z_4 = 1 - i$. Calculer $z_1 + z_2$, $z_3 + z_4$, $z_1 \cdot z_2$ et $z_3 \cdot z_4$. Calculer les inverses de z_i pour $i \in \{1, 2, 3, 4\}$.

Exercice 2.12. Mettre sous forme algébrique les quotients

(a) $\frac{1}{i}$,

 $(c) \frac{-1-i}{-2+\sqrt{2}i},$

(b) $\frac{5+3i}{4i+3}$,

(d) $\frac{3(1-i)}{3i+6}$.

Exercice 2.13. Soient $z_1 = \frac{5-15i}{2-i}$ et $z_2 = -\frac{4}{3}i$. Mettre z_1 et z_2 sous forme algébrique et exponentielle (trigonométrique), et représenter ces nombres dans le plan complexe.

Exercice 2.14. Mettre sous forme exponentielle les nombres complexes $z_1 = i$, $z_2 = -1 + i$, $z_3 = -1$ et $z_4 = \sqrt{3} + i$. Calculer les produits $z_1 \cdot z_2$ et $z_2 \cdot z_4$ sous forme algébrique et sous forme trigonométrique ou exponentielle.

Exercice 2.15. Soient les nombres complexes $z_1 = \sqrt{3} - i$, $z_2 = -1 + i$, $z_3 = i$ et $z_4 = 1 + \sqrt{3}i$.

- (a) Donner les parties réelles et imaginaires de z_1z_2 , $\frac{z_1}{z_4}$ et z_3^2 ,
- (b) Donner la forme trigonométrique de z_4 , en déduire celle de z_4^6 ,
- (c) Donner la forme trigonométrique de $\frac{z_1}{z_2}$, en déduire $\cos(\frac{11\pi}{12})$ et $\sin(\frac{11\pi}{12})$,
- (d) Calculer $|z_1|$, $|z_1z_2|$, $|\frac{z_1}{z_4}|$ et $|z_3^3|$.

Exercice 2.16. Mettre sous forme algébrique les nombres $e^{i\pi}$, $2e^{i\frac{3\pi}{2}}$ et $4e^{i\frac{2\pi}{3}}$.

Exercice 2.17. Soit le nombre complexe z = i - 1. Écrire z sous forme exponentielle. Déterminer z^2 et z^4 sous forme exponentielle et algébrique. Déterminer les entiers $n \in \mathbb{N}$ pour lesquels z^n est réel. Faire de même avec z' = 1 + i.

Exercice 2.18. Calculer les deux racines carrées complexes de -1, i-1, 3+i.

Exercice 2.19. Résoudre les équations suivantes dans $\mathbb C$:

(a)
$$z^2 + z + 1 = 0$$
,

(b)
$$iz^2 + (2+i)z - i + 1 = 0$$
.

(c)
$$z^3 = -2$$
,

(d)
$$z^4 = \frac{16\sqrt{2}}{1-i}$$
,

(e)
$$z^3 = \bar{z}$$
,

(f)
$$(1+i)z^2 + (1-5i)z - (4-2i) = 0$$
,

(g)
$$z^4 - (3+8i)z^2 - 16 + 12i = 0$$
,

(h)
$$4z^2 + 8|z|^2 - 3 = 0$$
,

(i)
$$(z^2 + 3z - 2)^2 + (2z^2 - 3z + 2)^2 = 0$$
,

(j)
$$(1+i)z^2 - 2i\sqrt{2}z + (1-i) = 0$$
,

(k)
$$z^3 + 3z - 2i = 0$$
.

Exercice 2.20. Résoudre l'équation $z^2 - 4z + 8 = 0$ dans l'ensemble des nombres complexes, et représenter les solutions dans le plan complexe.

Exercice 2.21. Déterminer les solutions de

$$z^2 = -2 + 2i\sqrt{3}.$$

En déduire les solutions de

$$\left(\frac{z+i}{z-i}\right)^2 = -2 + 2i\sqrt{3}.$$

Exercice 2.22. Représenter graphiquement le lieu des point $z \in \mathbb{C}$ tels que

(a)
$$z - \bar{z} = i$$
,

(b)
$$|z-1| = |z+1|$$
,

(c)
$$z + \bar{z} = |z|^2$$
,

(d)
$$z + \bar{z} = |z|$$
,

(e)
$$|1 + iz| = |1 - iz|$$
,

(f)
$$\frac{3}{4}(z+\bar{z})^2 = 16 - |z|^2$$

Exercice 2.23. Dans quelles conditions la partie imaginaire du carré d'un complexe est-elle égale au carré de la partie imaginaire du complexe ?

Exercice 2.24. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Déterminer les valeurs des sommes suivantes.

(a)
$$\sum_{k=0}^{n} \cos(kx),$$

(d)
$$\sum_{k=0}^{n} \cos^k(x) \cos(kx),$$

(b)
$$\sum_{k=0}^{n} \sin(kx),$$

(e)
$$\sum_{k=0}^{n} \cos^k(x) \sin(kx),$$

(c)
$$\sum_{k=0}^{n} (-1)^k \cos(kx)$$
,

(f)
$$\sum_{k=0}^{n} C_n^k (-1)^{n-k} \frac{\cos(kx)}{\cos^k(x)}$$

Exercice 2.25. Soit $\alpha \in \mathbb{C} \setminus \{1\}$ tel que $\alpha^5 = 1$.

- (a) Donner tous les α qui vérifient cette condition.
- (b) Montrer que $\sum_{i=0}^{4} \alpha^i = 0$.