Algèbre linéaire

Bloc 1 – Sciences Mathématiques Bloc 2 – Sciences Physiques

Titulaire : Michel Rigo m.rigo@uliege.be Assistant: Antoine Renard antoine.renard@uliege.be

0 Espaces vectoriels

0.1 Rappels 1

Définition 0.1 (VII.1.1, p. 121, version 2009-2010). Soit \mathbb{K} un champ dont le neutre pour l'addition est 0 et le neutre pour la multiplication est 1. Les éléments de \mathbb{K} sont appelés *scalaires*. Un *espace vectoriel* sur \mathbb{K} ou \mathbb{K} -*vectoriel* est un ensemble E muni d'une opération binaire interne

$$+: E \times E \to E$$

et d'une opération interne

$$\cdot: \mathbb{K} \times E \to E$$

qui jouissent des propriétés suivantes :

- (1) (E, +) est un groupe commutatif,
- (2) pour tous $x, y \in E$ et tous scalaires $\lambda, \mu \in \mathbb{K}$:
 - (2.1) $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$, i.e. l'opération · est associative par rapport aux scalaires,
 - (2.2) $1 \cdot x = x$, *i.e.* il existe un neutre pour l'opération \cdot ,
 - (2.3) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$, i.e. l'opération · est distributive par rapport aux scalaires,
 - (2.4) $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$, i.e. l'opération · est distributive par rapport aux vecteurs.

Définition 0.2 (VII.3.1, p. 126, version 2009-2010). Soit E un espace vectoriel. Une partie finie $A \subset E$ est dite *libre* si les vecteurs de A sont linéairement indépendants 2 . Dans le cas contraire, A est dite *liée*. La partie A est dite *génératrice* si tout vecteur de E est combinaison linéaire des vecteurs de A. Si x_1, \ldots, x_p est une partie génératrice de E, on dit aussi que E est *engendré* par x_1, \ldots, x_p et on note $E = \rangle x_1, \ldots, x_p \langle$.

Définition 0.3 (VII.3.4 et 3.7, p. 127-128, version 2009-2010). Un espace vectoriel E est dit de dimension finie s'il contient une partie génératrice finie.

Une **base** de E est une partie libre et génératrice de E. La **dimension** de E est alors le nombre d'éléments d'une base de E, et est notée dimE.

Définition 0.4 (VII.5.1, p. 133, version 2009-2010). Soit E un espace vectoriel. Un sous-ensemble non vide $F \subset E$ est un **sous-espace vectoriel** de E s'il contient les combinaisons linéaires de ses éléments.

$$\lambda_1 x_1 + \dots + \lambda_p x_p = 0 \Rightarrow \lambda_1 = \dots = \lambda_p = 0$$

•

^{1.} Définitions et propositions tirées des notes du cours d'Algèbre linéaire, version 2009–2010, dispensé par Michel Rigo.

^{2.} Pour rappel, des vecteurs x_1, \ldots, x_p sont *linéairement indépendants* si, pour $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$,

Proposition 0.5 (VII.5.2, p. 133, version 2009-2010). Soit E un espace vectoriel sur le champ \mathbb{K} . Un sous-ensemble $F \subseteq E$ est un sous-espace vectoriel de E si, et seulement si, les assertions suivantes sont vérifiées :

- (1) $0 \in F$,
- (2) $si \ x, y \in F$, $alors \ x + y \in F$,
- (3) $si \ x \in F \ et \ \lambda \in \mathbb{K}, \ alors \ \lambda x \in F.$

Proposition 0.6 (VII.5.5, p. 134, version 2009-2010). Soit E un espace vectoriel de dimension finie n. Si F est un sous-espace vectoriel de E, alors F est de dimension finie, inférieure ou égale à n. De plus, si $\dim(F) = n$, alors F = E.

Proposition 0.7 (VII.5.7, p. 135, version 2009-2010). Soient F et G des sous-espaces vectoriels de E et soit

$$H = \{ f + g \mid f \in F, g \in G \}.$$

Alors H est un sous-espace vectoriel de E. Ce sous-espace H est appelé la somme de F et G et se note F+G.

Théorème 0.8 (VII.5.15, p. 137, version 2009-2010). Si F et G sont des sous-espaces vectoriels de dimension finie de E, alors

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Définition 0.9 (VII.5.16, p. 138, version 2009-2010). On dit que la somme F + G de deux sous-espaces vectoriels F et G de E est directe si $F \cap G = \{0\}$. Auquel cas, on écrit $F \oplus G$.

0.2 Exercices au tableau

Exercice 0.1. Considérons le \mathbb{C} -vectoriel $E_{\mathbb{C}} = \mathbb{C}^3$.

(a) Dans $E_{\mathbb{C}}$, les vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 2i \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 4 \\ i \end{pmatrix} \quad \text{et} \quad v_3 = \begin{pmatrix} 3i \\ -14 \\ 7i \end{pmatrix}$$

sont-ils linéairement indépendants?

- (b) Montrer que $E_{\mathbb{C}}$ peut être considéré comme un espace vectoriel sur \mathbb{R} .
- (c) Considérons le \mathbb{R} -vectoriel $E_{\mathbb{R}} = \mathbb{C}^3$. Les vecteurs v_1, v_2, v_3 sont-ils linéairement indépendants dans $E_{\mathbb{R}}$?
- (d) Quelle est la dimension de $E_{\mathbb{C}}$? Et celle de $E_{\mathbb{R}}$?

Exercice 0.2. Considérons le \mathbb{R} -espace vectoriel \mathcal{P}_2 des polynômes de degré inférieur ou égal à 2 à coefficients dans \mathbb{R} , *i.e.* $\mathcal{P}_2 = \mathbb{R}[X]_{<2}$. Définissons les polynômes

$$P_1(X) = X$$
, $P_2(X) = 2X + 1$ et $P_3(X) = X^2 + 2X + 2$.

- (a) Démontrer que les polynômes P_1 , P_2 , P_3 forment une base de \mathcal{P}_2 .
- (b) Déterminer les composantes des polynômes Q_1, Q_2, Q_3 dans cette base si

$$Q_1(X) = 1$$
, $Q_2(X) = X$ et $Q_3(X) = X^2$.

(c) Ecrire en général les formules de changement de base établissant le lien entre les composantes des polynômes de \mathcal{P}_2 dans ces deux bases.

Exercice 0.3. Soient

$$L = \{ p \in \mathbb{C}_{\leq 2}[z] : \forall z \in \mathbb{C}_0, z^2 p\left(\frac{1}{z}\right) = p(z) \}$$
 et
$$M = \{ p \in \mathbb{C}_{\leq 2}[z] : \forall z \in \mathbb{C}, p(z+1) = p(-z) \}$$

où $\mathbb{C}_{\leq 2}[z]$ est l'espace vectoriel des polynômes de degré au plus 2 à coefficients dans $\mathbb{C}.$

- (a) Montrer que L et M sont des sous-espaces vectoriels de $\mathbb{C}_{\leq 2}[z]$.
- (b) Déterminer une base et la dimension de $L, M, L \cap M$ et L + M.

Exercice 0.4 (Calcul matriciel, Examen Juin 2023). Soit $E = \mathbb{C}_3^2$ le \mathbb{C} -vectoriel des matrices complexes 2×3 . On considère les sous-vectoriels de E

$$F = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} \mid a, b, c \in \mathbb{C} \right\}, \quad G = \left\{ A \in \mathbb{C}_3^2 \mid A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\},$$

$$H = \left\{ A \in \mathbb{C}_3^2 \mid \begin{pmatrix} 1 & 1 \end{pmatrix} A = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \right\}$$

- (a) Donner une base de F.
- (b) Donner une base de H.
- (c) Donner une base de $F \cap G$.
- (d) Les sous-espaces F et H sont-ils en somme directe? Justifier. En particulier, a-t-on $F \oplus H = \mathbb{C}_3^2$?
- (e) **Déduire** des points précédents si les espaces $F \cap G$ et H sont ou non en somme directe. En particulier, a-t-on $(F \cap G) \oplus H = \mathbb{C}_3^2$?

0.3 Exercices en classe

Exercice 0.5. Soit $A = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$. On définit les ensembles

$$F = \{X \in \mathbb{R}^2_2 : AX = 0\}, \quad G = \{X \in \mathbb{R}^2_2 : XA = 0\} \quad \text{et} \quad H = \{X \in \mathbb{R}^2_2 : AX = XA\}.$$

- (a) Démontrer que F, G et H sont des sous-espaces vectoriels de \mathbb{R}_2^2 . Donner ensuite une base et la dimension de chaque sous-espace.
- (b) Décrire $F \cap G$, $F \cap H$ et $G \cap H$. Démontrer que ces trois ensembles sont des sous-espaces vectoriels de \mathbb{R}^2 . Donner ensuite une base et la dimension de chaque sous-espace.

Exercice 0.6 (Calcul matriciel, Examen Janvier 2023). On considère le \mathbb{R} -vectoriel \mathbb{R}^4 .

(a) Soit F l'ensemble des $(x_1, x_2, x_3, x_4)^{\sim} \in \mathbb{R}^4$ tels que

$$x_1 + x_2 + x_3 + x_4 = 0$$
 et $2x_1 - x_3 = 0$.

Justifier que F est un sous-espace vectoriel. Quelle en est la dimension?

(b) Soit le sous-vectoriel

$$G = \left. \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \end{pmatrix} \right\rangle \right\langle.$$

Donner une base de G.

- (c) Donner une base de $F \cap G$. En déduire la dimension de F + G.
- (d) Donner un vecteur n'appartenant <u>pas</u> à F+G. Pouvez-vous trouver 2 tels vecteurs linéairement indépendants n'appartenant pas à F+G? Justifier.
- (e) L'ensemble H formé des $(x_1, x_2, x_3, x_4)^{\sim} \in \mathbb{R}^4$ tels que $x_1^2 x_2^2 = 0$ est-il un sous-espace vectoriel? Argumenter votre réponse.

Exercice 0.7. Soient A et B les parties de \mathbb{R}^4 définies par

$$A = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 : \left\{ \begin{array}{l} 2x_1 + 3x_2 = 0 \\ x_3 = x_4^2 + 1 \end{array} \right\} \quad \text{et} \quad B = \left\{ \begin{pmatrix} -3 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Soient F et G les sous-espaces vectoriels engendrés respectivement par A et B. Démontrer que F = G.

Exercice 0.8 (Examen Janvier 2021). On considère le \mathbb{C} -vectoriel E des polynômes à coefficients complexes de degré au plus 4 et le sous-ensemble F suivant

$$F = \{az^4 + bz^3 + cz^2 + bz + a \mid a, b, c \in \mathbb{C}\}.$$

- (a) Vérifier que F est un sous-espace vectoriel de E.
- (b) Donner une base de F et décomposer $2z^4 z^3 z + 2$ dans celle-ci.
- (c) Quelle est l'intersection de F avec l'enveloppe linéaire

$$G = \langle z^4 + 1, z^3 + 1, z^2 + 1 \rangle$$
?

En déduire la dimension de F + G.

(d) Donner une base d'un supplémentaire de F dans E.

Exercice 0.9 (Partiel Janvier 2014). On se place dans \mathbb{R}^4 considéré comme \mathbb{R} -vectoriel. On considère l'ensemble

$$F = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \text{ et } x_1 - x_2 + x_4 = 0 \right\}$$

et le sous-espace vectoriel

$$G = \left. \middle| \left(\begin{array}{c} 1\\2\\-1\\0 \end{array} \right) \middle| \left\langle \right|.$$

- (a) Vérifier que F est un sous-espace vectoriel et en donner une base.
- (b) F et G sont-ils en somme directe?
- (c) Trouver un supplémentaire de F + G.
- (d) Soit H le sous-espace vectoriel dont une base est donnée par

$$\left(\left(\begin{array}{c} 1\\1\\-2\\0 \end{array} \right), \left(\begin{array}{c} 0\\1\\2\\3 \end{array} \right) \right).$$

Donner une base de $H \cap F$ et une base de H + F.

Exercice 0.10. Soient

$$H_n = \{ A \in \mathbb{C}_n^n : A^* = A \}$$
 et $U_n = \{ A \in \mathbb{C}_n^n : A^* = -A \}$.

Démontrer, si possible, que ce sont des sous-espaces vectoriels de \mathbb{C}_n^n et qu'on a $\mathbb{C}_n^n = H_n \oplus U_n$ lorsque \mathbb{C}_n^n est vu

- (a) comme un C-espace vectoriel,
- (b) comme un \mathbb{R} -espace vectoriel.

Exercice 0.11. Considérons \mathbb{C}_n^n comme un \mathbb{C} -vectoriel. Soient

$$S_n = \{ A \in \mathbb{C}_n^n : \widetilde{A} = A \}$$
 et $A_n = \{ A \in \mathbb{C}_n^n : \widetilde{A} = -A \}.$

Démontrer que ce sont des sous-espaces vectoriels de \mathbb{C}_n^n et qu'on a $\mathbb{C}_n^n = S_n \oplus A_n$.

Exercice 0.12. Considérons le \mathbb{R} -espace vectoriel \mathcal{P}_3 des polynômes de degré inférieur ou égal à 3 à coefficients dans \mathbb{R} , *i.e.* $\mathcal{P}_3 = \mathbb{R}[X]_{\leq 3}$.

- (a) Démontrer que, pour tout $a \in \mathbb{R}$, les polynômes 1, X a, $(X a)^2$ et $(X a)^3$ forment une base de \mathcal{P}_3 . Dans la suite, nous noterons \mathcal{B} cette base.
- (b) Rechercher les composantes d'un élément quelconque dans \mathcal{B} .
- (c) Écrire la formule de changement de base de la base $\mathcal{B}' = (1, X, X^2, X^3)$ de \mathcal{P}_3 à la base \mathcal{B} .

Exercice 0.13. Soit $E = \{f : \mathbb{R} \to \mathbb{R}\}$ considéré comme \mathbb{R} -espace vectoriel. Soient

$$P = \{ f : \mathbb{R} \to \mathbb{R} : f(-x) = f(x), \ \forall x \in \mathbb{R} \} \quad \text{et} \quad I = \{ f : \mathbb{R} \to \mathbb{R} : f(-x) = -f(x), \ \forall x \in \mathbb{R} \}.$$

Démontrer que $E = P \oplus I$.

Exercice 0.14. On considère $(\mathbb{C}, +, \cdot)$ comme un espace vectoriel sur \mathbb{R} .

- (a) À quelle(s) condition(s) sur $z \in \mathbb{C}$ les éléments 1 et z sont-ils linéairement dépendants sur \mathbb{R} ?
- (b) À quelle(s) condition(s) sur $z \in \mathbb{C}_0$ les éléments $\frac{1}{z}$ et 1 sont-ils linéairement dépendants sur \mathbb{R} ?
- (c) Démontrer que, pour tout $z \in \mathbb{C}$, les éléments 1, z et z^2 sont toujours linéairement dépendants sur \mathbb{R} , et trouver une relation linéaire entre eux.

Exercice 0.15. Soit $\mathcal{B} = (x_1, \dots, x_n)$ une base d'un espace vectoriel E sur le champ \mathbb{K} .

(a) Démontrer que les vecteurs

$$y_1 = x_1, \ y_2 = x_1 + x_2, \dots, \ y_n = \sum_{k=1}^{n} x_k$$

forment une base \mathcal{B}' de E.

(b) Établir la formule de changement de base permettant de passer de \mathcal{B} à \mathcal{B}' .

1 Polynômes de $\mathbb{C}[z]$

1.1 Exercices au tableau

Exercice 1.1. Dans $\mathbb{C}[z]$, écrire le polynôme $3z^4 - 2z^2 - 3$ sous la forme de Taylor en le point $z_0 = -1$.

Exercice 1.2 (Interrogation – 5 Mars 2007). Résoudre dans \mathbb{R} l'équation

$$x^3 - 7x^2 - 28x + 160 = 0$$

sachant qu'elle admet une solution négative ainsi que deux solutions positives dont l'une est le double de l'autre.

Exercice 1.3. Chercher les zéros complexes du polynôme

$$z^3 - 3z^2 + 4z - 12$$

sachant qu'il possède un zéro imaginaire pur.

Exercice 1.4. Quels sont les polynômes P de degré au plus égal à 5 tels que P+10 soit divisible par $(z+2)^3$ et P-10 soit divisible par $(z-2)^3$?

Exercice 1.5. Soient $a, b, c \in \mathbb{C}$ et soit $P \in \mathbb{C}[z]$ défini par

$$P(z) = z^5 + 2z^4 + 6z^3 + az^2 + bz + c.$$

A quelle(s) condition(s) sur les paramètres a, b et c le polynôme P est-il divisible par

- (a) z(z-1)?
- (b) $(z-1)^2$?

Exercice 1.6 (Examen Juin 2012). Le polynôme $z^9 + 2z^5 + 3z^4 + 5z^2 + 6z + 7$ possède-t-il un zéro de module supérieur à 9?

Exercice 1.7. Démontrer que $z^{104} + z^{93} + z^{82} + z^{71} + 1$ est divisible par $z^4 + z^3 + z^2 + z + 1$.

Exercice 1.8. Effectuer la division euclidienne de $z^5 + 2z^4 - z^3 + 22z$ par $z^2 - 4z + 1$.

Exercice 1.9. Déterminer des polynômes U et V tels que $(z^7 - z - 1)U + (z^5 + 1)V = 1$.

1.2 Exercices en classe

Exercice 1.10. Dans $\mathbb{C}[z]$, écrire le polynôme $2z^3 - 6z^2 + 3z + 5$ sous la forme de Taylor en le point $z_0 = 2$.

Exercice 1.11. Sachant que le polynôme de $\mathbb{C}[z]$

$$z^4 + z^3 - 5z^2 + z - 6$$

possède un zéro réel et un zéro imaginaire pur, déterminer tous ses zéros.

Exercice 1.12. Chercher les zéros du polynômes de $\mathbb{C}[z]$

$$z^3 + 3z^2 + (9 - 4i)z + 15$$

sachant qu'il possède un zéro imaginaire pur.

Exercice 1.13 (Examen Mai 2021). Expliquer pourquoi les zéros du polynôme

$$5z^6 + (1+2i)z^4 + (4-3i)z^3 + 3z^2 - 2$$

ont tous un module inférieur ou égal à 2.

Exercice 1.14. Soient $a, b, c \in \mathbb{C}$ et soit $P \in \mathbb{C}[z]$ défini par

$$P(z) = z^5 + 2z^4 + 6z^3 + az^2 + bz + c.$$

A quelle(s) condition(s) sur les paramètres a, b et c le polynôme P est-il divisible par

- (a) $z^2 + 1$?
- (b) $(z+1)^3$?

Exercice 1.15. Effectuer la division euclidienne de $z^4 + 5z^3 + 12z^2 + 19z - 7$ par $z^2 + 3z - 1$.

Exercice 1.16. Calculer un pgcd D de $z^6 - 7z^4 + 8z^3 - 7z + 7$ et $3z^5 - 7z^3 + 3z^2 - 7$. En déduire des polynômes U et V tels que

$$(z^6 - 7z^4 + 8z^3 - 7z + 7)U + (3z^5 - 7z^3 + 3z^2 - 7)V = D.$$

Exercice 1.17. Vrai—Faux. Justifier à chaque fois votre réponse par une preuve (énoncer un résultat théorique du cours peut suffire) ou un contre-exemple explicite.

- (a) (Examen Août 2023) Dans un plan muni d'un repère orthonormé, par 3 points non alignés de coordonnées (x_1, y_1) , (x_2, y_2) et (x_3, y_3) avec $x_1 \le x_2 \le x_3$ passe une et une seule parabole d'axe de symétrie vertical.
- (b) (Examen Août 2021) Soit P(z) un polynôme de degré au moins 2. Le polynôme P et sa dérivée $D_z P$ sont toujours premiers entre eux.
- (c) (Examen Août 2021) Soient z_0 un nombre complexe et P(z) un polynôme de degré au moins 2. Il existe un entier j > 0 tel que $(D_z^j P)(z_0) \neq 0$.
- (d) (Examen Mai 2021) Un polynôme $P \in \mathbb{R}[z]$ de degré 17 possède toujours un zéro réel.

Exercice 1.18. Soit $n \in \mathbb{N}_0 \setminus \{1\}$. Démontrer que 1 est un zéro triple du polynôme

$$z^{2n} - nz^{n+1} + nz^{n-1} - 1.$$

Exercice 1.19. Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}_0$. Calculer le reste de la division de $(\sin(a) - z\cos(a))^n$ par $z^2 + 1$.

Exercice 1.20 (Interrogation – 18 Février 2013). Soit $n \ge 2$ un entier. Factoriser $z^n - 1$ dans \mathbb{C} . En déduire que $z^n - 1$ et $D_z(z^n - 1)$ n'ont pas de zéro commun. Déterminer la valeur du produit suivant

$$\prod_{k=1}^{n-1} e^{2ik\pi/n}.$$

2 Fractions rationnelles

2.1 Exercices au tableau

Exercice 2.1. Décomposer en fractions rationnelles simples sur $\mathbb C$ la fraction rationnelle

$$\frac{(2-i)z^3 + (3+4i)z^2 - (4-5i)z - (1+4i)}{(z+i)^3(z-1)}.$$

Exercice 2.2. Décomposer en fractions rationnelles simples sur \mathbb{R} les fractions rationnelles

$$R_1(z) = \frac{z^3 + 3z^2 - 11z + 12}{(z^2 + 1)(z - 2)^2}, \quad R_2(z) = \frac{1}{z(z^4 + 1)} \quad \text{et} \quad R_3(z) = \frac{z^5 + 1}{z^3(z^2 + 1)}.$$

Exercice 2.3 (Interrogation – 28 Février 2005). Soit $a \in \mathbb{R}$. Décomposer en fractions rationnelles simples sur \mathbb{R} la fraction rationnelle

$$\frac{z^5}{\left(z^2+a\right)^2}.$$

Exercice 2.4. Décomposer en fractions rationnelles simples sur \mathbb{R} la fraction rationnelle

$$\frac{1}{(z+1)(z+2)(z+3)\cdots(z+n)}$$

pour tout $n \in \mathbb{N}_0$.

2.2 Exercices en classe

Exercice 2.5. Vrai—Faux. Justifier à chaque fois votre réponse par une preuve (énoncer un résultat théorique du cours peut suffire) ou un contre-exemple explicite.

- (a) (Examen Août 2023) Les fractions $1/(z^3-3z-2)$ et $(-3z^2+3)/(z^3-3z-2)^2$ possèdent les mêmes pôles.
- (b) (Examen Mai 2023) La fraction $1/(z^3 3z 2)$ possède le même développement en fractions simples sur \mathbb{C} et sur \mathbb{R} .
- (c) (Examen Mai 2022) La fraction

$$\frac{1}{(z^2+4)(z-2)^3}$$

possède les mêmes décompositions en fractions simples sur \mathbb{C} et sur \mathbb{R} .

(d) (Examen Mai 2022) On peut trouver une fraction rationnelle R(z) telle que 1+i est un pôle de R mais pas de D_zR .

Exercice 2.6. Décomposer en fractions simples sur \mathbb{R} , puis sur \mathbb{C} , les fractions rationnelles suivantes :

$$R_1(z) = \frac{1}{z^3 - z}, \quad R_2(z) = \frac{z^4 + 1}{(z+1)^2(z^2+1)} \quad \text{et} \quad R_3(z) = \frac{z^2 + 3z + 1}{(z-1)^2(z-2)}.$$

Exercice 2.7 (Examen Juin 2019). Décomposer en fractions simples sur \mathbb{R} , puis sur \mathbb{C} , la fraction rationnelle suivante

$$\frac{4z^3 + 13z^2 + 14z + 13}{z^4 + 2z^3 + 4z^2 + 6z + 3}.$$

Suggestion : le dénominateur possède un zéro réel et deux zéros dans $\mathbb{C} \setminus \mathbb{R}$.

Exercice 2.8 (Examen Septembre 2021). Décomposer en fractions simples sur \mathbb{R} , puis sur \mathbb{C} , la fraction rationnelle suivante

$$\frac{-x^3 + 7x^2 - 5x + 7}{(x-1)^2(x^2+1)}.$$

Exercice 2.9 (Examen Mai 2022). Sachant que $x^4 - 4x^3 - 2x^2 + 12x + 9 = (x-3)^2(x+1)^2$. Exprimer la fraction rationnelle suivante

$$\frac{3x^6 - 12x^5 - 5x^4 + 38x^3 + 15x^2 - 2x + 27}{x^4 - 4x^3 - 2x^2 + 12x + 9}$$

comme somme d'un polynôme et d'une fraction rationnelle propre que l'on décomposera ensuite en fractions simples (sur \mathbb{R}). Donner la forme de cette décomposition avec des constantes indéterminées puis, fournir un système permettant de déterminer ces constantes. On ne demande **pas** de le résoudre.

Exercice 2.10. Décomposer en fractions rationnelles simples sur \mathbb{R} les fractions rationnelles

$$R_{m,n}(z)\frac{z^m}{(z-1)^n}$$
 et $R_n(z) = \frac{z^{n-1}}{z^n-1}$,

pour tout $m, n \in \mathbb{N}_0$.

3 Opérateurs linéaires I

3.1 Exercices au tableau

Exercice 3.1. Les applications suivantes sont-elles linéaires? Justifier.

- (a) $T_1: \mathbb{R}^2 \to [-1, 1]: (x, y) \mapsto \sin(x + y)$.
- (b) $T_2: \mathbb{R}^3 \to \mathbb{R}^2: (x, y, z) \mapsto (x + 2y, -z)$
- (c) $T_3: \mathbb{C}^2 \to \mathbb{C}^2: (x,y) \mapsto (\overline{x+y},x+iy)$, où \mathbb{C}^2 est vu comme \mathbb{R} -vectoriel.

Exercice 3.2. Pour $\alpha \in \mathbb{R}$, montrer que l'application

$$U: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

est linéaire et qu'il s'agit d'un isomorphisme.

Exercice 3.3. Soit

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Montrer que l'application $T: \mathbb{C}_{\leq 3}[z] \to \mathbb{C}_3^3: P \mapsto P(M)$ est linéaire. Donner des bases des image et noyau.

Exercice 3.4. On pose $P_0(z) = z^2 + z$, $P_1(z) = z^2 + 1$, $P_2(z) = z + 1$.

- (a) Montrer que P_0, P_1, P_2 forment une base de $\mathbb{C}_{\leq 2}[z]$ et donner les composantes de $az^2 + bz + c$ dans cette base.
- (b) On définit $T \in \mathcal{L}(\mathcal{P}_2, \mathbb{C})$ par $TP_0 = TP_1 = TP_2 = 2$. Quelle est l'image de $az^2 + bz + c$?
- (c) Déterminer Ker T et montrer qu'il existe $z_0 \in \mathbb{C}$ tel que

$$\operatorname{Ker} T = \{ P \in \mathbb{C}_{\leq 2}[z] \colon P(z_0) = 0 \}.$$

Exercice 3.5. Soient $M = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ et $T : \mathbb{C}_2^2 \to \mathbb{C}_2^2 : A \mapsto AM - MA$. Donner la matrice qui représente T dans la base canonique.

Exercice 3.6. Montrer qu'il existe un unique endomorphisme T de \mathbb{R}^4 tel que, si (e_1, e_2, e_3, e_4) désigne la base canonique, alors on a

$$\begin{cases} T(e_1) = e_1 - e_2 + e_3 \\ T(2e_1 + 3e_4) = e_2 \end{cases} \text{ et } \operatorname{Ker} T = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + z = 0 \text{ et } x + 3y - t = 0\}.$$

Exercice 3.7. Pour tout $P \in \mathbb{R}_{\leq 3}[x]$, on pose

$$f(P) = \begin{pmatrix} P(1) \\ (D_x P)(1) \end{pmatrix}$$
 et $g(P) = P + (x - 1)D_x P - P(1)$.

- (a) Montrer que $f \in \mathcal{L}(\mathbb{R}_{\leq 3}[x], \mathbb{R}^2)$ et que $g \in \mathcal{L}(\mathbb{R}_{\leq 3}[x])$.
- (b) Donner leurs représentations matricielles dans les bases canoniques

$$\mathcal{B} = \{1, x, x^2, x^3\}$$
 et $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$

- (c) Soit la base $\mathcal{B}' = \{1, x-1, (x-1)^2, (x-1)^3\}$ de $\mathbb{R}_{\leq 3}[x]$. Donner les matrices de changement de base entre \mathcal{B} et \mathcal{B}' . En déduire les matrices représentant f et g dans les bases \mathcal{B}' et \mathcal{C} .
- (d) Donner des bases de $\operatorname{Im}(f)$, $\operatorname{Ker}(f)$, $\operatorname{Im}(g)$ et $\operatorname{Ker}(g)$.
- (e) Pour tout $n \in \mathbb{N}$, calculer g^n .

Exercice 3.8. Pour tout $P \in \mathbb{C}_{\leq 3}[z]$, on pose

$$f(P) = P(1-z) + P(1) - P(z)$$
 et $g(P) = \frac{1}{4!}D_z^3(P(z^2)) - zD_zP(z) + z^3P\left(\frac{1}{z}\right)$.

- (a) Montrer que $f, g \in \mathcal{L}(\mathbb{C}_{\leq 3}[z])$.
- (b) Donner les matrices qui représentent f et g dans la base canonique. En déduire les matrices qui représentent $f \circ g$ et $g \circ f$.
- (c) Soit Q(z) = z(1-z). Calculer $(f \circ g)(Q)$ et $(g \circ f)(Q)$.
- (d) Donner des bases des noyaux et images de $f \circ g$ et $g \circ f$.
- (e) A-t-on $\operatorname{rg}(f \circ g) = \operatorname{rg}(g \circ f)$?

3.2 Exercices en classe

Exercice 3.9. Les applications suivantes sont-elles linéaires? Justifier.

- (a) $T_1: \mathbb{R}^2 \to \mathbb{R}: (x, y) \mapsto x^2 y^2$.
- (b) $T_2: \mathbb{R}^2 \to \mathbb{R}^3 : (x, y) \mapsto (x + y, x y, 1).$
- (c) $T_2: \mathbb{R}^2 \to \mathbb{R}^3: (x,y) \mapsto (x+y, x-y, 0).$

Exercice 3.10. Soient $M = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ et $T : \mathbb{C}_2^2 \to \mathbb{C}_2^2 : A \mapsto AM - MA$.

- (a) Montrer que $T \in \mathcal{L}(\mathbb{C}_2^2)$.
- (b) Trouver des bases et les dimensions des noyau et image.

Exercice 3.11. On considère l'endomorphisme

$$T: \mathbb{C}_{\leq 3}[z] \to \mathbb{C}_{\leq 3}[z]: P(z) \mapsto D_z\left((1-z^2)D_zP(z)\right) + 6P(z).$$

Déterminer $\operatorname{Ker} T$ et $\operatorname{Im} T$.

Exercice 3.12. Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère

$$H = \{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}.$$

Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 3.13. Vrai—Faux. Justifier à chaque fois votre réponse par une preuve (énoncer un résultat théorique du cours peut suffire) ou un contre-exemple explicite.

- (a) (Examen Août 2021) Soit T une application linéaire. Si $\dim(\operatorname{Im} T) = \dim(\operatorname{Ker} T)$, alors T est injective. Cette affirmation est-elle vraie ou fausse? Justifier.
- (b) (Examen Août 2023) Soit A une matrice de C_4^3 de rang 2. Il existe deux vecteurs linéairement indépendants x, y de \mathbb{C}^4 tels que Ax = 0 = Ay.

Exercice 3.14 (Examen Août 2023). Soient u_1, u_2, u_3, u_4 une base d'un espace vectoriel E (de dimension 4) et T un endomorphisme de E. La matrice M qui représente T dans cette base est telle que si $i \geq j$, alors $M_{i,j} = 0$. Quels renseignements tirez-vous sur Tu_k pour k = 1, 2, 3, 4? Rappelez le résultat théorique utilisé. Démontrer ensuite que pour tout $x \in E$, $T^4x = 0$.

Exercice 3.15 (Examen Mai 2023). Soient u_1, u_2, u_3, u_4 une base d'un espace vectoriel E (de dimension 4) et T un endomorphisme de E tel que

$$T(u_1) \in \langle u_1, u_2 \rangle$$
, $T(u_2) \in \langle u_1, u_2 \rangle$, $T(u_3) \in \langle u_3, u_4 \rangle$ et $T(u_4) \in \langle u_3, u_4 \rangle$.

Quels renseignements pouvez-vous tirer sur la matrice représentant T dans cette base? En particulier, quels éléments de la matrices sont nécessairement nuls? Rappelez le résultat théorique utilisé.

Exercice 3.16. Soient A, B deux polynômes de degré n+1. On définit l'application $T: \mathbb{R}_{\leq n}[x] \to \mathbb{R}_{\leq n}[x]$ qui à un polynôme P associe le reste de AP dans la division euclidienne par B.

- (a) Démontrer que T est linéaire.
- (b) Démontrer que T est bijectif si et seulement si A et B sont premiers entre eux.

Exercice 3.17 (Examen Août 2021). On considère l'application linéaire

$$T: \mathbb{R}^4 \to \mathbb{R}^4, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mapsto \begin{pmatrix} x_2 + x_3 \\ x_1 + x_4 \\ x_2 \\ 2x_1 + x_2 + x_3 + 2x_4 \end{pmatrix}$$

- (a) Dans la base canonique (e_1, e_2, e_3, e_4) de \mathbb{R}^4 , représenter T.
- (b) Dans la base $(e_1 e_2, e_1 + e_2, e_3 e_4, e_3 + e_4)$ de \mathbb{R}^4 , représenter T.
- (c) Donner une base du noyau de T, une base de l'image de T. Vérifier le théorème de la dimension.
- (d) T est-il un isomorphisme de \mathbb{R}^4 dans lui-même? Justifier votre réponse.

Exercice 3.18 (Examen Juin 2019). On considère une base $U = (u_1, u_2, u_3)$ de \mathbb{R}^3 et l'endomorphisme $T : \mathbb{R}^3 \to \mathbb{R}^3$ défini par

$$T(u_1) = u_1 + 2u_2,$$

 $T(u_2) = u_1 + 3u_2 + u_3,$
 $T(u_3) = u_2 + u_3.$

- (a) Calculer $T(u_1 + u_2 + u_3)$.
- (b) Représenter matriciellement T dans la base U.
- (c) Soient les éléments $w_1 = -u_1 + 2u_3$, $w_2 = u_1 + u_3$, $w_3 = u_2$ (il est acquis que ces vecteurs forment une base). Représenter matriciellement T dans cette base (w_1, w_2, w_3) .
- (d) Fournir une base de $\operatorname{Ker} T$. En déduire la dimension de l'image de T.

Exercice 3.19 (Examen Septembre 2014). Dans \mathbb{R}^3 , on considère $u_1 = (1, 0, -1)^{\sim}$, $u_2 = (0, 2, 3)^{\sim}$ et $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ tel que $Tu_1 = (2, 1, 0)^{\sim}$ et $Tu_2 = (1, 0, 1)^{\sim}$.

- (a) Choisir un vecteur u_3 tel que $U=(u_1,u_2,u_3)$ soit une base de \mathbb{R}^3 (on gardera cette base tout au long de l'exercice). Dans cette base, donner $\Phi_U(Tu_1)$ et $\Phi_U(Tu_2)$.
- (b) Soit l'ensemble E formé des vecteurs $v \in \mathbb{R}^3$ tels que $Tu_3 = v$ et le rang de T vaut 2. Exhiber un élément appartenant à E. Cet ensemble est-il un sous-espace vectoriel? Si oui, quelle en est sa dimension?
- (c) Fournir un vecteur w tel que $Tu_3 = w$ et T est un isomorphisme.
- (d) Si $Tu_3 = (5, 3, -1)^{\sim}$, représenter matriciellement T dans la base U et donner une base du noyau de T.

Exercice 3.20. Le but de l'exercice est d'étudier l'opérateur $\Delta : \mathbb{R}[x] \to \mathbb{R}[x]$ défini par $(\Delta P)(x) = P(x+1) - P(x)$.

- (a) Question préliminaire : Soit $(P_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{R}[x]$ telle que $\deg(P_n)=n$ pour chaque n. Prouver que $(P_n)_n$ est une base de $\mathbb{R}[x]$.
- (b) Montrer que Δ est une application linéaire. Calculer son noyau et son image.
- (c) Montrer qu'il existe une unique famille $(H_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[x]$ telle que

$$H_0 = 1$$
, $\Delta(H_n) = H_{n-1}$ et $H_n(0) = 0$.

Montrer que $(H_n)_n$ est une base de $\mathbb{R}[x]$.

(d) Soit P un polynôme réel de degré $p \in \mathbb{N}$. Montrer que P peut s'écrire

$$P = \sum_{n=0}^{p} (\Delta^n P)(0) H_n.$$

(e) Montrer que l'on a

$$(\Delta^n P)(0) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} P(k).$$

(f) Montrer que pour tout $n \in \mathbb{N}_0$,

$$H_n = \frac{x(x-1)\cdots(x-n+1)}{n!}.$$

- (g) En déduire que pour tout polynôme P de degré p, les assertions suivantes sont équivalentes :
 - (i) P prend des valeurs entières sur \mathbb{Z} .
 - (ii) P prend des valeurs entières sur $\{0,\ldots,p\}$.
 - (iii) Les coordonnées de P dans la base $(H_n)_n$ sont des entiers.
 - (iv) P prend des valeurs entières sur p+1 entiers consécutifs.

4 Opérateurs linéaires II

4.1 Exercices au tableau

Exercice 4.1. Soit E un espace vectoriel et $T, S \in \mathcal{L}(E)$. On suppose que $T \circ S = S \circ T$. Démontrer que Ker T et Im T sont stables par S, *i.e.*

$$S(\operatorname{Ker} T) \subset \operatorname{Ker} T$$
 et $S(\operatorname{Im} T) \subset \operatorname{Im} T$.

Exercice 4.2. Si E est un espace vectoriel de dimension finie et si $T \in \mathcal{L}(E)$, montrer que

$$\operatorname{Im} T = \operatorname{Ker} T \Leftrightarrow (T^2 = 0 \text{ et } 2 \cdot \dim(\operatorname{Im} T) = \dim(E)).$$

Exercice 4.3. Soient E un espace vectoriel réel de dimension 2 et $T \in \mathcal{L}(E)$ tel que $T^2 = -\mathrm{id}$. Montrer que $x \in E \setminus \{0\}$ et Tx forment une base.

Exercice 4.4. Soient E un espace vectoriel de dimension finie et $T \in \mathcal{L}(E)$ un opérateur *involutif* (*i.e.* $T^2 = \mathrm{id}$). Démontrer que $\mathrm{Ker}(T - \mathrm{id}) = \mathrm{Im}(T + \mathrm{id})$.

Exercice 4.5. Soient E et F deux espaces vectoriels, $T \in \mathcal{L}(E,F)$ et $S \in \mathcal{L}(F,E)$ vérifiant

$$T \circ S \circ T = T$$
 et $S \circ T \circ S = S$.

Démontrer que $\operatorname{Ker} T$ et $\operatorname{Im} S$ sont supplémentaires.

4.2 Exercices en classe

Exercice 4.6. Soient E, F, G trois \mathbb{K} -vectoriels, et soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que

$$g\circ f=0\Leftrightarrow \operatorname{Im} f\subset \operatorname{Ker} g.$$

Exercice 4.7 (Examen Mai 2022). Donner un exemple d'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^3$ distincte de l'identité et de l'application nulle telle que $T^2 = T$. Justifier votre construction.

Exercice 4.8 (Examen Mai 2021). Donner un exemple d'application linéaire $T: \mathbb{R}^4 \to \mathbb{R}^4$ telle que $\dim(\operatorname{Im} T) = \dim(\operatorname{Ker} T) = 2$. Justifier votre construction.

Exercice 4.9. Soit E un espace vectoriel et $T \in \mathcal{L}(E)$. Montrer que $\operatorname{Ker}(T)$, $\operatorname{Ker}(T-\operatorname{id})$ et $\operatorname{Ker}(T+\operatorname{id})$ sont en somme directe.

Exercice 4.10. Soient E un espace vectoriel de dimension finie et $T \in \mathcal{L}(E)$ un opérateur *involutif* (*i.e.* $T^2 = \mathrm{id}$). Démontrer que

$$\operatorname{Ker}(T+\operatorname{id}) = \operatorname{Im}(T-\operatorname{id})$$

$$E = \operatorname{Ker}(T-\operatorname{id}) \oplus \operatorname{Ker}(T+\operatorname{id}).$$

Réciproquement, montrer qu'à toute décomposition $E = A \oplus B$ correspond une unique involution T telle que A = Ker(T - id) et B = Ker(T + id).

Exercice 4.11. Soit E un espace vectoriel et $T \in \mathcal{L}(E)$ tel que, pour tout $x \in E$, les vecteurs x et Tx sont linéairement dépendants.

- (a) Démontrer que pour tout $x \in E \setminus \{0\}$, il existe un unique scalaire λ_x tel que $Tx = \lambda_x x$.
- (b) Montrer que $\lambda_x = \lambda_y$ lorsque x et y sont linéairement dépendants.
- (c) Montrer que $\lambda_x = \lambda_y$ lorsque x et y sont linéairement indépendants.
- (d) En déduire que T est une homothétie, i.e. il existe un scalaire λ tel que $Tx = \lambda x$ pour tout $x \in E$.

5 Diagonalisation I

5.1 Exercices au tableau

Exercice 5.1. Soit

$$A = \begin{pmatrix} -5 & 3\\ 6 & -2 \end{pmatrix}.$$

Montrer que A est diagonalisable et calculer ses valeurs propres. En déduire qu'il existe une matrice B telle que $B^3 = A$.

Exercice 5.2. Diagonaliser, si possible, les matrices suivantes :

Si A (resp. B) est diagonalisable, en déduire A^n (resp. B^n) pour tout $n \in \mathbb{N}$.

Exercice 5.3. Pour quelle(s) valeur(s) du complexe α , les matrices

$$M = \begin{pmatrix} \alpha & 2\alpha & -\alpha \\ -2 & -\alpha & 2 \\ -1 & 2\alpha & 1 \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} -1 & 2\alpha & 3 \\ -2 & 2 & 2 \\ 1 & 2\alpha & 1 \end{pmatrix}$$

sont-elles diagonalisables?

Exercice 5.4. Déterminer si les matrices

$$A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$

sont semblables.

Exercice 5.5. Soit la matrice

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}.$$

Diagonaliser A et en déduire toutes les matrices M qui commutent avec A.

Exercice 5.6. Soit la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

- (a) Calculer A^2 et en déduire une relation simple liant A^2 , A et I_4 .
- (b) En déduire que A est diagonalisable et donner ses valeurs propres.
- (c) Diagonaliser A.

5.2 Exercices en classe

Exercice 5.7. Diagonaliser, si possible, la matrice

$$A = \begin{pmatrix} 4 & 2 & -1 & -1 \\ 2 & 4 & 1 & 1 \\ -1 & 1 & 4 & -2 \\ -1 & 1 & -2 & 4 \end{pmatrix}.$$

Si elle est diagonalisable, en déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 5.8 (Examen Juin 2010). Diagonaliser, si possible, les matrices

$$A = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 2 & -1 \\ 1 & 0 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 4 & -1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ -3 & 1 & 2 & -2 \\ -1 & 1 & 0 & 2 \end{pmatrix}.$$

Si $M \in \{A, B\}$ est diagonalisable, fournir explicitement une matrice S qui diagonalise M et la matrice diagonale $S^{-1}MS$ correspondante.

Exercice 5.9. Vrai—Faux. Justifier à chaque fois votre réponse par une preuve (énoncer un résultat théorique du cours peut suffire) ou un contre-exemple explicite.

(a) (Examen Août 2023) Soit A une matrice de \mathbb{C}_2^2 . Son polynôme caractéristique est donné par

$$\det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A) \cdot \lambda + \det(A),$$

où tr(A) dénote la trace de A.

- (b) (Examen Mai 2023) Soient A,B deux matrices diagonalisable par une même matrice S. Alors AB=BA.
- (c) (Examen Mai 2023) Une matrice carrée est inversible si et seulement si elle ne possède pas de valeur propre nulle.
- (d) (Examen Mai 2022) Les valeurs propres d'une matrice 3×3 à coefficients entiers sont réelles.
- (e) (Examen Septembre 2021) Toute matrice de \mathbb{C}_2^2 est diagonalisable.

Exercice 5.10 (Examen Mai 2023). Soit A une matrice carrée de dimension 5×5 à coefficients réels ayant 2, 1 + i et 3 - i comme valeurs propres. Peut-on déterminer l'ensemble des valeurs propres de A? Justifier.

Exercice 5.11 (Examen Juin 2013). A quelles conditions sur les paramètres $\alpha, \beta, \gamma \in \mathbb{R}$ la matrice

$$M = \begin{pmatrix} 1 & \alpha & \beta & \gamma \\ 0 & 1 & \alpha & \beta \\ 0 & 0 & -1 & \alpha \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

est-elle diagonalisable? Quand M est diagonalisable, fournir une matrice inversible S telle que $S^{-1}MS$ soit diagonale.

Exercice 5.12 (Examen Août 2023). On considère la matrice

$$\begin{pmatrix} 8+2\alpha & 2\alpha & -2+2\alpha \\ -1-\alpha & 6-4\alpha & 1-7\alpha \\ -1+2\alpha & 2\alpha & 7+2\alpha \end{pmatrix}$$

qui est telle que

$$\chi_A(\lambda) = \det(A - \lambda I) = -\lambda^3 + 21\lambda^2 - 144\lambda + 324.$$

- (a) Vérifier que les valeurs propres de A sont 6 et 9. Donner leur multiplicité algébrique.
- (b) Pour quelle(s) valeur(s) du paramètre $\alpha \in \mathbb{C}$, la matrice A est-elle diagonalisable?
- (c) Quand A est diagonalisable, fournir une matrice inversible S telle que $S^{-1}AS$ soit diagonale. Fournir la matrice $S^{-1}AS$ correspondante.

Exercice 5.13. Soit A une matrice complexe diagonalisable de taille $n \times n$ et soit B la matrice définie par

$$B = \left(\begin{array}{c|c} 0 & A \\ \hline I_n & 0 \end{array}\right).$$

Donner les valeurs propres de B et la dimension des sous-espaces propres correspondants. A quelle condition B est-elle diagonalisable?

Exercice 5.14 (Examen Mai 2022). Soient $\phi \in \mathbb{R}$ un paramètre et la matrice

$$M = \begin{pmatrix} 3 & 2 & 0 & 0 \\ \phi & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & \phi & 1 \end{pmatrix}.$$

- (a) Pour quelle(s) valeur(s) de ϕ , la matrice M ne possède-t-elle que des valeurs propres simples?
- (b) Pour quelle(s) valeur(s) de ϕ , la matrice M est-elle diagonalisable? (On ne demande **pas** de diagonaliser.)
- (c) Soient les vecteurs

$$x = \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix} \quad \text{et} \quad y = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}.$$

Pour quelle(s) valeur(s) de ϕ , x est-il un vecteur propre de M? Justifier que y n'est jamais vecteur propre de M.

Exercice 5.15. Soit la matrice

$$A = \begin{pmatrix} 1 & \alpha & -\alpha & 0 \\ 0 & \alpha + 1 & 0 & 2 - 2\alpha \\ 2 - \alpha & \alpha - 2 & 3 & 2 - 2\alpha \\ 0 & 0 & 0 & 3 - \alpha \end{pmatrix}.$$

On donne (inutile de le vérifier)

$$\det(A - \lambda I) = (\lambda - \alpha - 1)^{2}(\lambda - 3 + \alpha)^{2}$$

- (a) Montrer que pour $\alpha = 0$ et $\alpha = 2$, les matrices correspondantes ont les mêmes valeurs propres avec les mêmes multiplicités algébriques.
- (b) Pour quelle(s) valeur(s) de $\alpha \in \mathbb{C}$, la matrice A possède-t-elle une unique valeur propre (de multiplicité algébrique 4)? Dans ce(s) cas, A est-elle diagonalisable?
- (c) Pour $\alpha = 0$, si possible, diagonaliser A.
- (d) En exploitant le point précédent, pour $\alpha = 0$, vérifier que

$$\lim_{n \to +\infty} \left(\frac{A}{3}\right)^n \underbrace{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}}_{u} = \begin{pmatrix} 0\\1\\2\\1 \end{pmatrix}.$$

Suggestion : plusieurs méthodes de résolution sont possibles, il n'est pas nécessaire de réaliser un calcul du type S^{-1} , on peut aussi décomposer le vecteur colonne u dans une base formée de vecteurs propres.

(e) Toujours pour $\alpha = 0$, justifier que $P(z) = z^2 - 4z + 3$ est le polynôme minimum de A (*i.e.*, polynôme de plus petit degré annulé par A).

Exercice 5.16. Pour $n \ge 1$, soit

$$A_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$

et $P_n(x) = \det(xI_n - A_n)$ son polynôme caractéristique.

(a) Démontrer que, pour tout $n\geq 2,$ on a

$$P_n(x) = xP_{n-1}(x) - P_{n-2}(x).$$

Calculer P_1 et P_2 .

(b) Pour tout $\alpha \in]0,\pi[,$ on pose $x_{\alpha}=2\cos\alpha.$ Démontrer que

$$P_n(x_\alpha) = \frac{\sin((n+1)\alpha)}{\sin \alpha}.$$

(c) En déduire que A_n est diagonalisable.

6 Diagonalisation II

6.1 Exercices au tableau

Exercice 6.1. Soit

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}.$$

- (a) Déterminer, sans calculer le polynôme caractéristique, les valeurs propres de la matrice A. Estelle diagonalisable?
- (b) Plus généralement, donner une condition nécessaire et suffisante pour qu'une matrice de rang 1 soit diagonalisable.

Exercice 6.2. Chercher les valeurs propres de l'opérateur

$$T: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}): f \mapsto Df$$

ainsi que les sous-espaces propres associés.

Exercice 6.3. Soit $E = \mathbb{C}^{\mathbb{N}}$ le \mathbb{C} -vectoriel des suites à coefficients complexes, et T l'endomorphisme de E qui à une suite $(u_n)_n$ associe la suite $(v_n)_n$ définie par $v_0 = u_0$ et, pour tout $n \geq 1$,

$$v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer les valeurs propres et les vecteurs propres de T.

Exercice 6.4. Chercher les valeurs propres de l'opérateur

$$T \colon \mathbb{C}_{\leq n}[z] \to \mathbb{C}_{\leq n}[z] \colon p \mapsto (z^2 - 1)D^2p(z) + (2z + 1)Dp(z)$$

après avoir vérifié que ce dernier est bien linéaire.

Exercice 6.5. Soient A et B deux matrices de \mathbb{C}_n^n . Prouver que si les valeurs propres de A sont simples et que B commute avec A, alors B est diagonalisable.

6.2 Exercices en classe

Exercice 6.6 (Examen Mai 2023). Soit $E = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$ le \mathbb{R} -vectoriel des polynômes de degré au plus 2. On considère l'application linéaire dérivée $D: E \to E$. L'unique valeur propre de D est zéro. Cette affirmation est-elle vraie ou fausse? Justifier.

Exercice 6.7. Chercher les valeurs propres de l'opérateur

$$S \colon \mathbb{R}_{\leq n}[x] \to \mathbb{R}_{\leq n}[x] : p \mapsto \frac{1}{x-1} \int_1^x p(t)dt.$$

après avoir vérifié que ce dernier est bien linéaire. Lorsque n=2, trouver une base \mathcal{B} de $\mathbb{R}_{\leq 2}[x]$ telle que la matrice qui représente S dans \mathcal{B} soit diagonale.

Exercice 6.8. Soit T l'endomorphisme de $\mathbb{R}_{\leq n}[x]$ défini par $T(P)(x) = x^n P(1/x)$. Démontrer que T est un endomorphisme diagonalisable de $\mathbb{R}_{\leq n}[x]$, déterminer ses valeurs propres et une base de vecteurs propres associés.

Suggestion : Calculer T^2P pour un polynôme quelconque $P \in \mathbb{R}_{\leq n}[x]$, et en déduire un polynôme annulateur de T.

Exercice 6.9 (Examen Août 2023). On considère l'application linéaire

$$T: \mathbb{R}^4 \to \mathbb{R}^4, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 + x_3 - x_4 \\ 2x_2 \\ x_1 + x_2 + 2x_3 + x_4 \\ -x_1 - x_3 + 2x_4 \end{pmatrix}.$$

- (a) Dans la base canonique (e_1, e_2, e_3, e_4) de \mathbb{R}^4 , représenter T.
- (b) Dans la base de \mathbb{R}^4

$$(e_1 - e_4, e_2 - e_4, e_1 - e_2 - e_3, e_1 - e_3),$$

représenter T.

- (c) Donner les valeurs propres de T et leurs multiplicités géométriques respectives.
- (d) Donner une base du noyau de T, une base de l'image de T. Vérifier le théorème de la dimension.
- (e) T est-il un isomorphisme de \mathbb{R}^4 dans lui-même? Justifier votre réponse.

Exercice 6.10 (Examen Mai 2022). Soit E un \mathbb{C} -vectoriel ayant $U = (u_1, u_2, u_3, u_4)$ comme base. On considère l'endomorphisme $T \in \mathcal{L}(E)$ défini par

$$Tu_1 = u_1 + u_2$$
, $Tu_2 = 2u_1 + u_2$, $Tu_3 = 3u_3 + 2u_4$ et $Tu_4 = 3u_4$.

- (a) Représenter matriciellement T dans la base U.
- (b) Quelles sont les valeurs propres de T ainsi que leurs multiplicités algébrique et géométrique respectives?
- (c) Représenter matriciellement T^2 id dans la base U; déduire du point précédent les valeurs propres de T^2 id.
- (d) Soit la base

$$V = (w_1 = u_1 + u_2 ; w_2 = u_1 - u_2 ; w_3 = u_3 + u_4 ; w_4 = u_3 - u_4).$$

Représenter matriciellement T dans la base V.

(e) Déterminer l'image et le noyau de T. Que pouvez-vous conclure (injection, surjection, bijection)?

7 Diagonalisation et polynômes d'endomorphisme

7.1 Exercices au tableau

Exercice 7.1. Soit $n \geq 1$ et $A \in \mathbb{R}_n^n$.

(a) Démontrer que si ω est une valeur propre de A de multiplicité s, alors $\overline{\omega}$ est une valeur propre de A de multiplicité s.

- (b) On suppose que $A^3 3A 4I_n = 0$. Montrer que A est de déterminant strictement positif.
- (c) On suppose que $A^2 + A + I_n = 0$. Montrer que n est pair.
- (d) On suppose que $A^3 + A^2 + A = 0$. Montrer que le rang de A est pair.
- (e) On suppose que $A^3 + A^2 + A = 0$. Démontrer que tr(A) est un entier négatif.

Exercice 7.2. Soit $A = \operatorname{diag}(A_1, \dots, A_k)$ où les A_i sont des matrices complexes carrées. Prouver que le polynôme minimum de A est égal au ppcm de celui des A_i pour $i \in \{1, \dots, k\}$.

Exercice 7.3. Soit $A \in \mathbb{C}_n^n$ tel que $A^3 + I = 0$ et $\operatorname{tr}(A) = \det(A) = -1$. Déterminer le polynôme caractéristique de A.

Exercice 7.4. Déterminer le polynôme minimum des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Exercice 7.5. Soit E un espace vectoriel de dimension n sur un champ \mathbb{K} et T un endomorphisme de E. Montrer que si $x \in E$ est tel que $x, Tx, \ldots, T^{n-1}x$ est une base de E, alors le polynôme minimum et le polynôme caractéristique de T coïncident (à multiplication par -1 près).

Exercice 7.6. Soit T un endomorphisme d'un \mathbb{K} -vectoriel E de dimension finie, et soit \mathcal{M}_T son polynôme minimal. Soit P un polynôme à coefficients dans \mathbb{K} . Démontrer que P(T) est inversible si et seulement si P et \mathcal{M}_T sont premiers entre eux.

Exercice 7.7. Soit $n \ge 1$. Déterminer les polynômes minimum et caractéristique de l'application

$$S \colon \mathbb{C}_{\leq n}[z] \to \mathbb{C}_{\leq n}[z] \colon p \mapsto p(z+1).$$

7.2 Exercices en classe

Exercice 7.8. Déterminer le polynôme minimum des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}.$$

Exercice 7.9. Soit

$$T \colon \mathbb{C}_2^2 \to \mathbb{C}_2^2 \colon \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} 2c & a+c \\ b-2c & d \end{pmatrix}.$$

- (a) Déterminer les valeurs propres et les espaces propres associés de T.
- (b) L'opérateur T est-il diagonalisable?
- (c) Déterminer le polynôme minimum de T.

Exercice 7.10. Soit $n \ge 1$. Déterminer les polynômes minimum et caractéristique de l'application

$$D: \mathbb{C}_{\leq n}[z] \to \mathbb{C}_{\leq n}[z]: p \mapsto Dp(z).$$

Exercice 7.11. Déterminer les matrices $A \in \mathbb{R}_n^n$ telles que $B = \begin{pmatrix} A & A \\ \hline 0 & A \end{pmatrix}$ soit diagonalisable.

Exercice 7.12. Soient $\alpha \in \mathbb{C}_0$ et $n \in \mathbb{N} \setminus \{0,1\}$. On désigne par T l'application

$$T: \mathbb{C}_{\leq n}[z] \to \mathbb{C}_{\leq n}[z]: p \mapsto p(\alpha) + \alpha p'(\alpha)z + \frac{\alpha^2}{2}p''(\alpha)z^2.$$

- (a) Montrer que T est linéaire.
- (b) Donner une représentation matricielle M de la restriction de T à $\mathbb{C}_{\leq 2}[z]$ ainsi que son polynôme caractéristique.
- (c) Pour quelle(s) valeur(s) de α la matrice M est-il diagonalisable?
- (d) Déterminer le polynôme minimum de M.
- (e) Quel est le rang de T? Montrer que $\operatorname{Im}(T) \oplus \operatorname{Ker}(T) = \mathbb{C}_{\leq n}[z]$.
- (f) Donner les polynômes minimum et caractéristique de T.

Exercice 7.13. Soient E un espace vectoriel réel de dimension finie et $T \in \mathcal{L}(E)$. On suppose que T possède un polynôme annulateur P vérifiant P(0) = 0 et $P'(0) \neq 0$. Montrer qu'on a alors

$$\operatorname{Im}(T) \oplus \operatorname{Ker}(T) = E.$$

Exercice 7.14. Soit $M \in \mathbb{C}_n^n$ et $p \geq 1$. Montrer que M est diagonalisable si et seulement si M^p est diagonalisable et $\operatorname{Ker}(M) = \operatorname{Ker}(M^p)$. Le résultat subsiste-t-il si on travaille dans \mathbb{R} ?