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Introduction (version française)

Cette thèse se situe au carrefour de deux disciplines, proches certes mais

distinctes : l’étude des numérations et la théorie des langages formels. Du

côté des numérations, l’idée de base est de représenter les nombres par des

mots, c’est-à-dire des juxtapositions de symboles, et d’ensuite étudier les

propriétés arithmétiques de ces nombres en lien avec les propriétés syn-

taxiques de leurs représentations, c’est-à-dire les règles de construction des

mots qui les représentent. Par exemple, dans la numération décimale, qui

est celle utilisée par nous tous au quotidien, tout mot écrit sur l’alphabet

{0, 1, . . . , 9} et ne commençant pas par 0 représente un nombre entier posi-

tif. Si la représentation se termine par 0, alors cet entier est divisible par 10,

si la représentation se termine par 0, 2, 4, 6 ou 8, alors il est pair, etc. Plus

précisément, on peut voir un système de numération (sur les entiers dans un

premier temps) comme une bijection rep: N→ L de l’ensemble des naturels

dans un langage, c’est-à-dire un ensemble de mots. Ce langage, appelé lan-

gage de la numération, est l’ensemble des représentations valides des naturels.

Chaque partie X de N est alors envoyée sur un sous-langage rep(X) de L.

On s’intéresse assez naturellement aux parties de N qui correspondent

à des sous-langages particulièrement élémentaires : les langages acceptés

par les “machines” les plus simples de la hiérarchie de Chomsky. Ces ma-

chines sont les automates finis et les langages qu’elles acceptent sont dits

réguliers. Une partie de N dont l’ensemble des représentations des éléments

est un langage régulier sera dite reconnaissable pour la numération que l’on

considère. On montre facilement que, pour la numération standard en base

entière b ≥ 2, dans laquelle un entier positif n est représenté par la suite de

chiffres cℓ · · · c1c0 apparaissant dans la décomposition gloutonne

n =

ℓ∑

i=0

cib
i, cℓ 6= 0, c0, c1, . . . , cℓ ∈ {0, 1, . . . , b− 1},

toute union finie de progressions arithmétiques est reconnaissable. En 1969,

A. Cobham a prouvé que les seuls ensembles d’entiers reconnaissables dans

toute numération en base entière sont précisément les unions finies de pro-

gressions arithmétiques [Cob69]. Ce résultat, dont la preuve est considérée

comme difficile, est connu sous le nom de théorème de Cobham et constitue
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iv Introduction (version française)

le point de départ de nombreuses recherches sur les possibles généralisations

de celui-ci. Parmi celles-ci, on peut citer par exemple [Sem77, Vil92a,

Vil92b, BHMV94, Fab94, MV96, Bès97, PB97, Dur98, Han98,

Dur02b, Bès00, Dur02a, HS03, Bel07, RW06, BB07, AB08, Dur08,

BB09]. Le théorème de Cobham a motivé notamment l’introduction des

systèmes de numération non-standards et l’étude des ensembles reconnaiss-

ables d’entiers.

Il découle naturellement de cette notion de reconnaissabilité plusieurs

types de problématiques avec notamment l’étude de la stabilité de la re-

connaissabilité par opérations arithmétiques élémentaires. On sait (voir par

exemple [Ber79, Sak06]) que la multiplication ne préserve pas la reconnaiss-

abilité au sein d’une numération en base entière, et même plus généralement

au sein d’une numération de position. Une numération de position est basée

sur une suite strictement croissante d’entiers U = (Ui)i≥0 de premier terme

U0 = 1 pour laquelle le quotient de deux éléments consécutifs est borné. Un

entier positif n est alors représenté par la suite de chiffres cℓ · · · c1c0 appa-

raissant dans la décomposition gloutonne

n =

ℓ∑

i=0

ciUi, cℓ 6= 0 et ∀t ∈ {0, . . . , ℓ},
t∑

i=0

ci Ui < Ut+1. (1)

Par contre, la multiplication par une constante et l’addition, elles, sont

des opérations qui préservent la reconnaissabilité pour les numérations de

position dites “Pisot”, c’est-à-dire les numérations de position basées sur

des suites d’entiers qui satisfont une relation de récurrence linéaire dont le

polynôme caractéristique est le polynôme minimum d’un nombre de Pisot

[BH97, Fro92]. C’est donc en particulier le cas pour toute numération

en base entière et la numération de Fibonacci. Ces propriétés peuvent être

démontrées, par exemple, par le biais de la caractérisation logique des par-

ties reconnaissables en termes d’ensembles définissables dans la structure

〈N,+, VU 〉, où on pose VU (0) = U0 = 1 et, pour tout entier positif n, VU (n) est

défini comme étant le plus petit terme Ui apparaissant dans la décomposition

gloutonne (1) de n avec un coefficient non nul.

On s’est aussi attaché à chercher des conditions nécessaires et/ou suf-

fisantes pour qu’une numération de position possède un langage de numé-

ration régulier, c’est-à-dire pour que l’ensemble N des entiers positifs ou nuls

y soit reconnaissable [Sha94, Lor95, Hol98]. Une telle propriété pour

un système de numération est souvent appréciée puisque dans ce cas, on

peut tester en temps linéaire, grâce à un automate fini, si un mot donné

est une représentation valide d’un entier ou non. Dans [LR01], en intro-

duisant les systèmes de numération abstraits, P. Lecomte et M. Rigo ont

choisi de contourner le problème en imposant a priori un langage de la
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numération régulier. En effet, par définition, un système de numération

abstrait S = (L,Σ, <) est la donnée d’un langage infini régulier L sur un al-

phabet totalement ordonné (Σ, <). L’ordre sur cet alphabet induit un ordre

total sur les mots du langage, appelé ordre généalogique. Un entier positif

ou nul n est alors représenté par le (n + 1)-ième mot du langage (0 étant

représenté par le premier mot du langage). Cette notion généralise celle des

numérations de position dont l’ordre sur les mots préserve l’ordre naturel

des entiers et donnant lieu à un langage de la numération régulier. C’est

en particulier le cas des systèmes de numération “Pisot” évoqués plus haut.

Bien sûr, en procédant de la sorte, vu la grande généralité de ces systèmes,

on perd a priori toute spécificité d’un système particulier. Mais d’un autre

côté, leur intérêt réside justement dans cette généralité : on essaie plutôt

de dégager les propriétés qui sont indépendantes du système de numération

choisi, comme par exemple les propriétés liées à la complexité du langage de

la numération.

Ainsi on arrive à la théorie des langages formels. En effet, d’un point

de vue purement théorique, on peut regarder un système de numération

abstrait comme un langage infini ordonné et s’intéresser aux propriétés des

sous-langages de celui-ci. C’est par exemple le point de vue adopté par

D. Krieger et al. dans [KMR+09] en définissant et en étudiant la notion

de décimation d’un langage. Néanmoins, même s’ils pourront éventuellement

être réinterprétés différemment sous cet angle, tous les résultats de cette thèse

seront présentés du point de vue des numérations.

La définition de la reconnaissabilité d’un ensemble d’entiers s’étend na-

turellement au contexte des numérations abstraites. Avec elle se généralisent

également de nombreuses questions, analogues à celles posées dans le cadre

des numérations de position. On montre par exemple que les unions finies

de progressions arithmétiques sont reconnaissables pour tout système de

numération abstrait [LR01]. Ce résultat n’est pas anodin car il a cons-

titué une des motivations premières pour l’étude des numérations abstraites.

Ainsi, M. Rigo a consacré sa thèse de doctorat à leur exploration [Rig01a].

Cette dissertation prend place dans la continuité de ces travaux. Nous y

détaillons les résultats obtenus de plusieurs collaborations [CRS08, CR08,

BCFR09, CKR, CKR09, CLGR].

Dans le premier chapitre, sont rappelées les notions de bases essentielles

à la compréhension de cet ouvrage. Tout d’abord sont redéfinis les mots,

les langages et les automates. Sont aussi rappelés quelques résultats utiles

dans ce domaine. Ensuite sont introduits les systèmes de numération de

position et les systèmes de numération abstraits. Enfin, sans prétendre à

l’exhaustivité, nous dressons un portrait de l’état de la recherche autour de

ces derniers systèmes depuis leur naissance en 2001.
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Le deuxième chapitre traite de la préservation de la reconnaissabilité

d’un ensemble d’entiers après multiplication par une constante au sein d’un

système de numération abstrait construit sur un langage borné, c’est-à-dire

de la forme

a∗1a
∗
2 · · · a∗ℓ ,

où ℓ est un entier positif et a1, . . . , aℓ sont des lettres. A l’origine, l’intérêt

pour cette question provient des étonnants résultats de [LR01, Rig01b] qui

montrent que dans le cas d’un alphabet de deux lettres, c’est-à-dire le cas

du langage a∗b∗, la multiplication par une constante préserve la reconnaiss-

abilité si et seulement si cette constante est un carré impair. Notre souhait

était initialement d’obtenir une extension de ce résultat liant le système de

numération abstrait construit sur le langage a∗b∗c∗ aux cubes. Il s’est avéré

par la suite qu’une telle généralisation était inenvisageable puisqu’en fait,

nous montrons dans cette thèse que, dans le cas d’un alphabet de plus de

deux lettres, la reconnaissabilité n’est jamais préservée par la multiplication

par une constante au sein d’un tel système. Plus précisément, nous prouvons

que, dans ce cas, pour toute constante entière λ, on peut toujours trouver

un ensemble reconnaissable d’entiers X tel que l’ensemble correspondant λX

n’est pas reconnaissable. La classe des langages réguliers se sépare en deux

sous-classes selon le comportement de leurs fonctions de complexité1 : celle

des langages réguliers exponentiels et celle des langages réguliers polynomiaux

[SYZS92]. Dans les numérations de position de type “Pisot”, le langage de

la numération est toujours un langage exponentiel. Par contre, un langage

borné est toujours un langage polynomial. L’étude des systèmes abtraits

construits sur de tels langages donne donc lieu à de nouveaux phénomènes.

Les langages polynomiaux ont été caractérisés dans [SYZS92] : ce sont les

unions finies de langages de la forme

xy∗1z1y
∗
2 · · · y∗kzk,

où k est un entier positif ou nul et x, y1, z1, y2, . . . , zk sont des mots finis. De

plus, pour chaque entier positif ℓ, la fonction de complexité du langage borné

a∗1a
∗
2 · · · a∗ℓ est un polynôme de degré ℓ − 1. Les langages bornés peuvent

ainsi être vus comme des archétypes des langages polynomiaux. Dès lors,

nous espérons que nos résultats sur les langages bornés contiennent les idées

de ce qui se passe pour le cas des langages polynomiaux en général. Nous

épinglons au passage quelques propriétés structurelles des langages bornés.

Nous proposons notamment une caractérisation des parties reconnaissables

en termes d’ensembles semi-linéaires de Nℓ, où ℓ est le nombre de lettres du

1La fonction de complexité uL : N → N d’un langage L écrit sur un alphabet Σ compte

le nombre de mots de chaque longueur de ce langage : uL(n) = Card(L ∩ Σn).
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système abstrait considéré. Nous étudions aussi l’action de la multiplication

par une constante de la forme βℓ sur un mot an1
1 an2

2 · · · anℓ

ℓ quelconque.

Nous savons que les unions finies de progressions arithmétiques sont re-

connaissables pour tout système de numération abstrait. Il est donc na-

turel de se demander si, étant donné un automate qui reconnâıt un ensem-

ble d’entiers, on peut décider2 si cet ensemble est ou n’est pas une union

finie de progressions arithmétiques. Dans [Hon86], J. Honkala répond

par l’affirmative pour le cas des bases entières. Ensuite, dans [Muc03],

A. Muchnik donne une procédure de décision pour tous les systèmes de

numération de position ayant un langage de numération régulier à condition

que l’addition y soit reconnaissable, c’est-à-dire que son graphe soit un lan-

gage régulier. À notre tour, nous proposons deux procédures de décision pour

ce problème. Ceci fait l’objet du troisième chapitre. La première concerne

les numérations de position telles que N y est reconnaissable et satisfaisant

certaines hypothèses assez faibles. En particulier, nous englobons des cas

de systèmes pour lesquels l’addition n’est pas reconnaissable. Nous nous

intéressons au nombre de classes NU (m) visitées infiniment souvent par la

suite réduite (Ui mod m)i≥0, où U = (Ui)i≥0 est une suite linéaire récurrente

d’entiers. Si U est la base de la numération, notre procédure de décision

repose sur la condition limm→+∞ NU (m) = +∞. Dans une section séparée,

nous donnons une caractérisation algébrique de telles suites U satisfaisant

cette condition. Sous certaines hypothèses du même type, nous proposons

ensuite une deuxième procédure de décision dans le cas des numérations ab-

straites. En particulier, dans les deux cas, nous mettons en évidence quelques

exemples non encore résolus jusqu’ici. Nous terminons ce chapitre par une

brève discussion à propos du problème de périodicité des systèmes HD0L :

étant donné un morphisme f prolongeable à partir d’une lettre a et un mor-

phisme g, peut-on décider si le mot infini g(fω(a)) = limn→+∞ g(fn(a)) est

ultimement périodique ou non ? Nous montrons que nos résultats se révèlent

être un pas dans la direction de la résolution de ce célèbre problème, en-

core ouvert à ce jour. En effet, J. Honkala et M. Rigo ont démontré

l’équivalence entre ce problème et le problème de décision qui nous intéresse

dans ce chapitre mais étendu à tout système de numération abstrait [HR04].

Ce résultat provient du fait que les numérations abstraites sont en fait

étroitement liées aux suites morphiques, c’est-à-dire aux mots infinis de la

forme g(fω(a)) évoqués plus haut [RM02].

2En informatique, un problème de décision est un problème ayant au moins un

paramètre pouvant prendre une infinité de valeurs et auquel il convient de répondre par

“oui” ou par “non”. Décider un tel problème signifie qu’à partir de toute instance du

problème, supposée implémentable, on peut, après un nombre fini (mais arbitrairement

grand) d’opérations réalisables effectivement, répondre avec certitude au problème posé.
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Dans le quatrième chapitre, nous généralisons au cas multidimensionnel

un résultat d’A. Maes et de M. Rigo à propos des suites automatiques

étendues aux systèmes de numération abstraits [Rig00, RM02]. Dans ce

cas, on parle de suites S-automatiques. L’idée d’une telle généralisation pro-

vient naturellement de ce qui existait déjà dans le cas des bases entières.

En effet, le résultat évoqué plus haut étend un théorème d’A. Cobham

établissant une correspondance entre les mots b-automatiques et les mots

morphiques obtenus à l’aide d’un morphisme uniforme de longueur b [Cob72].

O. Salon avait déjà étendu ce théorème aux mots multidimensionnels en

considérant des morphismes par lesquels l’image d’une lettre est un hy-

percube de côté b [Sal87a, Sal87b]. Ainsi le théorème démontré dans

ce chapitre comble la “case manquante” à ce diagramme d’extensions aux

systèmes de numération abstraits et au cas multidimensionnel. Dans sa

thèse de doctorat, A. Maes avait défini des mots multidimensionnels “shape-

symmetric”. Nous démontrons que dans le cas multidimensionnel, les mots

S-automatiques correspondent aux images par un codage de mots purement

morphiques “shape-symmetric”. Un point crucial de la démonstration de ce

théorème est de généraliser le résultat classique dans le cas unidimensionnel

(voir par exemple [Cob68, Pan83, AS03]) selon lequel tout mot obtenu à

partir d’un mot morphique en y effaçant toutes les occurrences d’une lettre

déterminée est soit fini, soit morphique. Tout au long de ce chapitre, afin

de rendre la présentation plus claire, nous illustrons les différents concepts

introduits par de nombreux exemples.

Enfin, dans le cinquième et dernier chapitre, nous nous intéressons à

la représentation des nombres réels dans le cadre général des systèmes de

numération abstraits étendus à des langages quelconques, c’est-à-dire à des

langages qui ne sont plus nécessairement réguliers. Le but de cette recherche

était de proposer une approche unifiée à plusieurs systèmes de numération

apparaissant dans la littérature [AFS08, DT89, LR01, Lot02]. Par exem-

ple, les numérations en base rationnelle récemment introduites dans [AFS08]

donnent lieu à des langages de numération non algébriques. Nous construi-

sons, sous certaines hypothèses générales sur le langage de la numération,

un formalisme pour la représentation des réels par des mots infinis limites

de mots du langage de la numération. Nous illustrons ensuite ce formalisme

à l’aide de trois exemples de numérations abstraites construites sur des lan-

gages non réguliers. L’un d’eux est basé sur le langage des préfixes des mots

de Dyck. Dans chacun des cas, nous nous assurons que les systèmes étudiés

vérifient nos hypothèses générales et, si cela est possible, nous calculons ex-

plicitement la valeur correspondant à un mot infini appartenant à l’ensemble

des représentations valides.



ix

Cette dissertation se termine avec quelques perpectives de recherches

dans la continuité des travaux réalisés dans le cadre de cette thèse de doc-

torat.
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The framework of this doctoral dissertation encompasses two related but

distinct domains: the study of numeration systems and formal language

theory. From a numeration point of view, the basic approach is to rep-

resent numbers by words, i.e., by concatenation of symbols, and then to

study the arithmetic properties of these numbers in relation to the syntac-

tical properties of their representations, i.e., the construction rules for the

words representing them. For example, in the decimal numeration system,

which is the standard used in everyday life, any word written over the al-

phabet {0, 1, . . . , 9} and not beginning with 0 represents a positive integer.

If the representation ends with 0, then this integer is divisible by 10, if the

representation ends with 0, 2, 4, 6 or 8, then it is even, and so on. More

precisely, a numeration system (first for the integers) can be viewed as a

bijection rep: N → L from the set of non-negative integers to a language,

i.e., a set of words. This language, which is called the numeration language,

is the set of the valid representations of the non-negative integers. Each

subset X of N is then mapped onto a sublanguage rep(X) of L.

Researchers are naturally interested in the subsets of N that correspond

to especially simple sublanguages: those accepted by the simplest “machines”

of Chomsky’s hierarchy. These machines are finite automata and the lan-

guages accepted by them are said to be regular. A subset of N such that the

representations of its elements form a regular language is said to be recogniz-

able for the numeration system under consideration. It is easily shown that,

for the standard integer base b ≥ 2 numeration system, in which a positive

integer n is represented by the sequence of digits cℓ · · · c1c0 appearing in the

greedy decomposition

n =

ℓ∑

i=0

cib
i, cℓ 6= 0, c0, c1, . . . , cℓ ∈ {0, 1, . . . , b− 1},

any finite union of arithmetic progressions is recognizable. In 1969, A. Cob-

ham proved that the only sets of non-negative integers that are recogniz-

able in all integer base numeration systems are precisely the finite unions

of arithmetic progressions [Cob69]. This result, whose proof is considered

to be difficult, is known as Cobham’s theorem and has inspired a number

xi
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of studies about the generalizations that can be drawn from it. Among

these studies, one can mention, for example, [Sem77, Vil92a, Vil92b,

BHMV94, Fab94, MV96, Bès97, PB97, Dur98, Han98, Dur02b,

Bès00, Dur02a, HS03, Bel07, RW06, BB07, AB08, Dur08, BB09].

Most notably, Cobham’s theorem motivated the introduction of non-standard

numeration systems and the study of the recognizable sets of non-negative

integers.

Several issues stem naturally from this notion of recognizability, notably

the study of the stability of recognizability under elementary arithmetic op-

erations. It is well known (for instance, see [Ber79, Sak06]) that multipli-

cation does not preserve recognizability within any integer base numeration

system, and even more generally, within any positional numeration system.

A positional numeration system is based on an increasing sequence of inte-

gers U = (Ui)i≥0 whose first term is U0 = 1 and for which the quotient of

two consecutive elements is bounded. A positive integer n is thus represented

by the sequence of digits cℓ · · · c1c0 appearing in the greedy decomposition

n =
ℓ∑

i=0

ciUi, cℓ 6= 0 and ∀t ∈ {0, . . . , ℓ},
t∑

i=0

ci Ui < Ut+1. (2)

On the other hand, multiplication by a constant and addition are both op-

erations that preserve recognizability for the “Pisot” numeration systems,

i.e., positional numeration systems based on sequences of integers satisfying

a linear recurrence relation whose characteristic polynomial is the minimal

polynomial of a Pisot number [BH97, Fro92]. In particular, this is the case

for any integer base numeration system and for the Fibonacci numeration

system. For example, these properties can be demonstrated thanks to the

logical characterization of the recognizable sets in terms of sets definable in

the structure 〈N,+, VU 〉, where we set VU (0) = U0 = 1 and, for any positive

integer n, VU (n) is defined to be the smallest term Ui appearing in the greedy

decomposition (2) of n with a non-zero coefficient.

Other studies have focused on finding necessary and/or sufficient condi-

tions so that a positional numeration system would have a regular numera-

tion language, i.e., so that the whole set N of non-negative integers would

be recognizable within this system [Sha94, Lor95, Hol98]. Such a prop-

erty for a numeration system is often desirable since, in this case, one can

check in linear time, thanks to a finite automaton, whether a given word

is a valid representation of a non-negative integer or not. In [LR01], by

introducing the abstract numeration systems, P. Lecomte and M. Rigo chose

to approach the problem from a different angle by assuming a priori a reg-

ular numeration language. Indeed, by definition, an abstract numeration
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system S = (L,Σ, <) is given by an infinite regular language L over a to-

tally ordered alphabet (Σ, <). The order on this alphabet induces a total

order on the words of the language, which is called the genealogical order.

A non-negative integer n is thus represented by the (n + 1)st word in the

language (0 being represented by the first word in the language). This notion

generalizes that of the positional numeration systems whose order on words

preserves the natural order on integers and which have a regular numeration

language. In particular, this is the case of the “Pisot” numeration systems

mentioned above. Of course, by proceeding so, in view of the significant gen-

erality of these systems, we lose a priori any specificity of a particular system.

Yet, their advantage also stems from this generality: current research on this

subject strives to highlight the properties that are independent of the tar-

get numeration system, such as properties related to the complexity of the

numeration language.

Thus, we reach formal language theory. Indeed, from a purely theoretical

point of view, an abstract numeration system can be seen as an infinite

ordered language and the properties of its sublanguages become the main

interest. This is, for instance, the perspective taken by D. Krieger et al.

in [KMR+09] by defining and studying the notion of the decimation of a

language. Nevertheless, even though the results of the present dissertation

could be reinterpreted in another way from this angle, they will be presented

from the numeration approach.

The definition of the recognizability of a set of non-negative integers ex-

tends naturally to the context of abstract numeration systems. With this

definition, a number of questions can be applied as well, analogous to those

asked in a positional numeration framework. It was shown, for example,

that the finite unions of arithmetic progressions are recognizable within any

abstract numeration system [LR01]. This outcome is not insignificant be-

cause it represents one of the primary motivations for the study of abstract

numeration systems. So, M. Rigo devoted his doctoral dissertation to the

study of these systems [Rig01a]. The context of the present dissertation is

a continuation of this work. In this text the author will discuss the results

obtained from several collaborations in detail [CRS08, CR08, BCFR09,

CKR, CKR09, CLGR].

In the first chapter the author will recall basic notions necessary for a

clear understanding of this work. First, words, languages and automata are

redefined. In addition, several useful results in this domain will be recalled.

Next, positional numeration systems and abstract numeration systems will

be introduced. Without attempting to provide an exhaustive description,

the author will portray the state of the art regarding research on the latter

systems since their appearance in 2001.
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The second chapter deals with the preservation of the recognizability of

a set of non-negative integers under multiplication by a constant within an

abstract numeration system built on a bounded language, i.e., on a language

of the form

a∗1a
∗
2 · · · a∗ℓ ,

where ℓ is a positive integer and a1, . . . , aℓ are letters. Originally, the interest

in this question arose from the surprising results of [LR01, Rig01b], which

establish that, in the case of a two-letter alphabet, i.e., the case of the

language a∗b∗, multiplication by a constant preserves recognizability if and

only if this constant is an odd square. Initially, our wish was to extend

this result by linking the abstract numeration system built on the language

a∗b∗c∗ to cubes. Afterwards, it turned out that such a generalization was not

feasible since, in fact, we will show in this dissertation that, in the case of an

alphabet containing more than two letters, recognizability is never preserved

under multiplication by a constant within such a system. More precisely,

we will prove that, in this case, for any integer constant λ, a recognizable

set of integers X such that the corresponding set λX is not recognizable can

always be found. The class of regular languages is divided into two subclasses

according to the behavior of their counting functions3: the exponential re-

gular languages and the polynomial regular languages [SYZS92]. In “Pisot”

numeration systems the numeration language is always exponential. On the

other hand, a bounded language is always polynomial. Therefore the study

of abstract numeration systems built on such languages give rise to new

phenomena. Regular polynomial languages were characterized in [SYZS92]:

they are finite unions of languages of the form

xy∗1z1y
∗
2 · · · y∗kzk,

where k is a non-negative integer and x, y1, z1, y2, . . . , zk are finite words. Fur-

thermore, for every positive integer ℓ, the counting function of the bounded

language a∗1a
∗
2 · · · a∗ℓ is a polynomial of degree ℓ − 1. Bounded languages

may thus be seen as archetypes of polynomial languages. Therefore we hope

that our results on bounded languages will give an idea of what occurs in

the case of polynomial languages in general. During the discussion, we will

pinpoint structural properties of bounded languages. In particular, we will

propose a characterization of recognizable sets in terms of semi-linear sets

of Nℓ, where ℓ is the number of letters of the target abstract numeration

system. We will also study the action of multiplication by a constant of the

form βℓ on any word an1
1 an2

2 · · · anℓ

ℓ .

3The counting function uL : N → N of a language L over an alphabet Σ counts the

number of words of each length in this language: uL(n) = Card(L ∩ Σn).
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We know that finite unions of arithmetic progressions are recognizable for

any abstract numeration systems. Thus it is natural to wonder if, given an

automaton that recognizes a set of integers, one can decide4 whether or not

this set is a finite union of arithmetic progressions. In [Hon86] J. Honkala

answered positively for the case of the integer base numeration systems.

Then, in [Muc03], A. Muchnik gave a decision procedure for all positional

numeration systems with a regular numeration language, provided that the

addition is recognizable therein, i.e., that its graph is regular. For our part,

we will propose two decision procedures for this problem. This will be the fo-

cus for the third chapter. The first procedure handles positional numeration

systems in which N is recognizable, satisfying certain relatively weak condi-

tions. In particular, we will incorporate systems for which addition is not rec-

ognizable. We will focus on the number of residue classes NU (m) visited in-

finitely often by the reduced sequence (Ui mod m)i≥0, where U = (Ui)i≥0 is a

linear recurrence sequence of integers. If U is the basis of the numeration sys-

tem, our decision procedure requires the condition limm→+∞ NU (m) = +∞.

In a separate section we will give an algebraic characterization of such se-

quences U satisfying this condition. With similar hypotheses, we will then

propose a second decision procedure in the case of abstract numeration sys-

tems. In particular, in both cases, we will highlight several examples that

had not been resolved until now. We will end this chapter with a brief dis-

cussion of the HD0L periodicity problem: given a morphism f prolongable

on a and a morphism g, is it decidable whether or not the infinite word

g(fω(a)) = limn→+∞ g(fn(a)) is ultimately periodic? We will show that our

results turn out to be a step in the direction of solving this famous problem,

which is still open. Indeed, J. Honkala and M. Rigo proved the equivalence

between this problem and the decision problem we are interested in through-

out this chapter extended to any abstract numeration systems [HR04]. This

result arises from the fact that abstract numeration systems are closely re-

lated to morphic sequences, i.e., infinite words of the form g(fω(a)) men-

tioned above [RM02].

In the fourth chapter we will generalize to the multidimensional case

A. Maes and M. Rigo’s result about automatic sequences extended to ab-

stract numeration systems [Rig00, RM02]. In this case one refers to S-

automatic sequences. The origin of such a generalization arises naturally

from that which existed previously in the case of integer base numeration

4In computer science a decision problem is a problem that has at least one parameter

able to take an infinite number of values and which can be answered by “yes” or “no”.

Deciding such a problem means that, given any instances of the problem assumed to be

implementable, we can answer the problem with certainty, after a finite (but arbitrarily

large) number of effectively computable operations.
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systems. Indeed, the result mentioned above extends one of A. Cobham’s

theorems establishing a correspondence between b-automatic words and mor-

phic words obtained thanks to a uniform morphism of length b [Cob72].

O. Salon had already extended this result to multidimensional words by con-

sidering morphisms under which the image of a letter is a hypercube of size b

[Sal87a, Sal87b]. Thus, the theorem demonstrated in this chapter fills

the “missing cell” of this diagram of extensions to the abstract numeration

systems and to the multidimensional setting. In his doctoral dissertation

A. Maes had introduced the definition of shape-symmetric multidimensional

words. We will show that, in the multidimensional case, the S-automatic

words correspond to the images under a coding of shape-symmetric pure

morphic words. An essential point of the proof of this theorem is to gen-

eralize the standard result in the unidimensional case (for instance, see

[Cob68, Pan83, AS03]) according to which any word obtained by eras-

ing all occurrences of a fixed letter from a morphic word is either finite or

morphic. Throughout this chapter, in order to provide a clear presenta-

tion, we illustrate the concepts under consideration thanks to a number of

examples.

Finally, in the fifth and final chapter, we will concentrate on the rep-

resentation of real numbers in the general framework of abstract numer-

ation systems extended to any languages, i.e., to languages which are no

longer necessarily regular. The aim of this study was to provide a uni-

fied approach to several numeration systems encountered in the literature

[AFS08, DT89, LR01, Lot02]. For example, the rational base numer-

ation systems recently introduced in [AFS08] give rise to non-context-free

numeration languages. We will construct, under certain general hypotheses

on the numeration language, a formalism for the representation of the real

numbers by infinite words, which are limits of words in the numeration lan-

guage. We will then illustrate this formalism thanks to three examples of

abstract numeration systems built on non-regular languages. One of these is

based on the language of the prefixes of Dyck words. In each of these cases

we will check if the systems under consideration verify our general hypothe-

ses and, if possible, we will compute the value corresponding to an infinite

word belonging to the set of valid representations explicitly.

This study will finish with several perspectives for future research con-

tinuing the work accomplished within this dissertation.



CHAPTER 1

Basics

This first chapter outlines the basic notions that are needed for a clear

understanding of the present dissertation.

We start with some usual definitions and common results from automata

theory. The interested reader can find many more details in [Eil74, Sak03].

Next, we define positional numeration systems and linear numeration

systems. For instance, see [Lot02] for details. In particular, we give the

definition of the so-called integer base numeration systems and the Fibonacci

numeration system. We also introduce the notion of U -recognizability of a

set of non-negative integers in this context.

Finally, we define abstract numeration systems as originally introduced

in [LR01] and the corresponding notion of S-recognizability of a set of non-

negative integers. In doing so we will revisit some of the first few results

achieved in this area.

We will always refer to the set of non-negative integers {0, 1, 2, . . .} as N.

Moreover, for two integers i and j satisfying i ≤ j, we let [[i, j]] denote the

interval of integers {i, i + 1, . . . , j − 1, j}.

1.1. Words and Languages

Definition 1.1.1. An alphabet is a non-empty finite set. The elements of

an alphabet are called letters. A word over an alphabet Σ is a finite or

infinite sequence of letters in Σ. The empty word, denoted by ε, is the empty

sequence. The minimal alphabet of a word is the set of letters occurring in

this word. The length of a finite word w, denoted by |w|, is the number of

letters making up w. If w is a non-empty finite (resp. infinite) word, then

for any n ∈ [[0, |w| − 1]] (resp. n ∈ N), we let w[n] denote its (n + 1)st

letter. The reversal of a finite word w, denoted by w̃, is the finite word

defined by w̃[n] = w[|w| − n − 1] for all n ∈ [[0, |w| − 1]]. The set of finite

(resp. infinite) words over an alphabet Σ is denoted by Σ∗ (resp. Σω). For a

unary alphabet {a}, we usually write a∗ instead of {a}∗. A language (resp.

ω-language) over an alphabet Σ is a subset of Σ∗ (resp. Σω).

1
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Note that the letters of a word are indexed from 0. Thus the first letter

of a non-empty word w is w[0].

Example 1.1.2. Let Σ = {a, b, c} be the alphabet composed of the three

letters a, b, and c. Consider the finite word w = bccba over Σ. Its length

is |w| = 5, its 4th letter is w[3] = b, and its reversal is w̃ = abccb. The

minimal alphabet of the word aba is {a, b}. Now, consider the infinite word

z = abcabcabcabc · · · over Σ. Its 10th letter is z[9] = a.

Definition 1.1.3. If u and v are two finite words over an alphabet Σ, then

the concatenation of u and v, denoted by u · v (or simply uv if there is

no need to emphasize), is the finite word w satisfying w[n] = u[n] for all

n ∈ [[0, |u|−1]] and w[n] = v[n−|u|] for all n ∈ [[|u|, |u|+ |v|−1]]. For a finite

word u over an alphabet Σ and a non-negative integer n, we let un denote

the concatenation of n copies of u, which is defined by induction by u0 = ε

and un+1 = unu for all n ∈ N.

Example 1.1.4. The concatenation of the words wood and stock produces

the word woodstock.

Note that, embedded with the concatenation product of words, Σ∗ is the

free monoid generated by Σ having ε as neutral element. We can thus define

morphisms from Σ∗ to ∆∗ for two alphabets Σ and ∆.

Definition 1.1.5. Let Σ and ∆ be two alphabets. A morphism is a map

µ : Σ∗ → ∆∗ satisfying µ(xy) = µ(x)µ(y) for all x, y ∈ Σ∗. Whenever we

have Σ = ∆, we say that µ is a morphism on Σ.

Definition 1.1.6. Let L and M be two languages. The concatenation of L

and M is the language LM = {uv | u ∈ L, v ∈M}. For all n ∈ N, we let Ln

denote the concatenation of n copies of L, which is defined by

L0 = {ε} and ∀n ∈ N \ {0}, Ln = {u(1) · · · u(n) | ∀i ∈ [[1, n]], u(i) ∈ L}.

For all n ∈ N, we define L≤n =
⋃n

i=0 Li. The Kleene closure of L is the

language L∗ =
⋃

n≥0 Ln. For a language L = {w} containing only one

element, we usually write w∗ instead of {w}∗.

Definition 1.1.7. Let Σ be an alphabet, u be a finite word over Σ, and v be

an infinite word over Σ. The concatenation of u and v, denoted by u · v (or

simply uv if there is no need to emphasize), is the infinite word w defined by

w[n] = u[n] for all n ∈ [[0, |u|−1]] and w[n] = v[n−|u|] for all integers n ≥ |u|.
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Definition 1.1.8. Let w be a word over an alphabet Σ. A factor of w is a

finite word u such that there exist x ∈ Σ∗ and y ∈ Σ∗∪Σω satisfying w = xuy.

For any non-negative integers m and n satisfying m ≤ n, we let w[m,n]

denote the factor w[m] · · ·w[n] of w. For any n ∈ N, the prefix of length n

of w is the factor w[0, n− 1], where, by convention, we set w[0,−1] = ε. We

let Pref(w) denote the set of all prefixes of w:

Pref(w) = {x ∈ Σ∗ | ∃y ∈ Σ∗ ∪Σω, w = xy}.

Observe that we have w[n] = w[n, n] for any non-empty word w and any

non-negative integer n.

Definition 1.1.9. Let u be a finite word over an alphabet Σ. We let uω

denote the concatenation of infinitely many copies of u, which is defined by

uω[n |u|, (n + 1) |u| − 1] = u for all n ∈ N.

Definition 1.1.10. The prefix-closure of a language L over an alphabet Σ,

which is denoted by Pref(L), is the language of the prefixes of its words:

Pref(L) = {x ∈ Σ∗ | ∃y ∈ Σ∗, xy ∈ L}.
A language L is prefix-closed if it satisfies L = Pref(L).

1.2. Orders on Words

If an alphabet Σ is endowed with a total order, then one can extend this

order to Σ∗ or to Σω ∪ Σ∗. In this text two particular orders on words will

essentially be used: the lexicographical order and the genealogical order.

Definition 1.2.1. Let (Σ, <) be a totally ordered alphabet. The order <

on Σ extends to an order on Σω, called the lexicographical order, as follows.

If u and v are two infinite words over Σ, then u is said to be lexicographically

less than v, and we write u <lex v, if there exist p ∈ Σ∗, s, t ∈ Σω, and

a, b ∈ Σ such that we have u = pas, v = pbt, and a < b. This order extends

to Σω∪Σ∗ by replacing finite words z over Σ by z#ω ∈ (Σ∪{#})ω , where # is

a letter not belonging to the alphabet Σ which is assumed to satisfy # < a for

all a in Σ. We write u ≤lex v for two words u and v satisfying either u <lex v

or u = v.

Note that the lexicographical order is the usual order used in any natural

language dictionary (if, of course, accents and dashes are omitted).

Definition 1.2.2. Let (Σ, <) be a totally ordered alphabet. The order <

on Σ extends to an order on Σ∗, called the genealogical order, as follows. If u
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and v are two finite words over Σ, then u is said to be genealogically less

than v, and we write u <gen v, if they satisfy either |u| = |v| and u <lex v,

or |u| < |v|. We write u ≤gen v for two finite words u and v satisfying

either u <gen v or u = v.

In the literature some authors call radix order or military order what we

call genealogical order.

Example 1.2.3. Consider the alphabet {a, b} totally ordered by a < b. We

have aabb <lex aba <lex abaa but aba <gen aabb <gen abaa.

Definition 1.2.4. Let L be a language over an alphabet totally ordered

by <. The minimal (resp. maximal) language of L with respect to < is the

language of the smallest (resp. greatest) words of each length with respect

to the lexicographical order:

Min<(L) = {w ∈ L | ∀z ∈ L, |z| = |w| ⇒ z ≥lex w};
Max<(L) = {w ∈ L | ∀z ∈ L, |z| = |w| ⇒ z ≤lex w}.

1.3. Automata

Automata can be viewed as the simplest model of computation. They

will appear all along this dissertation.

Definition 1.3.1. A deterministic automaton is a 5-tuple

A = (Q,Σ, δ, q0, F )

where

• Q is a non-empty set, called the set of states;

• Σ is an alphabet;

• δ : Q× Σ→ Q is the (possibly partial) transition function;

• q0 is a distinguished element of Q, called the initial state;

• F ⊆ Q is the set of final states.

The function δ naturally extends to a (possibly partial) function on Q× Σ∗

by declaring δ(q, ε) = q and δ(q, aw) = δ(δ(q, a), w) for q ∈ Q, a ∈ Σ, and

w ∈ Σ∗. When the context is clear, we use the notation q ·w as a shorthand

for δ(q, w). If the transition function is total, then the automaton is said to

be complete. A deterministic automaton is finite (resp. infinite) if its set of

states is finite (resp. infinite). We use DFA as a shorthand for “deterministic

finite automaton”. A finite word w over Σ is accepted (or recognized) by A
if δ(q0, w) belongs to F . The set of words accepted by A, denoted by L(A), is

the language accepted (or recognized) by A. The language accepted from the
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state q ∈ Q, denoted by Lq(A), is the set of words accepted by the automaton

(Q,Σ, δ, q, F ).

Deterministic automata can be represented by oriented graphs. Nodes

are states and, for all states p and q and all letters a satisfying p · a = q,

there is an edge from p to q labeled by a. The initial state is designated by

an incoming arrow and final states are designated by outgoing arrows.

Example 1.3.2. Consider the DFA A = ({1, 2, 3, 4}, {a, b, c}, δ, 1, {1, 2, 3})
where the transition function δ is given by the following tables:

a b c

1 1 2 3

2 2 3 4

a b c

3 3 4 4

4 4 4 4

Since δ is a total function, A is a complete DFA. The transition graph of A
is depicted in Figure 1.1.

1 2 3 4

a

b

c

a

b

c

a

b, c
a, b, c

Figure 1.1. A deterministic finite automaton.

Definition 1.3.3. Let A = (Q,Σ, δ, q0, F ) be a deterministic automaton. A

state q in Q is accessible if it can be reached from the initial state, i.e., if

there exists a word w ∈ Σ∗ such that we have δ(q0, w) = q and is coaccessible

if one can reach a final state from it, i.e., if there exists w ∈ Σ∗ such that we

have δ(q, w) ∈ F . The automaton A is accessible (resp. coaccessible) if all its

states are accessible (resp. coaccessible) and is trim if it is both accessible

and coaccessible.

Example 1.3.4. The automaton depicted in Figure 1.2 is a trim determin-

istic automaton. Observe that its transition function is a partial function

because, for instance, 2 · c is undefined. Hence this DFA is not complete.

Also, note that the automata of Figure 1.1 and Figure 1.2 recognize the

same words.

Among all deterministic automata accepting a language, one can distin-

guish the minimal automaton of this language.
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1 2 3

a

b

c

a

b

a

Figure 1.2. A trim deterministic automaton.

Definition 1.3.5. Let L be a language over an alphabet Σ. The Myhill-

Nerode equivalence relation, denoted by ∼L, is the relation on Σ∗ defined as

follows: u ∼L v means that, for all w ∈ Σ∗, we have uw ∈ L⇔ vw ∈ L. If u

is a finite word over Σ, then we define u−1L = {w ∈ Σ∗ | uw ∈ L}, that is,

u−1L is the language of the finite words over Σ which, when concatenated

with w, form a word that belongs to L.

Note that, with the notation of the previous definition, we have u ∼L

v ⇔ u−1L = v−1L.

Definition 1.3.6. The minimal automaton of a language L over an alpha-

bet Σ is the deterministic automaton

AL = (QL,Σ, δL, q0,L, FL)

with

• QL = {u−1L | u ∈ Σ∗};
• ∀q ∈ QL, ∀a ∈ Σ, δL(q, a) = a−1 q;

• q0,L = ε−1L = L;

• FL = {u−1L | u ∈ L}.
The trim minimal automaton of a language L is the minimal automaton

of L from which the only possible non-coaccessible state, the sink state, is

removed.

Proposition 1.3.7. The minimal automaton of a language accepts this lan-

guage.

The denomination “minimal automaton” is justified by the following

proposition.

Proposition 1.3.8. Let L be a language over an alphabet Σ and let A be

a deterministic automaton accepting L having Q as set of states. Then we

have CardQL ≤ CardQ.

Now, we introduce a second kind of automata, namely, the non-determi-

nistic automata.
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Definition 1.3.9. A non-deterministic automaton is a 5-tuple

A = (Q,Σ,∆, I, F )

where

• Q, Σ, and F are defined as in a deterministic automaton;

• ∆ ⊆ Q× Σ∗ ×Q is a non-empty set, called the transition relation;

• I ⊆ Q is a non-empty set, called the set of initial states.

A non-deterministic automaton is finite (resp. infinite) if its set of states is

finite (resp. infinite). We use NFA as a shorthand for “non-deterministic

finite automaton”. A word w is accepted (or recognized) by A if there exists

a path from an initial state to a final state labeled by w, i.e., if there exist a

positive integer k, finite words w1, w2, . . . , wk over Σ, and states q0, q1, . . . , qk

in Q with q0 ∈ I and qk ∈ F such that

(q0, w1, q1), (q1, w2, q2) . . . , (qk−1, wk, qk)

belong to ∆. The language accepted (or recognized) by A, denoted by L(A),

is the set of words accepted by A.

Example 1.3.10. Consider the non-deterministic finite automaton

A = ({1, 2, 3}, {a, b, c},∆, {1, 2}, {1, 3})
where the transition relation ∆ is given by

∆ = {(1, a, 1), (1, a, 2), (1, ba, 2), (2, b, 2), (2, ab, 3), (3, a, 1), (3, c, 2), (3, c, 3)}.
The transition graph of A is depicted in Figure 1.3. For all states p and q

and all words w satisfying (p,w, q) ∈ ∆, there is an edge from p to q labeled

by w. Again, initial states are designated by incoming arrows and final states

are designated by outgoing arrows.

1 2 3

a

a, ba
b

ab
c

c

a

Figure 1.3. A non-deterministic finite automaton.

Finally, we introduce the notion of deterministic automata with output.

We will use them in Chapter 4 to define S-automatic words.

Definition 1.3.11. A deterministic finite automaton with output (DFAO

for short) is a 6-tuple

B = (Q,Σ, δ, q0,Γ, τ)



8 Chapter 1. Basics

where

• Q, Σ, δ, q0 are defined as in a DFA;

• Γ is the output alphabet;

• τ : Q→ Γ is the output function.

The output corresponding to the input w ∈ Σ∗ is τ(δ(q0, w)).

The transition graph of a DFAO is represented as the one of the associ-

ated DFA with additional outgoing labeled arrows on each state to indicate

the corresponding output. Usually, we only represent the useful part of a

DFAO, that is, the states accessible by reading words in the language under

consideration.

1.4. Regular Languages

A DFA is a particular NFA. Therefore one could naturally believe that

the class of languages accepted by a NFA is larger than the class of languages

accepted by a DFA. The following proposition shows that this is actually not

the case.

Proposition 1.4.1. [RS59] A language is accepted by a NFA if and only if

it is accepted by a DFA.

Now, we are ready to introduce the definition of a regular language, which

is a central notion in this text.

Definition 1.4.2. A language is regular if it is accepted by a finite automa-

ton.

The next two theorems are characterizations of regular languages. They

are known as Kleene’s theorem and Myhill and Nerode’s theorem respectively.

Theorem 1.4.3. [Kle56] The family of regular languages over an alpha-

bet Σ is the least family of languages over Σ containing the empty set and

the singletons, and closed under union, concatenation, and Kleene closure.

Theorem 1.4.4. [Ner58] A language L is regular if and only if the Myhill-

Nerode equivalence relation ∼L is of finite index, i.e., if and only if its min-

imal automaton AL is finite.

Let us also recall the following stability result of the class of regular

languages.
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Proposition 1.4.5. The class of regular languages is closed under concate-

nation, Kleene closure, union, intersection, complementation, reversal, and

image under morphism.

The next result is often used to reject the regularity of a language. One

usually refers to it as the pumping lemma.

Proposition 1.4.6. If L is a regular language over an alphabet Σ, then there

exists a positive integer k such that any word w in L of length |w| ≥ k can

be decomposed as w = xyz, where x, y, z are finite words over Σ satisfying

y 6= ε, |xy| ≤ k, and xy∗z ⊆ L.

1.5. Counting Function

Definition 1.5.1. For any language L over an alphabet Σ and any non-

negative integer n, we let

uL(n) = Card(L ∩Σn)

denote the number of words of length n in L and

vL(n) =
n∑

i=0

uL(i) = Card(L ∩ Σ≤n)

denote the number of words of length less than or equal to n in L. The map

uL : N → N is called the counting (or combinatorial complexity) function

of L.

Let us fix some asymptotic notation. Note that some authors do not use

exactly the same definition for Ω as the one introduced in the next paragraph,

but in this text we will always refer to this symbol as defined below.

Definition 1.5.2. Let f and g be functions taking values in N. We say

that f is O(g), and we write f = O(g), if there exist positive constants c

and N such that, for all integers n ≥ N , we have f(n) ≤ cg(n). We say

that f is Ω(g), and we write f = Ω(g), if there exists a positive constant c

and a strictly increasing sequence of positive integers (ni)i≥0 such that, for

all i ∈ N, we have f(ni) ≥ cg(ni). We say that f is Θ(g), and we write

f = Θ(g), if f is both O(g) and Ω(g). Morever, we say that f and g have

equivalent behaviors at infinity, which is denoted by f(n) ∼ g(n) (n→ +∞)

(or simply f ∼ g when the context is clear), if we have limn→+∞
f(n)
g(n) = 1.

Definition 1.5.3. A language L is polynomial if its counting function uL(n)

is O(nk) for some k ∈ N and exponential if it is Ω(θn) for some θ > 1.
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The following theorem provides us with the general form of a polynomial

regular language.

Theorem 1.5.4. [SYZS92] Let L be a regular language over an alphabet Σ

and k be a non-negative integer. The counting function uL(n) of L is O(nk)

if and only if L is a finite union of languages of the form

xy∗1z1y
∗
2 · · · y∗kzk (3)

with x, yi, zi ∈ Σ∗ for all i ∈ [[1, k]].

As shown by the next theorem, there is a gap between the class of poly-

nomial regular languages and the one of exponential regular languages.

Theorem 1.5.5. [SYZS92] Any regular language is either polynomial or

exponential.

Notation. When the context is sufficiently clear, if q is a state of a DFA A
and n is a non-negative integer, then we write uq(n) and vq(n) instead of

uLq(A)(n) and vLq(A)(n) respectively. So uq(n) (resp. vq(n)) designates the

number of words of length n (resp. less than or equal to n) accepted from

the state q in A.

The following standard result will often be involved in the remaining part

of this dissertation. Before we state it, we need a definition. The terminology

“strict” is taken from [BR09]. It will be used in Chapter 3.

Definition 1.5.6. Let R be a commutative ring. A sequence U = (Ui)i≥0

in RN is a linear recurrence sequence over R if it satisfies a linear recurrence

relation over R, i.e., if there exist a positive integer k and some coefficients

a1, . . . , ak in R such that we have

∀i ∈ N, Ui+k = a1Ui+k−1 + · · · + akUi.

The length of the linear recurrence relation is k and its characteristic poly-

nomial is

xk − a1x
k−1 − · · · − ak.

The linear recurrence relation is strict if its last coefficient ak does not vanish.

A linear recurrence sequence over a commutative ring R is strict if it satisfies

a strict linear recurrence relation over R.

Proposition 1.5.7. If L is a regular language, then the sequences (uL(i))i≥0

and (vL(i))i≥0 satisfy linear recurrence relations over Z.
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Example 1.5.8. Consider the language L = {a, ab}∗ ∪ {c, cd}∗. We have

uL(0) = 1 and uL(i + 1) = 2Fi for all i ∈ N, where (Fi)i≥0 is the Fibonacci

sequence which is defined by F0 = 1, F1 = 2, and Fi+2 = Fi+1 + Fi for

all i ∈ N. Consequently, we obtain

∀i ∈ N, vL(i + 1) = 1 +
i+1∑

j=1

uL(j) = 1 + 2
i∑

j=0

Fj .

For all i ∈ N, we have vL(i + 1)− vL(i) = uL(i + 1) = 2Fi. This gives

∀i ∈ N, vL(i + 3)−vL(i + 2) = (vL(i + 2)−vL(i + 1)) + (vL(i + 1)−vL(i)).

Thus we obtain

∀i ∈ N, vL(i + 3) = 2vL(i + 2)− vL(i),

with vL(0) = 1,vL(1) = 3, and vL(2) = 7.

Remark 1.5.9. The computation given in the previous example to obtain

a linear recurrence relation for the sequence (vL(i))i≥0 for any language L

accepted by a given finite automaton can be carried on in general. Let L

be a regular language and let q be a state of its minimal automaton AL.

By Proposition 1.5.7, we know that the sequence (uq(i))i≥0 satisfies a lin-

ear recurrence relation with integer coefficients. Thus there exist a positive

integer k and a1, . . . , ak ∈ Z such that we have

∀i ∈ N, uq(i + k) = a1uq(i + k − 1) + · · ·+ akuq(i).

Consequently, we have

∀i ∈ N, vq(i + k + 1)− vq(i + k) = uq(i + k + 1)

= a1(vq(i + k)− vq(i + k − 1)) + · · ·+ ak(vq(i + 1)− vq(i)).

Therefore the sequence (vq(i))i≥0 satisfies a linear recurrence relation over Z

of length k + 1.

Let us also recall here a standard result about (strict) linear recurrence

sequences. For instance, see [BR88, GKP94, BR09]. Note that a stronger

version of this proposition — Theorem 3.5.1 — will be given in Chapter 3.

Proposition 1.5.10. Let K be an algebraically closed field of characteristic

zero and let U = (Ui)i≥0 ∈ KN be a sequence satisfying

∀i ∈ N, Ui+k = a1Ui+k−1 + · · ·+ akUi,

for some k ∈ N\{0} and a1, . . . , ak ∈ K with ak 6= 0. Assume that α1, . . . , αt

are the roots of the associated characteristic polynomial with respective mul-

tiplicities m1, . . . ,mt. Then there exist polynomials P1, . . . , Pt in K[x] of
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degrees respectively less than m1, . . . ,mt and depending only on the initial

conditions U0, . . . , Uk−1 such that we have

∀i ∈ N, Ui = P1(i)αi
1 + · · · + Pt(i)αi

t.

1.6. Positional Numeration Systems

Definition 1.6.1. A positional numeration system is given by a strictly

increasing sequence U = (Ui)i≥0 of integers such that we have U0 = 1 and

CU = sup{⌈Ui+1/Ui⌉ | i ∈ N} is finite. The greedy U -representation of a

positive integer n, denoted by repU (n), is the unique finite word w over the

alphabet ΣU = [[0, CU − 1]] not beginning with 0 and satisfying

n =

|w|−1∑

i=0

w̃[i]Ui and ∀t ∈ [[0, |w| − 1]],

t∑

i=0

w̃[i]Ui < Ut+1.

Moreover, we set repU (0) = ε. The elements in ΣU are called digits. The

set repU (N) is called the numeration language. If w is a finite word over any

alphabet of integers, then the U -numerical value of w, denoted by valU (w),

is given by

valU (w) =

|w|−1∑

i=0

w̃[i]Ui.

The following two examples are very important. The notation they in-

troduce will be used throughout the text. Note that, if there is no need to

emphasize, we usually make no distinction between the symbols 0, 1, 2, 3, . . .

and the integers they represent.

Example 1.6.2. Let b ≥ 2 be an integer. The integer base b numeration

system is the positional numeration system built on the sequence

Ub = (bi)i≥0.

In this case we have ΣUb
= [[0, b− 1]] and the numeration language is

Lb = repUb
(N) = {1, 2, . . . , b− 1}{0, 1, . . . , b− 1}∗ ∪ {ε}.

Thus we find back the usual base 10 numeration system which is used to

represent numbers in everyday life.

Example 1.6.3. Consider the sequence F = (Fi)i≥0 = (1, 2, 3, 5, 8, 13, . . .)

defined by

F0 = 1, F1 = 2, and ∀i ∈ N, Fi+2 = Fi+1 + Fi.
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The Fibonacci numeration system is built on this sequence F . It was proved

in [Zec72] that we have ΣF = {0, 1} and that the set of the greedy repre-

sentations of non-negative integers, i.e., the numeration language, is the set

repF (N) = 1{0, 01}∗ ∪ {ε}
of the words over {0, 1} not containing the factor 11. For instance, we have

repF (15) = 100010 and valF (101001) = 13 + 5 + 1 = 19.

As stated by the next proposition, considering greedy representations

allows us to work with order-preserving positional numeration systems. More

precisely, in this case, the natural order on the set of integers corresponds to

the genealogical order on the numeration language.

Proposition 1.6.4. Let U be a positional numeration system. For all non-

negative integers m and n, we have

m < n⇔ repU (m) <gen repU(n)

where the genealogical order <gen is induced by the natural order of the al-

phabet ΣU ⊆ N.

Definition 1.6.5. Let U be a positional numeration system. A set X of

non-negative integers is U -recognizable if the language repU (X) over ΣU is

regular.

It is often convenient to work with positional numeration systems such

that the whole set N of non-negative integers is U -recognizable, i.e., such that

the numeration language is regular. As we shall see further on, a necessary

condition for this is that the sequence U satisfies a linear recurrence relation.

Definition 1.6.6. A positional numeration system U = (Ui)i≥0 is said to

be linear if U is a linear recurrence sequence over Z.

Example 1.6.7. Integer base numeration systems and the Fibonacci numer-

ation system introduced in Example 1.6.2 and Example 1.6.3 respectively are

linear numeration systems with regular numeration languages. The shortest

linear recurrence relations they satisfy are of length 1 and 2 respectively.

The next proposition is a particular case of a theorem of Shallit [Sha94].

Proposition 1.6.8. Let U be a positional numeration system. If N is U -

recognizable, then the sequence U satisfies a linear recurrence relation over Z,

i.e., U is a linear numeration system.
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The converse of Proposition 1.6.8 does not hold in general. Sufficient

conditions on the linear recurrence relation satisfied by U for N to be U -

recognizable are considered in [Lor95, Hol98]. Here is a counterexample

from [Sha94].

Example 1.6.9. Consider the positional numeration system U = (Ui)i≥0

defined by Ui = (i + 1)2 for all i ∈ N. Since it satisfies

∀i ∈ N, Ui+3 = 3Ui+2 − 3Ui+1 + Ui,

it is a linear numeration system. We have

repU (N) ∩ 10∗10∗ = {10a10b | b2 < 2a + 4}.
Using the pumping lemma (see Proposition 1.4.6), we easily obtain that the

latter set is not regular. Therefore, since the class of regular languages is

closed under intersection, N cannot be U -recognizable either.

The following two examples show that, for a positional numeration sys-

tem U , the U -recognizability of N does not imply that U is a strict linear

recurrence sequence. The first one is obtained by modifying the initial con-

ditions of the Fibonacci numeration system.

Example 1.6.10. Consider the linear numeration system U = (Ui)i≥0 de-

fined by

U0 = 1, U1 = 2, U2 = 4, and ∀i ∈ N, Ui+3 = Ui+2 + Ui+1.

It is easily verified that the sequence U satisfies no linear recurrence relation

of length shorter than 3. But, of course, it ultimately satisfies the strict linear

recurrence relation Ui+2 = Ui+1+Ui of length 2. Furthermore, observe that N

is U -recognizable since the associated numeration language is given by

repU (N) = 1{0, 01}∗{ε, 011} ∪ {ε, 11},
which is of course a regular language.

We can do the same, for instance, with the integer base 2 numeration

system, as shown by the next example.

Example 1.6.11. Consider the linear numeration system U = (Ui)i≥0 de-

fined by

U0 = 1, U1 = 2, U2 = 3, U3 = 4, and ∀i ∈ N, Ui+4 = 2Ui+3.

Again, the sequence U satisfies no linear recurrence relation of length shorter

than 4. But, of course, it ultimately satisfies the strict linear recurrence rela-

tion Ui+2 = 2Ui+1 of length 1. Once again, observe that N is U -recognizable
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since the associated numeration language is given by

repU (N) = 1{0, 1}∗{000, 001, 010, 100} ∪ {ε, 1, 10, 100},

which is of course a regular language.

For the sake of completeness, we restate a well-known property of ulti-

mately periodic sets. The interested reader could for instance have a look at

[Sak03] for a prologue on Pascal’s machine for integer base systems. First,

we need a definition.

Definition 1.6.12. A set of integers X is ultimately periodic (or eventually

periodic) if there exist a, p ∈ N with p > 0, such that, for all i ≥ a, we

have i ∈ X ⇔ i + p ∈ X. If the integers a and p are minimal for the

latter property, then we say that they are the preperiod and the period of X

respectively.

Lemma 1.6.13. Let U = (Ui)i≥0 be a linear numeration system and p, q be

non-negative integers. The language

val−1
U (p + N q) = {w ∈ Σ∗

U | valU (w) ∈ p + N q} ⊆ Σ∗
U

is regular and a DFA accepting this language can be obtained efficiently. In

particular, if N is U -recognizable, then a DFA accepting repU (p+N q) can be

obtained efficiently and any ultimately periodic set is U -recognizable.

Before giving the proof, observe that, for any non-negative integer n,

val−1
U (n) is a finite set of words {x1, . . . , xtn} over ΣU such that, for all

i ∈ [[1, tn]], we have valU (xi) = n. This set contains in particular the greedy

U -representation repU (n) of n.

Proof. Since regularity is stable under finite modifications, that is, ad-

ding or removing a finite number of words in the language, we can assume

0 ≤ p < q. Since U is linear, the reduced sequence (Ui mod q)i≥0 is ultimately

periodic, say with preperiod ι and period π. The following DFA recognizes

the reversal of the words in val−1
U (p + N q). The alphabet of the automaton

is ΣU . States are pairs (r, s) of integers satisfying 0 ≤ r < q and 0 ≤ s < ι+π.

The initial state is (0, 0). Final states are the ones with the first component

equal to p. Transitions are defined as follows. For all j ∈ ΣU , all r ∈ [[0, q−1]],

and all s ∈ [[0, ι + π − 2]], we have

(r, s)
j−→ ((jUs + r) mod q, s + 1) ;

(r, ι + π − 1)
j−→ ((jUι+π−1 + r) mod q, ι) .
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Observe that this automaton does not check the greediness of the accepted

words because the construction only relies on the U -numerical value of the

words modulo q.

For the particular case, one has to consider the intersection of two regular

languages: repU (N) ∩ val−1
U (p + N q). �

1.7. Abstract Numeration Systems

A numeration system can be viewed as a bijection between the set of

non-negative integers N and a language, called the numeration language.

Otherwise stated, this is a way of representing numbers by words.

When the numeration language is accepted by a finite automaton, one

can easily check whether or not a word is a valid representation of a number.

Moreover, Lemma 1.6.13 states that in any positional numeration system, N

is U -recognizable if and only if all ultimately periodic sets are U -recognizable.

Also, note that regular languages are the simplest languages in terms of

the Chomsky hierarchy, by opposition to recursively enumerable languages,

i.e., languages recognized by Turing machines; see for instance [Sud06] or

[Wol06] for details. Therefore the recognizability of N, that is, the regularity

of the numeration language, is desirable and can be considered to be a natural

expectation for any numeration system.

In view of the arguments above, P. Lecomte et M. Rigo introduced the

following definition [LR01]. They considered the problem the other way

around and the recognizability of N became their basic requirement. Instead

of taking a sequence U of integers and looking for conditions that guarantee

the U -recognizability of N, they took an arbitrary infinite regular language L

over an alphabet Σ to build a numeration system, this language L being

viewed as the set of valid representations of all the integers.

Definition 1.7.1. An abstract numeration system is a triple

S = (L,Σ, <)

where L is an infinite regular language, called the numeration language,

written over a totally ordered alphabet (Σ, <). Enumerating the words in L

using the genealogical order <gen induced by the order < on Σ gives a one-to-

one correspondence repS : N → L mapping any non-negative integer n onto

the (n + 1)st word in L. The inverse map is denoted by valS : L → N. For

all words w in L, we say that valS(w) is the numerical S-value (or simply

the S-value) of w.

Note that, in particular, 0 is sent onto the first word in the genealogically

ordered numeration language.
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One could relax the assumption about the regularity of L in the defi-

nition of an abstract numeration system S = (L,Σ, <). This would give a

wider framework, but then we would loose the recognizability of N. We shall

consider this larger class of abstract numeration systems in Chapter 5. In

this case, to avoid any confusion, we will speak about generalized abstract

numeration systems.

Example 1.7.2. Take S = ({a, ba}∗, {a, b}, a < b). The first few words in

the numeration language enumerated with respect to the genealogical or-

der are ε, a, aa, ba, aaa, aba, baa, aaaa, aaba, abaa, baaa, baba, aaaaa. So, for

instance, we have valS(ba) = 3 and repS(8) = aaba.

In view of Proposition 1.6.4, in any positional numeration system U , the

map repU is order-preserving with respect to the genealogical order and the

natural order of the integers. Therefore any positional numeration system

having a regular numeration language is an abstract numeration system.

Thus one can say that the framework of abstract numeration systems gen-

eralizes that of positional numeration systems having a regular numeration

language.

Example 1.7.3. Let b ≥ 2 be an integer. By considering the abstract

numeration system S built on the language Lb with the natural order on

the digits (see Example 1.6.2) one gets back the standard integer base b

numeration system, that is, for all n ∈ N, we have repS(n) = repUb
(n).

Example 1.7.4. The abstract numeration system S = (L, {0, 1}, 0 < 1)

built on the language L = 1{0, 01}∗ ∪ {ε} of the words over {0, 1} that

do not contain the factor 11 gives back the Fibonacci numeration system

introduced in Example 1.6.3, i.e., for all n ∈ N, we have repS(n) = repF (n).

The next example shows that the class of positional numeration systems

for which N is recognizable is strictly included in the class of abstract nu-

meration systems.

Example 1.7.5. Consider once again the language L = {a, ab}∗ ∪ {c, cd}∗
of Example 1.5.8. Let S be the abstract numeration system built on L with

the order a < b < c < d on the alphabet {a, b, c, d}. The first few words in L

enumerated with respect to the genealogical order are given in Table 1.1.

We show that there is no bijection f : {a, b, c, d} → N between {a, b, c, d}
and a set of integers leading to a positional numeration system. Otherwise

stated, the letters a, b, c, d cannot be identified with usual “digits”. Assume
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0 ε 5 cc 10 ccc 15 aaba 20 ccdc

1 a 6 cd 11 ccd 16 abaa 21 cdcc

2 c 7 aaa 12 cdc 17 abab 22 cdcd

3 aa 8 aab 13 aaaa 18 cccc 23 aaaaa

4 ab 9 aba 14 aaab 19 cccd 24 aaaab

.

Table 1.1. The first few words in {a, ab}∗ ∪ {c, cd}.

that there exists a sequence U = (Ui)i≥0 of integers satisfying

∀w ∈ L, valS(w) =

|w|−1∑

i=0

f(w̃[i])Ui.

Since we have valS(a) = 1 and valS(c) = 2, we get U0 = 1, f(a) = 1, and

f(c) = 2. Moreover, we have valS(aa) = 3 = f(a)U1 + f(a)U0. So we get

U1 = 2. Therefore we obtain valU (f(c)f(c)) = 2U1 + 2U0 = 6. But we also

have valS(cc) = 5, leading to a contradiction.

When the context is clear, if A = (Q,Σ, δ, q0, F ) is a DFA accepting the

language L, then, for any state q ∈ Q, we usually write valq : Lq → N instead

of valSq , where Sq denotes the abstract numeration system (Lq,Σ, <).

The following proposition provides a method for computing the func-

tion valS . Recall that 1q,q′ equals 1 if we have q = q′ and equals 0 otherwise.

Proposition 1.7.6. [LR01] Let S = (L,Σ, <) be an abstract numeration

system and A = (Q,Σ, δ, q0, F ) be a DFA accepting L. We have

∀w ∈ L, valS(w) =
∑

q∈Q

|w|−1∑

i=0

βq,i(w)uq(|w| − i− 1),

where we set

βq,i(w) = Card{a < w[i] | δ(q0, w[0, i − 1] a) = q}+ 1q,q0 (4)

for all i ∈ [[0, |w| − 1]].

Remark 1.7.7. Note that, with the notation of the previous proposition,

if x and y are finite words over Σ with x 6= ε, then we have βq,i(xy) = βq,i(x)

for all q ∈ Q and all i ∈ [[0, |x| − 1]].

The following definition extends Definition 1.6.5 to abstract numeration

systems.
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Definition 1.7.8. Let S = (L,Σ, <) be an abstract numeration system. A

subset X of N is S-recognizable if repS(X) is regular.

As in the framework of positional numeration systems, a number of nat-

ural questions stems from this notion of S-recognizability:

• Given an abstract numeration system S, can we describe the S-

recognizable sets of non-negative integers?

• What are the sets of non-negative integers which are S-recognizable

for all abstract numeration systems S?

• Are there some sets of non-negative integers that are never S-

recognizable?

• Given a set of non-negative integers X, can we build an abstract

numeration system S such that X is S-recognizable?

• For which abstract numeration systems do arithmetic operations

like translation, multiplication by a constant, addition, or multipli-

cation preserve S-recognizability?

• Given an abstract numeration system S, what are the operations

which preserve S-recognizability?

• . . .

Other kind of natural questions arises in this context of abstract numer-

ation systems:

• How to represent the real numbers in an abstract numeration sys-

tem?

• Can automatic sequences be defined in this context?

• Can we give a logical characterization of S-recognizable sets of non-

negative integers?

• . . .

Most of these questions are not answered yet. Nevertheless, some results

exist and a few are presented below.

First of all, a noteworthy property of abstract numeration systems is that

the arithmetic progressions are always recognizable.

Theorem 1.7.9. [LR01] Let S be an abstract numeration system and let p

and q be non-negative integers. The arithmetic progression p + N q is S-

recognizable and a DFA accepting repS(p + N q) is effectively computable.

Consequently, any ultimately periodic set is S-recognizable.

In view of this result, a new question naturally arises: given an abstract

numeration system, is it decidable whether or not an S-recognizable set X,

which is given through a DFA accepting repS(X), is ultimately periodic?
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This question has not been solved yet, even in the case of a positional nu-

meration system having a regular numeration language. We will come back

to this particular problem in Chapter 3.

The next proposition shows that S-recognizability is stable under trans-

lation by a constant.

Proposition 1.7.10. [LR01] Let S be an abstract numeration system and X

a subset of N. If X is S-recognizable, then X + t is also S-recognizable for

any t ∈ N.

Preservation under multiplication by a constant will be studied in Chap-

ter 2 for abstract numeration systems of the form

Sℓ = (a∗1a
∗
2 · · · a∗ℓ , {a1, a2, . . . , aℓ}, a1 < a2 < · · · < aℓ).

In particular we will give a characterization of the Sℓ-recognizable sets of

non-negative integers.

The following theorem is widely known but it is still worth mentioning.

Theorem 1.7.11. [Eil74] Let S be the abstract numeration system built

on a∗. Then a set of non-negative integers is S-recognizable if and only if it

is a finite union of arithmetic progressions.

Given an abstract numeration system S, the following result provides

particular S-recognizable sets of non-negative integers.

Proposition 1.7.12. [Sha94] If L is a regular language over an alphabet

totally ordered by <, then Min<(L) and Max<(L) are regular languages.

Since, for all abstract numeration systems S = (L,Σ, <), the S-value

of the first word of length n + 1 is given by vL(n), the next result directly

follows from the previous proposition.

Corollary 1.7.13. Let S = (L,Σ, <) be an abstract numeration system.

Then the set {vL(n) | n ∈ N} is S-recognizable.

It is well known that the set of squares is never Ub-recognizable; see for

instance [Eil74]. Nevertheless we can make the following observation.

Remark 1.7.14. The set {n2 | n ∈ N} of squares is S-recognizable for the

abstract numeration system S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c). More
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precisely, it is easy to see that we have vL(n) = (n + 1)2 for all n ∈ N.

Therefore we obtain repS({n2 | n ∈ N}) = Min<(a∗b∗ ∪ a∗c∗) = a∗.

This remark is a particular case of the following theorem. In view of

Corollary 1.7.13, given an infinite set of non-negative integers X, we can

look for an abstract numeration system S = (L,Σ, <) for which X is S-

recognizable by requiring X = {vL(n) | n ∈ N}. Such an abstract numera-

tion system exists when X has the form given in the following result.

Theorem 1.7.15. [Rig02] Let t be a positive integer, c1, . . . , ct be non-

negative integers, and P1, . . . , Pt ∈ Q[X] be polynomials satisfying Pi(N) ⊆ N

for all i ∈ [[1, t]]. Set

f : N→ N, n 7→
t∑

i=1

Pi(n) cn
i .

The image f(N) is S-recognizable for some abstract numeration system S

which can be effectively constructed.

We also mention this last negative result.

Proposition 1.7.16. [Rig00] The set of prime numbers is never S-recogni-

zable.

We will not go into more details here. In Chapter 4 we shall discuss

the notion of S-automatic words introduced in [Rig00] but extended to the

case of multidimensional words. In Chapter 5 we shall consider a wider class

of abstract numeration systems, that is, we shall not necessarily work with

regular numeration languages, and we shall give a formalism for representing

real numbers in these “generalized” abstract numeration systems.





CHAPTER 2

Multiplication by a Constant

2.1. Introduction

The problem addressed in this chapter deals with the preservation of

recognizability under the operation of multiplication by a constant. It can

be stated as follows.

Problem 1. Let

• S = (L,Σ, <) be an abstract numeration system;

• X be any S-recognizable set of non-negative integers;

• λ be any positive integer.

What can be said about the S-recognizability of λX = {λx | x ∈ X}?

Let us mention here that the material of this chapter can be found

in [CRS08].

This problem is a first step before handling more complex operations

such as addition X + Y = {x + y | x ∈ X, y ∈ Y } or multiplication

XY = {xy | x ∈ X, y ∈ Y } of two arbitrary recognizable sets of non-negative

integers X and Y . Of course, if multiplication preserves S-recognizability,

i.e., if the set XY is recognizable for any recognizable sets X and Y , then

so multiplication by a constant does, i.e., the set λX is recognizable for

any recognizable set X and any positive integer λ. It is well-know that, in

the case of integer base numeration systems, multiplication never preserves

recognizability; for example, see [Ber79, Sak06]. The relationship between

multiplication by a constant and addition is not so obvious. A stronger

requirement would be that addition is computable by a finite automaton,

that is, that the graph of addition

{(repS(x), repS(y), repS(x + y))# | x, y ∈ N} ⊆ ((Σ ∪ {#})3)∗

is regular, where (·, ·, ·)# denotes the operation of padding the shorter com-

ponents of a triple of words with some symbol # to make three words of

the same length.1 In this case, addition and multiplication by a constant

1This padding map will be formally defined on page 90 in Chapter 4. Also, note that,

for instance, the word (a, ba, ab)# = (#a, ba, ab) ∈ ({a, b, #}3)∗ denotes the concatenation

of the letters (#, b, a) and (a, a, b) in {a, b, #}3.

23
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preserve S-recognizability. Note that the converse does not hold in general,

as shown by the following example.

Example 2.1.1. Let us consider the addition within the abstract numera-

tion system S built on a∗. For this particular system, a set of non-negative

integers is S-recognizable if and only if it is ultimately periodic; see Theo-

rem 1.7.11 on page 20. Therefore addition clearly preserves S-recognizability,

i.e., for all S-recognizable subsets X and Y of N, the sum X + Y is S-

recognizable. On the other hand, its graph is given by

{(am, an, am+n)# | m,n ∈ N} = {(#nam,#man, am+n) | m,n ∈ N}.

By applying the pumping lemma to this language, we easily show that it

cannot be regular.

The question of the preservation of recognizability under arithmetic op-

erations is a very common interest when studying numeration systems. In

the framework of linear numeration system, partial answers of Problem 1

are known; see for instance [BH97]. More precisely, for the case of a lin-

ear numeration system defined by a recurrence relation whose characteristic

polynomial is the minimal polynomial of a Pisot number2, it is well known

that addition and multiplication by a constant are computable by a finite

automaton. Note that usual positional numeration systems like integer base

numeration systems or the Fibonacci numeration system are special cases of

these “Pisot systems”. In Chapter 3 we will come back to these considera-

tions; see page 48 below.

Recall that the class of regular languages splits into two parts with respect

to the behavior of the counting function of the language: the polynomial reg-

ular languages and the exponential regular languages; see Theorem 1.5.5 on

page 10. In view of Proposition 1.5.10 on page 11, the numeration language of

a “Pisot system” is always exponential. On the other hand, the case of poly-

nomial languages has not been considered yet, except in [LR01, Rig01b].

This new framework leads to new phenomena.

Definition 2.1.2. For any positive integer ℓ, we let Bℓ = a∗1a
∗
2 · · · a∗ℓ denote

the bounded language over the alphabet Σℓ = {a1, a2, . . . , aℓ} and we let

Sℓ = (Bℓ,Σℓ, <) denote the corresponding abstract numeration system where

the total order < on Σℓ is given by a1 < a2 < · · · < aℓ.

2A Pisot number is an algebraic integer β > 1 such that all its Galois conjugates γ

satisfy |γ| < 1.
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In Figure 2.1 we have depicted the trim minimal automaton Aℓ of Bℓ.

It has [[1, ℓ]] as set of states. Each state is final, 1 is initial and, for all

integers i and j satisfying 1 ≤ i ≤ j ≤ ℓ, we have a transition i
aj−→ j. In

1 2 3 ℓ

a1

a2

a3

a2

a3

a3 aℓ

a4

aℓ

a4

aℓ

a4

aℓ

aℓ

Figure 2.1. The trim minimal automaton Aℓ of Bℓ.

examples, when considering cases ℓ = 2 or ℓ = 3, we shall sometimes use

alphabets like {a, b} or {a, b, c} instead of {a1, a2} or {a1, a2, a3}. Note that

these particular abstract numeration systems Sℓ do not correspond to any

positional numeration system as introduced in Definition 1.6.1 on page 12.

Example 2.1.3. Consider the alphabet Σ2 = {a, b} with a < b. The

first few words of B2 = a∗b∗ enumerated with respect to the genealogi-

cal order are ε, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa. For instance, we have

repS2
(5) = bb and valS2(8) = abb. Furthemore, observe that valS2(a

∗) =

{0, 1, 3, 6, 10, 15, . . .} is a S2-recognizable subset of N (formed of all triangu-

lar numbers).

Bounded languages are good candidates to start with. Indeed, a polyno-

mial regular language is a finite union of languages of the form (3) given in

Theorem 1.5.4 on page 10 and automata accepting these languages share the

same properties as those accepting bounded languages. Therefore we hope

that our results give the flavor of what could be expected for any polynomial

languages.

For more details on bounded languages, see for instance [GH64]. Also,

note that this map valSℓ
is a special case of diagonal function as considered

for instance in [LMSF96] and defined as follows.

Definition 2.1.4. Let ℓ be a positive integer. A diagonal function of di-

mension ℓ is a bijection f : Nℓ → N such that, for all m,n ∈ Nℓ, we

have f(m) < f(n) whenever s(m) < s(n), with s(n) =
∑ℓ

i=1 ni for all

n = (n1, . . . , nℓ) ∈ Nℓ.

Further on, we will see that valSℓ
is even a diagonal polynomial, that is,

a diagonal function which is a polynomial.
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Since repSℓ
is a one-to-one correspondence between N and Bℓ, multipli-

cation by a constant λ ∈ N can be viewed as a transformation fλ : Bℓ → Bℓ

acting on the language Bℓ, the question being then to study the preservation

of the regularity of the subsets of Bℓ under this transformation.

Example 2.1.5. Take ℓ = 2, Σ2 = {a, b} and λ = 25. We have the following

diagrams.

8
×25

//

repS2

��

200

repS2

��

ab2
f25

// a9b10

N
×λ

//

repSℓ

��

N

repSℓ

��

Bℓ
fλ

// Bℓ

Thus multiplication by λ = 25 induces a mapping fλ onto B2 such that, for

all w,w′ ∈ B2, we have fλ(w) = w′ ⇔ valS2(w
′) = 25 valS2(w).

This chapter follows the organization given below. In the first section we

recall a few results related to our main question. In particular, we charac-

terize the recognizable sets of non-negative integers for abstract numeration

systems whose language is slender, i.e., has at most d words of each length

for some constant d. We easily obtain that, in this situation, multiplication

by a constant always preserves recognizability.

In Section 2.3 we compute valSℓ
(an1

1 · · · anℓ

ℓ ) for any positive integer ℓ and

any non-negative integers n1, . . . , nℓ. Then, we derive an easy proof of the

fact that any non-negative integer can be decomposed in a unique way as

n =

(
zℓ

ℓ

)
+

(
zℓ−1

ℓ− 1

)
+ · · · +

(
z1

1

)
,

where z1, . . . , zℓ are integers satisfying zℓ > zℓ−1 > · · · > z1 ≥ 0. In [Fra85]

A. Fraenkel called this system the combinatorial numeration system and re-

ferred to D. Lehmer [Leh64]. Even if this seems to be a folklore result, the

only proof that we were able to trace out dates back to G. Katona [Kat68]

who developed different (and quite long) arguments to obtain the same de-

composition.

Next, in Section 2.4, we make the regular subsets of Bℓ explicit in terms of

semi-linear subsets of Nℓ and we give an application to the Sℓ-recognizability

of arithmetic progressions.

In Section 2.5, first, we provide a formula that can be used to obtain

estimates on the Sℓ-representation of λn from the one of n, for any non-

negative integers λ and n. Second, thanks to a counting argument and to

the results from Section 2.4, we show that, if ℓ is an integer greater than

or equal to 3, then, for any positive integer λ, there exists a Sℓ-recognizable

set X such that λX is not Sℓ-recognizable.
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In Section 2.6 we answer our main question about bounded languages

and recognizability after multiplication by a constant. More precisely, our

main result — Theorem 2.6.1 — in this chapter can be stated as follows:

Theorem. Let ℓ and λ be positive integers with λ ≥ 2. Then multiplication

by λ preserves Sℓ-recognizability if and only if either ℓ equals 1 or, ℓ equals 2

and λ is an odd square.

Finally, we put in the last section some structural results regarding the

effect of multiplication by a constant in the abstract numeration system built

on Bℓ.

2.2. First Results about S-Recognizability

In this section we collect a few results directly related with our problem.

The first result states that only some constants λ are good candidates for

multiplication within Bℓ.

Theorem 2.2.1. [Rig01b] Let L be an infinite regular language over an

alphabet Σ such that is counting function uL(n) is Θ(nk) for some k ∈ N,

let S = (L,Σ, <) be an abstract numeration system built on L, and let λ be

a non-negative integer. Preservation of S-recognizability after multiplication

by λ holds only if we have λ = βk+1 for some β ∈ N. Otherwise stated, if we

have λ 6= βk+1 for all β ∈ N, then there exists an S-recognizable set X ⊆ N

such that λX is not S-recognizable.

Since we shall see in the next section that, for all positive integers ℓ, the

counting function uBℓ
(n) of Bℓ is Θ(nℓ−1), thanks to this theorem, we only

have to focus on multipliers of the form βℓ, with β ∈ N. The particular case

uL(n) = O(1) is interesting in itself and is settled as follows. First, let us

recall the definition from [APDS93] and the characterization from [PS95,

Sha94] of slender regular languages.

Definition 2.2.2. Let d be a non-negative integer. A language L is said to

be d-slender if, for all n ∈ N, we have uL(n) ≤ d. A language is said to be

slender if it is d-slender for some d ∈ N.

Definition 2.2.3. A language L is a union of single loops if, for some k ∈ N

and words xi, yi, zi, with i ∈ [[1, k]], we have

L =
k⋃

i=1

xi y∗i zi. (5)
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A language L is a disjoint union of single loops if the sets xi y
∗
i zi in the

union (5) are pairwise disjoint.

Lemma 2.2.4. [PS95, Sha94] Let L be a regular language. The following

conditions are equivalent:

• L is slender;

• L is a union of single loops;

• L is a disjoint union of single loops.

The following theorem already appeared in the doctoral dissertation of

M. Rigo [Rig01a]. We restate the proof here for the sake of completeness.

Theorem 2.2.5. Let S be an abstract numeration system built on a slender

regular language over an alphabet Σ. A set X ⊆ N is S-recognizable if and

only if it is a finite union of arithmetic progressions.

Proof. Let L be an infinite slender regular language over an alphabet Σ

and let S = (L,Σ, <) be an abstract numeration system. From the above

characterization of slender regular languages, we can write

L =
k⋃

i=1

xi y∗i zi ∪ F

for some finite set F ⊆ Σ∗, some k ∈ N \ {0}, and some words xi, yi, zi ∈ Σ∗,

with i ∈ [[1, k]], such that we have yi 6= ε for all i ∈ [[1, k]] and such that

the sets xi y
∗
i zi are pairwise disjoint. The sequence (uL(n))n≥0 is ultimately

periodic with period p = lcm(|y1|, . . . , |yk|). Furthermore, for large enough

integers n, if xi y
n
i zi is the m-th word of length |xi zi|+n |yi| with respect to

the genealogical order, then xi y
n+p/|yi|
i zi is the m-th word of length |xi zi|+

n |yi|+ p with respect to the same order. Roughly speaking, for sufficiently

large integers n, the structures of the ordered sets of words of length n and

n + p are the same.

The regular subsets of L are of the form
⋃

j∈J

xij (y
αj

ij
)∗zij ∪ F ′ (6)

with J a finite set, ij ∈ [[1, k]] and αj ∈ N \ {0} for all j ∈ J , and F ′ a finite

subset of L.

It is possible to conclude now. If X is S-recognizable, then repS(X) is a

regular subset of L of the form (6). Hence, in view of the first part of the

proof, X is ultimately periodic with period lcm(p, lcm(|yαj

ij
|, j ∈ J)). The

converse is straightforward by using Theorem 1.7.9 on page 19. �
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Example 2.2.6. Consider the language L = ab∗c ∪ b(aa)∗c. It contains

exactly two words of each positive even length and one word of each odd

length larger than 2, that is, ab2ic < ba2ic and ab2i+1c with i ∈ N. The

sequence (uL(n))n≥0 is ultimately periodic of period two: 0, 0, 2, 1, 2, 1, . . ..

Corollary 2.2.7. Let S be an abstract numeration system built on a slender

language and let X be a set of non-negative integers. If X is S-recognizable,

then λX is S-recognizable for any λ ∈ N.

Corollary 2.2.8. Let S be an abstract numeration system built on a slender

language and let X and Y be sets of non-negative integers. If X and Y are

S-recognizable, then X + Y is S-recognizable.

Theorem 2.2.1 shows that, for abstract numeration systems S built on

polynomial languages, multiplication by a constant does not generally pre-

serve S-recognizability. In general abstract numeration systems built on ex-

ponential languages with polynomial complement do not preserve S-recogni-

zability after multiplication by a constant either.

Theorem 2.2.9. [Rig01b] Let Σ be an alphabet with Card(Σ) ≥ 2, let L

be an infinite polynomial regular language over Σ, and let S be an abstract

numeration system built on its complement Σ∗ \ L. Then there exists an

S-recognizable set X ⊆ N and a positive integer t such that tX is not S-

recognizable.

Finally, for a bounded language over a binary alphabet, the case is com-

pletely settled too. The aim of this study was initially to extend the following

result.

Theorem 2.2.10. [LR01] Let β be a positive integer. For the abstract

numeration system S = (a∗b∗, {a, b}, a < b), multiplication by β2 preserves

S-recognizability if and only if β is odd.

2.3. Sℓ-Representation of Integers: Combinatorial Expansion

In this section we determine the number of words of a given length in Bℓ

and we obtain an algorithm for computing repSℓ
(n) for any non-negative

integer n. Interestingly, this algorithm is related to the decomposition of n

as a sum of binomial coefficients of a specific form.

Let us recall that the binomial coefficient
(i
j

)
vanishes for integers i < j.
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Lemma 2.3.1. For all ℓ ∈ N \ {0} and all n ∈ N, we have

uBℓ+1
(n) = vBℓ

(n) (7)

and

uBℓ
(n) =

(
n + ℓ− 1

ℓ− 1

)
. (8)

Proof. Let ℓ be a positive integer. Relation (7) can be deduced from

the fact that the set of words of length n belonging to Bℓ+1 is partitioned as

follows:

Bℓ+1 ∩ Σn
ℓ =

n⋃

i=0

(a∗1 · · · a∗ℓ ∩ Σi
ℓ)a

n−i
ℓ+1.

To obtain (8), we proceed by induction on ℓ. For ℓ = 1, it is clear that we

have uB1(n) = 1 for all n ∈ N. Assume that (8) is satisfied for ℓ and let us

verify that it holds true for ℓ + 1. Thanks to (7), we obtain

∀n ∈ N, uBℓ+1
(n) =

n∑

i=0

uBℓ
(i) =

n∑

i=0

(
i + ℓ− 1

ℓ− 1

)
=

(
n + ℓ

ℓ

)
,

as desired. �

Lemma 2.3.2. For all ℓ ∈ N \ {0} and all n1, . . . , nℓ ∈ N, we have

valSℓ
(an1

1 · · · anℓ

ℓ ) =
ℓ∑

i=1

(
ni + · · ·+ nℓ + ℓ− i

ℓ− i + 1

)
. (9)

Proof. Let ℓ be a positive integer. It follows from the structure of the

ordered language Bℓ that, for all n ∈ N, the ordered list of words of length n

in Bℓ contains an ordered copy of the words of length at most n in the

language a∗2 · · · a∗ℓ . To get this, we apply the erasing morphism ϕ : Σ∗
ℓ → Σ∗

ℓ−1

defined by ϕ(a1) = ε and, for all i ∈ [[2, ℓ]], ϕ(ai) = ai. Hence we obtain

∀n1, . . . , nℓ ∈ N, valSℓ
(an1

1 · · · anℓ

ℓ ) = valSℓ
(an1+···+nℓ

1 ) + valSℓ−1
(an2

1 · · · anℓ

ℓ−1).

By iterating the latter decomposition, we obtain

∀n1, . . . , nℓ ∈ N, valSℓ
(an1

1 · · · anℓ

ℓ ) =

ℓ∑

i=1

valSℓ−i+1
(ani+···+nℓ

1 ). (10)

Since, for all n ∈ N, the first word of length n with respect to the genealogical

order is an
1 , we have valSℓ

(an
1 ) = vBℓ

(n − 1) where we set vBℓ
(−1) = 0. We

finish the proof by using relations (7) and (8). �

The example below illustrates the proof of Lemma 2.3.2 in the case ℓ = 3.
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Example 2.3.3. Consider the words of length 3 in the language a∗b∗c∗:

aaa < aab < aac < abb < abc < acc < bbb < bbc < bcc < ccc.

We have valS3(aaa) =
(
5
3

)
= 10 and valS3(acc) = 15. Applying the erasing

morphism ϕ : {a, b, c}∗ → {b, c}∗ defined by ϕ(a) = ε, ϕ(b) = b and ϕ(c) = c

on the words of length 3, we get

ε < b < c < bb < bc < cc < bbb < bbc < bcc < ccc.

So the ordered list of words of length 3 in a∗b∗c∗ contains an ordered copy

of the words of length at most 3 in the language b∗c∗. In addition, to obtain

valS3(acc), we just add to valS3(aaa) the position of the word cc in the

ordered language b∗c∗, which is equal to valS2(bb) with our notation.

Corollary 2.3.4. For any positive integer ℓ, the mapping valSℓ
: Nℓ → N is

a diagonal polynomial of dimension ℓ.

The following result is given in [Kat68]. Here we obtain a bijective

proof only relying on the use of abstract numeration systems on a bounded

language.

Corollary 2.3.5 (Combinatorial numeration system). Let ℓ be a positive

integer. Any non-negative integer n can be uniquely written as

n =

(
zℓ

ℓ

)
+

(
zℓ−1

ℓ− 1

)
+ · · ·+

(
z1

1

)
, (11)

where z1, . . . , zℓ are integers satisfying zℓ > zℓ−1 > · · · > z1 ≥ 0.

Proof. The mapping repSℓ
: N → a∗1 · · · a∗ℓ is a one-to-one correspon-

dence. So any non-negative integer n has a unique representation of the form

an1
1 · · · anℓ

ℓ , with n1, . . . , nℓ ∈ N. Now, the result follows from Lemma 2.3.2.

�

The general method given in [LR01, Algorithm 1] for computing the

S-value functions valS has a special form in the case of the language Bℓ. We

derive an algorithm computing the decomposition (11) or equivalently the

Sℓ-representation of any integer.

Algorithm. Let n ∈ N and l ∈ N \ {0}. The following algorithm produces

the integers z(l), . . . , z(1) corresponding to the zi’s appearing in the de-

composition (11) of n given in Corollary 2.3.5.

For i=l,l-1,...,1 do

if n>0,

find t such that
(
t

i

)
≤ n <

(
t+1
i

)
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z(i)←t

n←n-
(
t

i

)

otherwise, z(i)←i-1

Now, consider the following triangular system having n1, . . . , nℓ ∈ N as un-

knowns:

ni + · · ·+ nℓ = z(ℓ− i + 1)− ℓ + i, i = 1, . . . , ℓ.

We have repSℓ
(n) = an1

1 · · · anℓ

ℓ .

Remark 2.3.6. To speed up the computation of t in the above algorithm,

one can benefit from methods of numerical analysis. Indeed, for given i

and n,
(
t

i

)
− n is a polynomial in t of degree i and we are looking for the

largest root z of this polynomial. Therefore we have t = ⌊z⌋.

Example 2.3.7. For ℓ = 3, one gets for instance

12345678901234567890 =

(
4199737

3

)
+

(
3803913

2

)
+

(
1580642

1

)
.

Solving the system

n1 + n2 + n3 = 4199737 − 2

n2 + n3 = 3803913 − 1

n3 = 1580642





⇔ (n1, n2, n3) = (395823, 2223270, 1580642),

we find repS3
(12345678901234567890) = a395823b2223270c1580642.

2.4. Regular Subsets of Bℓ

Let ℓ be a positive integer that will be kept constant throughout this

section. To study the preservation of Sℓ-recognizability after multiplication

by a constant λ, one has to consider an arbitrary Sℓ-recognizable subset X

of N and verify whether or not λX is still Sℓ-recognizable. To that end, let

us observe that the regular subsets of Bℓ are the finite unions of languages

of the form

am1
1 (an1

1 )∗ · · · amℓ

ℓ (anℓ

ℓ )∗, (12)

with mi, ni ∈ N for all i ∈ [[1, ℓ]].

Definition 2.4.1. For any word w over Σℓ and j ∈ [[1, ℓ]], we let |w|aj
denote

the number of occurrences of the letter aj in w. The Parikh mapping Ψ maps

a word w ∈ Σ∗
ℓ onto the vector Ψ(w) = (|w|a1 , . . . , |w|aℓ

) ∈ Nℓ.

Remark 2.4.2. In this setting of bounded languages, repSℓ
and Ψ|Bℓ

are

both one-to-one correspondences. Therefore, in what follows, we shall make
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no distinction between a non-negative integer n ∈ N, its Sℓ-representation

repSℓ
(n) = an1

1 · · · anℓ

ℓ ∈ Bℓ, and the corresponding Parikh vector

Ψ(repSℓ
(n)) = (n1, . . . , nℓ) ∈ Nℓ.

Definition 2.4.3. A set Z ⊆ Nℓ is linear if there exist some k ∈ N and some

p0,p1, . . . ,pk ∈ Nℓ such that we have

Z = p0 + Np1 + · · ·+ Npk = {p0 + λ1p1 + · · · + λkpk | λ1, . . . , λk ∈ N}.

The vectors p1, . . . ,pk are said to be the periods of Z. The set Z is k-

dimensional if it has exactly k linearly independent periods over Q. A set

is semi-linear if it is a finite union of linear sets. A vector is a period of a

semi-linear set if it is a period of one of the corresponding linear sets.

Even if we shall make no use of if, it is probably worth recalling here the

following directly related result from [Par66].

Theorem 2.4.4. [Par66] If L ⊆ Σ∗
ℓ is a context-free language, then Ψ(L)

is a semi-linear subset of Nℓ.

For all i ∈ [[1, ℓ]], we let ei ∈ Nℓ denote the canonical vector having 1 at

the i-th component and 0 at the other components. In view of the general

form (12) of the regular subsets of Bℓ, the following result is obvious.

Lemma 2.4.5. A set X ⊆ N is Sℓ-recognizable if and only if Ψ(repSℓ
(X))

is a semi-linear set whose periods are integer multiples of canonical vectors.

With such a characterization, it is not difficult to obtain an alternative

proof of Theorem 1.7.9 on page 19 restricted to the case of abstract numer-

ation systems built on bounded languages.

Proposition 2.4.6. Let p and q be non-negative integers. Then the set

Ψ(repSℓ
(p + Nq)) ⊆ Nℓ is a finite union of linear sets of the form

n + N r e1 + · · ·+ N r eℓ

for some n ∈ Nℓ and r ∈ N.

Proof. If q is zero, then the result is straightforward. Now, assume

q > 0. We make use of Equation (9). The sequences
(( n

ℓ−i+1

)
mod q

)
n≥0

are (purely) periodic (see e.g. [Zab56]), say with period πi(q). Let us define

P = lcm(π1(q), . . . , πℓ(q)). Then, for all i ∈ [[1, ℓ]] and all n1, . . . , nℓ ∈ N, we
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have

valSℓ
(an1

1 · · · ani

i · · · anℓ

ℓ ) ≡ valSℓ
(an1

1 · · · ani+P
i · · · anℓ

ℓ ) (mod q).

We have just shown that any n ∈ Nℓ belongs to Ψ(repSℓ
(p + Nq)) if and

only if n+ c1Pe1 + · · ·+ cℓPeℓ belongs to the same set for all c1, . . . , cℓ ∈ N.

Now, the conclusion is straightforward: we obtain that Ψ(repSℓ
(p + Nq)) is

the finite union
⋃

(n1,...,nℓ)∈Ψ(repSℓ
(p+Nq))

| repS(p)|≤n1+...+nℓ≤| repS(p)|+ℓ(P−1)

((n1, . . . , nℓ) + NPe1 + · · ·+ NPeℓ) .

�

Example 2.4.7. In Figure 2.2 the x-axis (resp. y-axis) counts the number

of letters a (resp. b) in a word. The empty word corresponds to the lower-left

corner. A point in N2 of coordinates (i, j) has its color determined by the

value of valS2(a
ibj) modulo q (with q = 3, 5, 6 and 8 respectively). There-

fore there are q possible colors. In this figure we represent the words aibj

for 0 ≤ i, j ≤ 19.

Figure 2.2. Ψ(repS2
(p + N q)) for q = 3, 5, 6, 8.

2.5. Multiplication by λ = βℓ

In the case of a bounded language on ℓ letters, if multiplication by

some constant preserves Sℓ-recognizability, then, from Theorem 2.2.1 and

Lemma 2.3.1, this constant must be a ℓ-th power of a non-negative integer β.

Let us fix two integers ℓ and β for the whole section. Since the case ℓ = 1

corresponds to the slender case already discussed in the previous section, the

case ℓ = 2 is the one of Theorem 2.2.10, and the case β = 1 is trivial, we

assume that the integers ℓ and β satisfy ℓ ≥ 3 and β ≥ 2.

In this section we shall make use of the Stirling numbers of the first kind,

which are defined as follows.
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Definition 2.5.1. The Stirling numbers s(i, j), for i, j ∈ N, of the first kind

are defined by

i!

(
x + i− 1

i

)
= x(x + 1) · · · (x + i− 1) =

i∑

j=1

s(i, j)xj

and s(i, j) = 0 for i < j or j = 0.

Also, recall the following useful fact.

Lemma 2.5.2. The Stirling numbers of the first kind satisfy the recursion

relation

∀i ∈ N \ {0}, ∀j ∈ [[1, i]], s(i + 1, j) = s(i, j − 1) + i s(i, j).

Notation. For a polynomial P = ckx
k + · · · + c1x + c0 of degree k and for

all i ∈ [[0, k]], we let [xi]P denote the coefficient ci of xi in P .

The next lemma also holds for ℓ = 2. Recall that the map fλ is defined

by fλ(w) = repSℓ
(λ valSℓ

(w) for w ∈ Bℓ.

Lemma 2.5.3. For sufficiently large q ∈ N, we have

|fβℓ(a
q
1)| = βq+

⌈
(β − 1)(ℓ + 1)

2

⌉
−β and |fβℓ(a

q
ℓ)| = βq+

⌈
(β − 1)(ℓ + 1)

2

⌉
.

Proof. Set c = (β − 1)(ℓ + 1)/2 > 0. Observe that since, for all non-

negative integers q, we have valSℓ
(aq

ℓ) = valSℓ
(aq+1

1 )−1, we only need to show

that the following two inequalities are satisfied whenever q is large enough:

|fβℓ(a
q
1))| ≤ βq + ⌈c⌉ − β; (13)

|fβℓ(a
q
ℓ))| ≥ βq + ⌈c⌉. (14)

Indeed, for all sufficiently large integers q, this implies

|fβℓ(a
q
ℓ))| ≤ |fβℓ(a

q+1
1 ))| ≤ β(q + 1) + ⌈c⌉ − β = βq + ⌈c⌉;

|fβℓ(a
q
1))| ≥ |fβℓ(a

q−1
ℓ ))| ≥ β(q − 1) + ⌈c⌉ = βq + ⌈c⌉ − β.

First, let us prove (14). A non-negative integer n has an Sℓ-representation

repSℓ
(n) of length q if and only if it satisfies valSℓ

(aq
1) ≤ n < valSℓ

(aq+1
1 ).

Therefore, using Lemma 2.3.2, the inequality (14) is satisfied if and only if

we have

βℓ valSℓ
(aq

ℓ) = βℓ
ℓ∑

i=1

(
q + i− 1

i

)
≥ valSℓ

(a
βq+⌈c⌉
1 ) =

(
βq + ⌈c⌉ + ℓ− 1

ℓ

)
.
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We easily compute

βℓ
ℓ∑

i=1

(
q + i− 1

i

)
−
(

βq + ⌈c⌉+ ℓ− 1

ℓ

)
= (c + 1− ⌈c⌉)(βq)ℓ−1

(ℓ − 1)!
+ O(qℓ−2).

Note that we are comparing polynomials in q. Hence (14) is proved.

Second, let us prove (13). Using the same arguments as above, this

happens if and only if we have

βℓ valSℓ
(aq

1) = βℓ

(
q + ℓ− 1

ℓ

)
< valSℓ

(a
βq+⌈c⌉−β+1
1 ) =

(
βq + ⌈c⌉ − β + ℓ

ℓ

)
.

We get
(

βq + ⌈c⌉ − β + ℓ

ℓ

)
− βℓ

(
q + ℓ− 1

ℓ

)
= (⌈c⌉ − c)

(βq)ℓ−1

(ℓ− 1)!
+ O(qℓ−2).

If we have c 6∈ N, then we are done. Now, assume c ∈ N. Hence we have

⌈c⌉ = c and, in the last expression, the coefficient of qℓ−1 vanishes. Let us

compute the coefficient of qℓ−2. Set d = c−β. By involving Stirling numbers

we can write

[qℓ−2]

(
q + ℓ− 1

ℓ

)
=

s(ℓ, ℓ− 2)

ℓ!

and

[qℓ−2]

(
βq + d + ℓ

ℓ

)
= [qℓ−1]

1

β

(
(ℓ + 1)

(
βq + d + ℓ

ℓ + 1

)
− d

(
βq + d + ℓ

ℓ

))

= [qℓ−1]
1

β

(
ℓ+1∑

i=1

s(ℓ + 1, i)

ℓ!
(βq + d)i − d

(
βq + d + ℓ

ℓ

))

= [qℓ−1]
1

β

(
ℓ+1∑

i=1

s(ℓ + 1, i)

ℓ!

i∑

k=0

(
i

k

)
di−kβkqk − d

(
βq + d + ℓ

ℓ

))

= [qℓ−1]
1

β

(
ℓ+1∑

k=1

(
βk

ℓ+1∑

i=k

s(ℓ + 1, i)

ℓ!

(
i

k

)
di−k

)
qk − d

(
βq + d + ℓ

ℓ

))

= βℓ−2
ℓ+1∑

i=ℓ−1

s(ℓ + 1, i)

ℓ!

(
i

ℓ− 1

)
di−ℓ+1 − dβℓ−2

ℓ!

ℓ∑

i=1

(d + i)

=
βℓ−2

ℓ!

(
s(ℓ + 1, ℓ− 1) +

ℓ2(ℓ + 1)

2
d +

ℓ(ℓ + 1)

2
d2 − ℓd2 − ℓ(ℓ + 1)

2
d

)

=
βℓ−2

ℓ!

(
s(ℓ + 1, ℓ− 1) +

(ℓ− 1)ℓ(ℓ + 1)

2
d +

(ℓ− 1)ℓ

2
d2

)
.

Then, by using Lemma 2.5.2, we easily find

s(ℓ + 1, ℓ− 1) = s(ℓ, ℓ− 2) +
(ℓ− 1)ℓ2

2
=

(3ℓ + 2)(ℓ + 1)ℓ(ℓ− 1)

24
. (15)
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Finally we obtain
(

βq + c− β + ℓ

ℓ

)
− βℓ

(
q + ℓ− 1

ℓ

)
=

c(β + 1)

12

(βq)ℓ−2

(ℓ− 2)!
+ O(qℓ−3),

which shows that the inequality (13) also holds in this case whenever q is

sufficiently large. �

The following corollary provides a relationship between the lengths of

the Sℓ-representations of n and βℓn, roughly by a factor β.

Corollary 2.5.4. For sufficiently large n ∈ N, we have

| repSℓ
(βℓn)| = β | repSℓ

(n)|+
⌈

(β − 1)(ℓ + 1)

2

⌉
− i

for some i ∈ [[0, β]].

In certain cases we can provide a formula for the entire expansion of

βℓ valSℓ
(aq

ℓ) for all large enough integers q. Using the same kind of compu-

tation we could also obtain a formula for the entire expansion of βℓ valSℓ
(aq

1)

or even of any βℓn with | repSℓ
(n)| = q.

Definition 2.5.5. Define cℓ, cℓ−1, . . . , c1 recursively by

ck+1 = k! (βℓ−k − 1)

ℓ∑

i=k

s(i, k)

i!
−

ℓ∑

i=k+2

i∑

j=k+1

s(i, j)

i!

j!

(j − k)!
cj−k
i

for all k ∈ [[0, ℓ− 1]].

Example 2.5.6. For ℓ = 3, we have c3 = 2(β−1), c2 = 2(β−1)−(β2−1)/6,

and

c1 = −c2

2
− c2

2

2
− c3

3
− c2

3

2
− c3

3

6
= 2(β − 1)− (β2 − 1)2

72
− (β3 − 1)− β2 − 1

4
.

Lemma 2.5.7. For all q ∈ N, we have

βℓ valSℓ
(aq

ℓ) =

ℓ∑

i=1

(
βq + ci + i− 1

i

)
. (16)

Furthermore, if the ck’s are integers satisfying cℓ ≥ cℓ−1 ≥ · · · ≥ c1, then we

have

fβℓ(a
q
ℓ) = repSℓ

(βℓ valSℓ
(aq

ℓ)) = a
cℓ−cℓ−1

1 a
cℓ−1−cℓ−2

2 · · · ac2−c1
ℓ−1 aβq+c1

ℓ (17)

for all integers q ≥ −c1/β. In this case fβℓ(a∗ℓ ) is regular.
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Proof. For the second part of the lemma, observe that, if the ck’s are

integers satisfying cℓ ≥ cℓ−1 ≥ · · · ≥ c1, then (17) is a straightforward con-

sequence of (16) and Lemma 2.3.2. Thus, in this case, the language fβℓ(a∗ℓ )

is regular because it can be obtained by a finite number of modifications of

the language

a
cℓ−cℓ−1

1 a
cℓ−1−cℓ−2

2 · · · ac2−c1
ℓ−1 ac1

ℓ (aβ
ℓ )∗,

which is of course regular. Therefore we only have to show (16). By involving

Stirling numbers, we can write

βℓ valSℓ
(aq

ℓ) = βℓ
ℓ∑

i=1

(
q + i− 1

i

)
= βℓ

ℓ∑

i=1

i∑

k=1

s(i, k)

i!
qk

=

ℓ∑

k=1

(
βℓ

ℓ∑

i=k

s(i, k)

i!

)
qk

and

ℓ∑

i=1

(
βq + ci + i− 1

i

)
=

ℓ∑

i=1

i∑

j=1

s(i, j)

i!
(βq + ci)

j

=

ℓ∑

i=1

i∑

j=1

s(i, j)

i!

j∑

k=0

(
j

k

)
cj−k
i βkqk

=
ℓ∑

i=1

i∑

j=1

s(i, j)

i!
cj
i +

ℓ∑

k=1


βk

ℓ∑

i=k

i∑

j=k

s(i, j)

i!

(
j

k

)
cj−k
i


 qk.

Then relation (16) is satisfied if and only if we have

∀k ∈ [[1, ℓ]], βℓ−k
ℓ∑

i=k

s(i, k)

i!
=

ℓ∑

i=k

i∑

j=k

s(i, j)

i!

(
j

k

)
cj−k
i ;

0 =

ℓ∑

i=1

i∑

j=1

s(i, j)

i!
cj
i .

Since the last equation is satisfied by the definition of c1 and since we have

∀k ∈ [[1, ℓ]], βℓ−k
ℓ∑

i=k

s(i, k)

i!
=

ℓ∑

i=k

s(i, k)

i!
+

ck+1

k!
+

ℓ∑

i=k+2

i∑

j=k+1

s(i, j)

i!

(
j

k

)
cj−k
i

by the definition of ck+1, the lemma is proved. �

Remark 2.5.8. The formula for ck can be simplified by using

ℓ∑

i=k

s(i, k)

i!
=

{
s(ℓ + 1, k + 1)/ℓ!, if k ≥ 1;

0, if k = 0.
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Note that cℓ is the constant c in the proof of Lemma 2.5.3:

cℓ = (β − 1)
s(ℓ + 1, ℓ)

ℓ
=

(β − 1)(ℓ + 1)

2
.

By using (15), we also obtain

cℓ−1 = (β2 − 1)
(3ℓ + 2)(ℓ + 1)

24
− ℓ− 1

2
cℓ −

1

2
c2
ℓ

= cℓ

(
1− β + 1

12

)
=

(β − 1)(ℓ + 1)

2
− (β2 − 1)(ℓ + 1)

24
.

Now, we turn to our main counting argument that will be used to obtain

that Sℓ-recognizability is not preserved through multiplication by a constant.

Lemma 2.5.9. Let A be a k-dimensional linear subset of Nℓ for some k

in [[0, ℓ−1]] and B = Ψ−1(A)∩Bℓ be the corresponding subset of Bℓ. Assume

that Ψ(fβℓ(B)) contains a sequence x(n) = (x
(n)
1 , . . . , x

(n)
ℓ ) such that we have

min{x(n)
j1

, x
(n)
j2

, . . . , x
(n)
jk+1
} → +∞ as n→ +∞

for some integers j1, . . . , jk+1 satisfying 1 ≤ j1 < j2 < · · · < jk+1 ≤ ℓ. Then

fβℓ(B) is not regular.

Proof. Since A is a k-dimensional linear subset of Nℓ, we have

Card(B ∩ Σ≤q
ℓ ) = Card{(x1, . . . , xℓ) ∈ A |

ℓ∑

i=1

xi ≤ q} = Θ(qk).

Using Corollary 2.5.4, for all sufficiently large integers q, we obtain

Card
(
B ∩ Σ

≤⌊(q−c)/β⌋
ℓ

)
≤ Card(fβℓ(B) ∩ Σ≤q

ℓ ) ≤ Card
(
B ∩Σ

≤⌈(q−c)/β⌉+1
ℓ

)

with c = ⌈(β − 1)(ℓ + 1)/2⌉. This implies Card(fβℓ(B) ∩ Σ≤q
ℓ ) = Θ(qk).

Thus fβℓ(B) is regular if and only if Ψ(fβℓ(B)) is a finite union of at most

k-dimensional sets as in Lemma 2.4.5. Since the sequence x(n) cannot occur

in such a finite union, fβℓ(B) is not regular. �

The coefficients cℓ and cℓ−1 (explicitely given in Remark 2.5.8) are ratio-

nal numbers. In the next two propositions we will discuss the fact that these

coefficients could be integers and we rule out all the possible cases.

Proposition 2.5.10. If we have (β−1)(ℓ+1)
2 6∈ N or (β2−1)(ℓ+1)

24 6∈ N, then

fβℓ(a∗ℓ ) is not regular.
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Proof. From Lemma 2.3.2 and Corollary 2.3.5 we have

∀q ∈ N, βℓ valSℓ
(aq

ℓ) = βℓ
ℓ∑

i=1

(
q + i− 1

i

)
=

ℓ∑

i=1

(
yi + i− 1

i

)

for some integers y1, . . . , yℓ satisfying yℓ ≥ yℓ−1 ≥ · · · ≥ y1 ≥ 0 (depending

on q). It follows

βℓ

(
qℓ

ℓ!
+

(ℓ + 1) qℓ−1

2 (ℓ− 1)!
+ O(qℓ−2)

)
=

yℓ
ℓ

ℓ!
+

yℓ−1
ℓ

2 (ℓ− 2)!
+

yℓ−1
ℓ−1

(ℓ− 1)!
+ O(yℓ−2

ℓ ).

(18)

From Lemma 2.5.3 we obtain yℓ = | repSℓ
(βℓ valSℓ

(aq
ℓ)| = βq + ⌈cℓ⌉ for all

sufficiently large integers q. In particular, this implies yℓ = βq+O(1). Hence,

by using (18), it follows

β(ℓ + 1)

2
qℓ−1 + O(qℓ−2) =

(
(yℓ − βq) +

ℓ− 1

2
+

(
yℓ−1

βq

)ℓ−1
)

qℓ−1;

yℓ = βq + cℓ + 1−
(

yℓ−1

βq

)ℓ−1

+ O

(
1

q

)
.

First case: cℓ = (β−1)(ℓ+1)
2 6∈ N

We have yℓ = βq + cℓ + 1/2 for all large enough integers q. So we obtain

yℓ−1 = (1/2)
1

ℓ−1 βq + O
(
q1− 1

ℓ−1

)
.

Hence we get

|fβℓ(a
q
ℓ)|a1 = yℓ − yℓ−1 =

(
1− (1/2)

1
ℓ−1

)
βq + o(q);

ℓ∑

j=2

|fβℓ(a
q
ℓ)|aj

= yℓ−1 = (1/2)
1

ℓ−1 βq + o(q).

Consequently, fβℓ(a∗ℓ ) is not regular from Lemma 2.5.9.

Second case: cℓ = (β−1)(ℓ+1)
2 ∈ N

We have yℓ = βq+cℓ for all large enough integers q. Since we have yℓ−1 ≤ yℓ,

we obtain yℓ−1 = βq + O(1). By comparing the coefficients of qℓ−2 in (18),

by using (15) and the definition of cℓ−1, we obtain

(
β2s(ℓ, ℓ− 2)

ℓ(ℓ− 1)
+

β2(ℓ− 2)

2
+ β2

)
qℓ−2 + O(qℓ−3)

=

(
c2
ℓ

2
+

cℓ(ℓ− 1)

2
+

s(ℓ, ℓ− 2)

ℓ(ℓ− 1)
+ (yℓ−1 − βq) +

ℓ− 2

2
+

(
yℓ−2

βq

)ℓ−2
)

qℓ−2;

yℓ−1 = βq + cℓ−1 + 1−
(

yℓ−2

βq

)ℓ−2

+ O

(
1

q

)
.
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Since in this case cℓ−1 = (β−1)(ℓ+1)
2 − (β2−1)(ℓ+1)

24 is not an integer and since

yℓ−2 ≤ yℓ−1 implies yℓ−2 = βq + O(1), we obtain yℓ−1 = βq + ⌈cℓ−1⌉ for all

large enough integers q and

yℓ−2 = d
1

ℓ−2 βq + O
(
q1− 1

ℓ−2

)

with d = 1− (⌈cℓ−1⌉ − cℓ−1) ∈ (0, 1). Hence we obtain

|fβℓ(a
q
ℓ)|a2 = yℓ−1 − yℓ−2 = (1− d

1
ℓ−2 )βq + o(q);

ℓ∑

j=3

|fβℓ(a
q
ℓ)|aj

= yℓ−2 = d
1

ℓ−2 βq + o(q).

Therefore fβℓ(a∗ℓ ) is not regular from Lemma 2.5.9. �

Proposition 2.5.11. If we have (β−1)(ℓ+1)
2 ∈ N and (β2−1)(ℓ+1)

24 ∈ N, then

fβℓ(a∗1a
∗
ℓ) is not regular.

Proof. Using Lemma 2.3.2, if we choose q large enough with respect

to p, e.g., q ≥ p3, then we get

βℓ valSℓ
(ap

1a
q
ℓ) = βℓ

((
p + q + ℓ− 1

ℓ

)
+

ℓ−1∑

i=1

(
q + i− 1

i

))

=

(
β(p + q) + cℓ + ℓ− 1

ℓ

)
+

(
βq − (β − 1)βp + cℓ−1 + ℓ− 2

ℓ− 1

)

+

(
βq − (β−1)β

2 (βp)2 + dp + e

ℓ− 2

)
+ O

(
qℓ−3

)

for some constants d and e. Indeed, this equation holds for p = 0 by

Lemma 2.5.7. Therefore the coefficients of qℓp0, qℓ−1p0 and qℓ−2p0 on the

left-hand side are equal to those on the right-hand side. It is easy to see

that the same holds for qℓ−1p1, qℓ−2p2, qℓ−3p3, and qℓ−4p4. By considering

the coefficients of qℓ−2p1 and qℓ−3p2 and multiplying by (ℓ − 2)!/βℓ−1 and

(ℓ− 3)!/βℓ−1 respectively, we obtain the following two equations:

β
ℓ− 1

2
= cℓ−1 +

ℓ− 1

2
− (β − 1);

β
ℓ− 1

4
=

cℓ−1

2
+

ℓ− 1

4
+

(β − 1)2

2
− (β − 1)β

2
.

Therefore the same holds for qℓ−2p1 and qℓ−3p2 too. Finally we can choose

the constant d so that the coefficient of qℓ−3p1 vanishes as well and the term

O
(
qℓ−3

)
remains.
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From Corollary 2.3.5 we also have

∀p, q ∈ N, βℓ valSℓ
(ap

1a
q
ℓ) =

ℓ∑

i=1

(
yi + i− 1

i

)

for some integers y1, . . . , yℓ satisfying yℓ ≥ yℓ−1 ≥ · · · ≥ y1 ≥ 0 (depending

on p and q). Set

P (p, q) = βℓ valSℓ
(ap

1a
q
ℓ)−

(
β(p + q) + cℓ + ℓ− 1

ℓ

)
.

For q ≥ p3, the dominant term in P is (βq)ℓ−1

(ℓ−1)! > 0. Therefore, in this case,

we obtain yℓ ≥ β(p+ q)+ cℓ. Since, by assumption, we have cℓ ∈ N, by using

Corollary 2.5.4 we then obtain yℓ = |βℓ valSℓ
(ap

1a
q
ℓ)| = β(p + q) + cℓ. Next,

let us show
(

βq − (β − 1)βp + cℓ−1 + ℓ− 2

ℓ− 1

)
≤ P (p, q)

<

(
βq − (β − 1)βp + cℓ−1 + ℓ− 1

ℓ− 1

)

for all sufficiently large p and q ≥ p3. Thanks to the foregoing, observe that,

for q ≥ p3, we have

[qℓ−2]

(
P (p, q)−

(
βq − (β − 1)βp + cℓ−1 + ℓ− 2

ℓ− 1

))
=

βℓ−2

(ℓ− 2)!
> 0;

[qℓ−3p2]

(
P (p, q)−

(
βq − (β − 1)βp + cℓ−1 + ℓ− 1

ℓ− 1

))
= −(β − 1)βℓ

2(ℓ− 3)!
< 0,

which are in both cases the dominant term to consider, i.e., all the possible

greater terms vanish. Since we have cℓ−1 ∈ Z by hypothesis, we obtain

yℓ−1 = βq − (β − 1)βp + cℓ−1 and yℓ−2 = βq − (β−1)β
2 (βp)2 + dp + O(1) for

all large enough p and q ≥ p3. In the latter conditions, we have

|fβℓ(a
p
1a

q
ℓ)|a1 = β2p + O(1);

|fβℓ(a
p
1a

q
ℓ)|a2 =

(β − 1)β3

2
p2 + O(p);

ℓ∑

j=3

|fβℓ(a
p
1a

q
ℓ)|aj

= βq + O(p2).

Hence fβℓ(a∗1a
∗
ℓ) is not regular from Lemma 2.5.9. �

Example 2.5.12. We illustrate some of the above computations. Let us

continue Example 2.5.6. If we have β ≡ ±1 (mod 6), then c3, c2, and c1 are

all integers. Hence this gives

fβ3(aq
3) = ac3−c2

1 ac2−c1
2 aβq+c1

3
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for all sufficiently large integers q. In particular, the latter formula shows that

a∗3 cannot be used to prove that multiplication by β3 does not preserve rec-

ognizability when we have β ≡ ±1 (mod 6). Thanks to Proposition 2.5.10,

fβ3(a∗3) is regular if and only if we have β ≡ ±1 (mod 6). On the other hand,

for large enough p and q ≥ p3, we find

fβ3(ap
1a

q
3) = aβ2p+c3−c2

1 a
(β−1)β

2
(βp)2−(β−1+d)βp+c2−c1

2 a
βq− (β−1)β

2
(βp)2+dβp+c1

3 ,

with d = −(β − 1)(β2 − 2β + 6)/6. This shows that fβ3(a∗1a
∗
3) is not regular.

Otherwise, i.e., if we have 1 − β2 ≡ j (mod 6) with j ∈ {1, 3, 4} and

k = 1− j
6 > 0, then, for all large enough integers q, we have

fβ3(aq
3) = a

c3−⌈c2⌉
1 a

kβq+⌈c2⌉−c1+kc2+
k(k+1)

2
2 a

j
6
βq+c1−kc2−

k(k+1)
2

3 .

2.6. Main Result

By collecting results from Theorems 2.2.1 and 2.2.10, Corollary 2.2.7,

and Propositions 2.5.10 and 2.5.11, we obtain our main result about multi-

plication by a constant.

Theorem 2.6.1. Let ℓ, λ be positive integers with λ ≥ 2. For the abstract

numeration system

S = (a∗1 · · · a∗ℓ , {a1, . . . , aℓ}, a1 < · · · < aℓ),

multiplication by λ preserves S-recognizability if and only if one of the fol-

lowing conditions is satisfied:

• ℓ = 1;

• ℓ = 2 and λ is an odd square.

Proof. The case ℓ = 1 is ruled out by Corollary 2.2.7 and the case ℓ = 2

is given by Theorem 2.2.10. Consider ℓ ≥ 3. Thanks to Theorem 2.2.1, it is

only necessary to consider λ of the form βℓ. Then the result can be deduced

from Propositions 2.5.10 and 2.5.11. �

2.7. Structural Properties of Bℓ Seen Through fβℓ

In this independent section we closely inspect how a word is transformed

by applying fβℓ . To that end, Bℓ (or equivalently N) is partitioned into

regions where fβℓ acts differently. Thanks to our discussion, we are able to

detect some kind of patterns periodically occurring within these regions. To

have a flavor of the computations involved in this section, the reader could

first have a look at Example 2.7.5. Let ℓ and β be two positive integers with

ℓ ≥ 2 that will be fixed throughout this section.

According to Corollary 2.5.4, we define a partition of N.
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Definition 2.7.1. For all i ∈ [[0, β]] and large enough q ∈ N, we define

Ri,q = {n ∈ N | | repSℓ
(n)| = q, | repSℓ

(βℓn)| = βq +

⌈
(β − 1)(ℓ + 1)

2

⌉
− i}

and we let mi,q = minRi,q denote the smallest integer in Ri,q.

Lemma 2.7.2. If we have β =
∏k

i=1 pui

i where k, u1, . . . , uk are positive

integers and p1, . . . , pk are prime numbers greater than ℓ, then for any integer

x ≥ ℓ, we have (
x

ℓ

)
≡
(

x + βℓ

ℓ

)
(mod βℓ).

Proof. Let x, y be integers satisfying x, y ≥ ℓ. We have
(

y

ℓ

)
−
(

x

ℓ

)
=

y(y − 1) · · · (y − ℓ + 1)− x(x− 1) · · · (x− ℓ + 1)

ℓ!
.

The numerator on the right-hand side is an integer divisible by ℓ!. Since it

can be written as P (y)− P (x) for some polynomial P , it is also divisible by

y − x. Then, for y = x + βℓ, the corresponding numerator is divisible by ℓ!

and also by βℓ. But since any prime factor of β is larger than ℓ, ℓ! and βℓ

are relatively prime. Consequently, the corresponding numerator is divisible

by βℓℓ! and the lemma is proved. �

An inspection of multiplication by βℓ using the partition induced by

Corollary 2.5.4 provides us with the following observation.

Proposition 2.7.3. For all large enough integers q, we have

| repSℓ
(βℓmβ,q+βℓ−1)| = | repSℓ

(βℓmβ,q)|+ βℓ

and mβ,q = valS(aq
1). If β satisfies the condition of Lemma 2.7.2, then, for

all i ∈ [[0, β − 1]] and all large enough integers q, we have

∀j ∈ {2, . . . , ℓ}, | repSℓ
(βℓmi,q+βℓ−1)|aj

= | repSℓ
(βℓmi,q)|aj

,

| repSℓ
(βℓmi,q+βℓ−1)|a1 = | repSℓ

(βℓmi,q)|a1 + βℓ,

and mi,q =
⌈

Ci(q)
βℓ

⌉
with

Ci(q) = valSℓ

(
a

βq+
(β−1)(ℓ+1)

2
−i

1

)
=

(
βq + (β−1)(ℓ+1)

2 − i + ℓ− 1

ℓ

)
.

Proof. For i = β, the first part of the lemma is a straightforward con-

sequence of Lemma 2.5.3 (which also holds for ℓ = 2). Now, assume that β

satisfies the condition of Lemma 2.7.2 and choose some i ∈ [[0, β − 1]]. From
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Lemma 2.5.3 it follows valSℓ
(aq

1) ∈ Rβ,q and valSℓ
(aq

ℓ) ∈ R0,q for all suffi-

ciently large integers q. Hence we can choose an integer q large enough so

that the regions Rj,r are non-empty for all j ∈ [[0, β]] and all integers r ≥ q.

Note that (β−1)(ℓ+1) is even since β satisfies the condition of Lemma 2.7.2.

By definition we have Ci(q) ≤ βℓmi,q. Since we have mi,q − 1 ∈ Ri+1,q, we

also obtain βℓmi,q < Ci(q)+βℓ. Therefore we find mi,q = ⌈Ci(q)/β
ℓ⌉. More-

over, there exists a unique integer µi(q) that satisfies

βℓmi,q = Ci(q) + µi(q) and 0 ≤ µi(q) < βℓ.

In particular, we have

βℓmi,q+βℓ−1 = Ci(q + βℓ−1) + µi(q + βℓ−1) and 0 ≤ µi(q + βℓ−1) < βℓ.

From Lemma 2.7.2 it follows Ci(q) ≡ Ci(q + βℓ−1) (mod βℓ). Consequently

we obtain µi(q) = µi(q + βℓ−1). If we have repSℓ−1
(µi(q)) = an1

1 · · · a
nℓ−1

ℓ−1 ,

then, from Lemma 2.3.2, we deduce

repSℓ
(βℓmi,q) = at

1a
n1
2 · · · a

nℓ−1

ℓ

and

repSℓ
(βℓmi,q+βℓ−1) = at+βℓ

1 an1
2 · · · a

nℓ−1

ℓ ,

where t is the integer defined by | repSℓ
(βℓmi,q)| = β q + (β−1)(ℓ+1)

2 − i. The

lemma is proved now. �

Remark 2.7.4. In the previous proposition we were interested in the first

word in Ri,q. Actually, it is even possible to describe how multiplication

by βℓ affects representations inside Ri,q. With the notation of the previous

proof, for any n ∈ Ri,q (and q large enough), we have

repSℓ
(βℓn) = at

1a
n1
2 · · · a

nℓ−1

ℓ

where t and n1, . . . , nℓ−1 are the integers defined by

| repSℓ
(βℓn)| = βq +

(β − 1)(ℓ + 1)

2
− i

and

repSℓ−1

(
µi(q) + βℓ(n−mi,q)

)
= an1

1 · · · a
nℓ−1

ℓ−1

respectively.

Example 2.7.5. Take ℓ = 3 and β = 5. We thus have cℓ = 8. The number

171717 (resp. 172739) is the first element belonging to R4,100 (resp. R3,100).

We have

repS3
(171717) = a95b3c2 and repS3

(53 · 171717) = a490b14c0;

repS3
(172739) = a55b41c4 and repS3

(53 · 172739) = a493b0c12.
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Therefore, with the notation of the previous proof, we obtain µ4(100) =

valS2(φ(b14)) = 105 (resp. µ3(100) = valS2(φ(c12)) = 90), where φ is the mor-

phism on {a, b, c}∗ defined by φ(a) = ε, φ(b) = a, and φ(c) = b. The number

333396 (resp. 334986) is the smallest element in R4,125 (resp. R3,125). The

corresponding S3-representations are given by

repS3
(333396) = a119b6c0 and repS3

(53 · 333396) = a615b14c0;

repS3
(334986) = a69b41c15 and repS3

(53 · 334986) = a618b0c12.

We have Card(R4,100) = 1022 and Card(R4,125) = 1590. We can then build

the following table.

j Ψ(repS3
(53(m4,100 + j))) Ψ(repS3

(53(m4,125 + j)))

0 (490, 14, 0) (615, 14, 0)

1 (484, 0, 20) (609, 0, 20)

2 (478, 22, 4) (603, 22, 4)
...

...
...

1021 (0, 34, 470) (125, 34, 470)

1022 × (124, 415, 90)
...

...
...

1589 × (0, 34, 595)



CHAPTER 3

A Decidability Problem

3.1. Introduction

In this chapter we mainly address the following decidability question and

its extension to abstract numeration systems.

Problem 2. Let

• U be a linear numeration system such that N is U -recognizable;

• Let X be any U -recognizable set of non-negative integers, which is

given through a DFA accepting repU (X).

Is it decidable whether or not X is ultimately periodic, i.e., whether or not X

is a finite union of arithmetic progressions?

Note that the regularity of repU (N) in the previous statement ensures

that there exists a set X ⊆ N such that repU (X) is regular; see Lemma 1.6.13

on page 15 and Remark 3.2.16 below.

The material of this chapter was first introduced in [CR08] and then

was developed in [BCFR09].

Ultimately periodic sets of integers play a special role. On the one hand,

such infinite sets are coded by a finite amount of information. On the other

hand, the famous theorem of Cobham stated below asserts that these sets are

the only ones that are recognizable in all integer base numeration systems.

This is the reason why they are also referred to in the literature as recog-

nizable sets of integers (the recognizability being in that case independent

of the base). Furthermore, Cobham’s theorem has been extended to various

situations and, in particular, to numeration systems given by substitutions

[Dur02b].

Definition 3.1.1. Two integers p, q ≥ 2 are said multiplicatively indepen-

dent if, for all positive integers m and n, we have pm 6= qn.

Theorem 3.1.2. [Cob69] Let p, q ≥ 2 be multiplicatively independent in-

tegers. A set X of non-negative integers is both Up-recognizable and Uq-

recognizable if and only if it is ultimately periodic.

47
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If we restrict ourselves to usual integer base numeration systems, then

several results are known. J. Honkala showed in [Hon86] that Problem 2

turns out to be decidable in this case. Let us also mention [Ale04], where the

number of states of the minimal automaton accepting numbers written in a

given integer base b ≥ 2 and divisible by a given positive integer is explicitly

computed. J.-P. Allouche and J. Shallit asked in [AS03] if one can obtain

a polynomial time decision procedure for integer base numeration systems.

Using the logic formalism of the Presburger arithmetic, a positive answer to

this question is given by J. Leroux in [Ler05] even when considering subsets

of Zd, where d is a positive integer. In dimension one ultimately periodic

sets are exactly the sets definable in the Presburger arithmetic 〈N,+〉.
A. Muchnik showed that Problem 2 turns out to be decidable for any

linear numeration system U for which both repU (N) and addition are rec-

ognizable by finite automata [Muc03]. Still, it is a difficult question to

characterize numeration systems U for which addition is computable by a

finite automaton.1 For details in this area, as already mentioned on page 24,

see [BH97, Fro92], in which the authors mainly considered positional nu-

meration systems defined by a linear recurrence relation whose characteristic

polynomial is the minimal polynomial of a Pisot number. In [Fro97] the se-

quentiality of the successor function, i.e., the action of adding 1, is studied.

If addition is computable by a finite automaton, so the successor function is,

but the converse does not hold in general. In particular, some examples of

linear numeration systems for which addition is not computable by a finite

automaton are given in [Fro97]: for example, the sequence (Ui)i≥0 defined

by Ui+4 = 3Ui+3 + 2Ui+2 + 3Ui for all i ∈ N with any integer initial con-

ditions satisfying 1 = U0 < U1 < U2 < U3. So the decision techniques

from [Ler05, Muc03] cannot be applied to that numeration system. Nev-

ertheless, as we shall see in Example 3.5.14, our decision procedure can be

applied to this system. Also, note that, in the extended framework of ab-

stract numeration systems, one can exhibit systems such that multiplication

by a constant does not preserve S-recognizability. For a discussion on this

topic, see Theorems 2.2.1 and 2.2.10, and Propositions 2.5.10 and 2.5.11 in

Chapter 2, which led to the proof of Theorem 2.6.1 on page 43. Therefore the

powerful tools from logic discussed above cannot be applied in that context

either.

The question studied in this chapter was raised by J. Sakarovitch dur-

ing the “Journées de Numération” in Graz, May 2007. The question was

initially asked for a larger class of numeration systems than the one treated

here, namely for any abstract numeration systems built on an infinite regular

language.

1See Chapter 2 on page 23 for the definition of “computable by a finite automaton”.



3.1. Introduction 49

This decision problem for all abstract numeration systems is equivalent

to the famous (and unsolved) HD0L periodicity problem: given a morphism f

and a coding g such that f is prolongable2 on a letter a, decide whether or not

the infinite word g(fω(a)) is ultimately periodic; see [HR04, RM02]. For

the restricted case of the D0L periodicity problem, where only the morphism f

is considered, decision procedures are well-known [HL86, Pan86].

Finally, questions related to those addressed here have independently

and recently gained interest [ARS09]. In particular, a simple proof of

J. Honkala’s original result based on the construction of some non-determi-

nistic automata is given in that paper. As for the logical approach considered

by A. Muchnik and J. Leroux, the arguments given in [ARS09] rely on the

recognizability of addition by a finite automaton (which can be done for the

standard integer base numeration systems but not necessarily for an arbi-

trary linear numeration system).

This chapter follows the organization described hereafter. The structure

of Section 3.2 is the same as the one of [Hon86]. First, we give an upper

bound on the admissible periods of a U -recognizable set X of non-negative

integers when it is assumed to be ultimately periodic. Then, an upper bound

on the admissible preperiods is obtained. These bounds depend essentially on

the number of states of the minimal automaton recognizing repU (X). Finally,

a finite number of such periods and preperiods have to be checked. For each

of them, we have to build automata accepting the corresponding ultimately

periodic sets. In particular, this implies that N has to be recognizable; see

Lemma 1.6.13 on page 15. Though the structure is the same, our arguments

and techniques are quite different from [Hon86]. They rely on the study of

the quantity NU (m), which is defined as the number of residue classes that

appear infinitely often in the reduced sequence (Ui mod m)i≥0, where m is

a positive integer. Our main result — Theorem 3.2.15 — in this section can

be stated as follows:

Theorem. Let U = (Ui)i≥0 be a linear numeration system such that N

is U -recognizable and satisfying limi→+∞ Ui+1 − Ui = +∞. If we have

limm→+∞ NU (m) = +∞, then Problem 2 is decidable.

Actually our techniques cannot be applied to integer base numeration sys-

tems, which is the case treated by J. Honkala [Hon86], because in that case

we have NU (m) 6→ +∞ as m→ +∞; see Remark 3.2.19.

2This notion will be formally defined on page 87 in Chapter 4.
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In Section 3.3 and Section 3.4 we recall some background about p-adic

numbers and finitely generated Abelian groups respectively. These notions

will be used in Section 3.5.

Then, in Section 3.5, we give a characterization of the linear numeration

systems U = (Ui)i≥0 which satisfy limm→+∞ NU (m) = +∞. To do so we

use p-adic methods leading to a study of the sequences (Ui mod pv)i≥0 for

all positive integers v and well-chosen prime numbers p.

In Section 3.6 we consider again the same decision problem but restated

in the framework of abstract numeration systems [LR01]. We successfully

apply the same kind of techniques to a large class of abstract numeration

systems. For instance, an example consisting of two copies of the Fibonacci

system is considered. The corresponding decision procedure is given by The-

orem 3.6.4.

In the last section we use results from [HR04] to show that Theorem 3.6.4

provides a decision procedure for particular instances of the HD0L periodicity

problem.

All along this chapter, whenever it is possible, we try to state results

in their most general form, even if later on we have to restrict ourselves to

particular cases. For instance, results about the admissible preperiods do not

require any particular assumption on the numeration system except linearity.

3.2. A Decision Procedure for a Class of Linear Numeration

Systems

We will often consider positional numeration systems U = (Ui)i≥0 satis-

fying the following condition:

lim
i→+∞

Ui+1 − Ui = +∞. (19)

Note that it is a weak requirement. Usually, the sequence U has an exponen-

tial growth, that is, Ui ≃ βi for some β > 1, and therefore, condition (19) is

trivially satisfied. For example, it is the case for the numeration systems that

will be considered in Remark 3.2.21 on page 60 or the Fibonacci numeration

system, which was introduced in Remark 1.6.3 on page 12.

The following lemma ensures that if a word w is a greedy U -represen-

tation, then the words 10rw are also greedy U -representations for all large

enough integers r.

Lemma 3.2.1. Let U = (Ui)i≥0 be a positional numeration system satisfying

condition (19). Then, for all j ∈ N, there exists L > 0 such that, for all

integers ℓ ≥ L, the words

10ℓ−| repU (t)| repU (t), t = 0, . . . , Uj − 1
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are greedy U -representations.

Proof. Choose j ∈ N. Note that we have repU (Uj) = 10j . Hence

repU (Uj − 1) is the greatest word of length j in repU (N) with respect to

the genealogical order. By hypothesis, there exists L > 0 such that, for all

integers ℓ ≥ L, we have Uℓ+1−Uℓ > Uj−1. Therefore, for all integers ℓ ≥ L,

the word 10ℓ−j repU (Uj − 1) is the greedy U -representation of the number

Uℓ + Uj − 1 < Uℓ+1. The result easily follows. �

Example 3.2.2. Consider the positional numeration system U = (Ui)i≥0

defined by U0 = 1, U1 = 2, U2 = 3, and U3i+r = 3i+1 + r for all i ∈ N \ {0}
and all r ∈ {0, 1, 2}. This system does not satisfy condition (19) because we

have Ui+1−Ui = 1 for infinitely many integers i. We have repU (2) = 10, but,

for all i ∈ N, the word 103i+110 is not a greedy U -representation. Indeed,

for all i ∈ N, the number valU (103i+110) = U3(i+1) + 2 = U3i+5 has 103i+5 as

greedy U -representation.

Remark 3.2.3. In the lemma above one cannot exchange the order of the

quantifiers about j and L. For example, consider the positional numeration

system U = (Ui)i≥0 defined by Ui = (i + 1)(i + 2)/2 for all i ∈ N. This

sequence satisfies condition (19). Moreover, it is a linear numeration system

since it satisfies the linear recurrence relation Ui+3 = 3Ui+2 − 3Ui+1 + Ui for

all i ∈ N. Observe that, for all non-negative integers i, we have

valU (10n10i) ≥ Un+i+2 ⇔ Un+i+1 + Ui ≥ Un+i+2

⇔ Un+i+2 − Un+i+1 ≤ Ui

⇔ n + i + 3 ≤ Ui

⇔ n < Ui − i− 2.

It follows that the greedy U -representations of the form 10n10i are exactly

those for which we have n ≥ Ui − i− 2, which grows with i.

Remark 3.2.4. Numeration systems associated with real numbers β > 1 are

defined as follows. In this case, one usually refers to β-numeration systems.

Set ∆β = [[0, ⌈β⌉ − 1]]. Any x ∈ [0, 1] can be written as

x =
+∞∑

i=1

ci β−i, with ci ∈ ∆β ∀i ∈ N \ {0}.

The sequence (ci)i≥1 is said to be a β-representation of x. For all x ∈ [0, 1],

we let dβ(x) denote the maximal β-representation of x with respect to the

lexicographical order, which is called the β-development of x. It is obtained

by the greedy algorithm. More details can be found, for instance, in [Lot02,
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Chap. 8]. We say that a β-development (ci)i≥1 is finite if there exists an

integer N such that we have ci = 0 for all integers i ≥ N . If there exists

a positive integer m such that we have dβ(1) = t1 · · · tm with tm 6= 0, then

we set d∗β(1) = (t1 · · · tm−1(tm − 1))ω. Otherwise dβ(1) is infinite and we set

d∗β(1) = dβ(1).3

Now, we are able to define a positional numeration system Uβ = (Ui)i≥0

associated with β; see [BM89]. If we have d∗β(1) = (ti)i≥1, then we define

U0 = 1 and ∀i ∈ N \ {0}, Ui = t1Ui−1 + · · ·+ tiU0 + 1. (20)

Such systems are called Bertrand numeration systems. If β is a Parry num-

ber, i.e., if dβ(1) is finite or ultimately periodic, then one can derive from

(20) that the sequence Uβ satisfies a linear recurrence relation. Then, as a

consequence of a theorem of A. Bertrand [BM89] linking together greedy

Uβ-representations and finite factors occurring in β-developments, the lan-

guage repUβ
(N) of the greedy Uβ-representations is regular. The trim min-

imal automaton accepting these representations is well-known [FS96] and

has a special form: all states are final and from all these states, an edge of

label 0 goes back to the initial state. Therefore we have the following prop-

erty which is much stronger than the previous lemma. If x and y are greedy

Uβ-representations, then x0y is also a greedy Uβ-representation.

Example 3.2.5. The Fibonacci system is the Bertrand system associated

with the golden ratio (1 +
√

5)/2. Since greedy representations in the Fi-

bonacci system are the words not containing two consecutive occurrences

of 1 [Zec72], we have x0y ∈ repF (N) for all x, y ∈ repF (N).

Recall (see Definition 1.6.12 on page 15) that a set of integers X is said

to be ultimately periodic if there exist a, p ∈ N with p > 0, such that, for

all i ≥ a, we have i ∈ X ⇔ i + p ∈ X. Moreover, if the integers a and p are

minimal for this property, then we say that they are the preperiod and the

period of X respectively. The minimality of the period chosen to represent

an ultimately periodic set is used in the next lemma.

Lemma 3.2.6. Let X ⊆ N be an ultimately periodic set of period pX and

preperiod aX and let i, j be integers satisfying i, j ≥ aX and i 6≡ j (mod pX).

Then there exists t ∈ [[0, pX − 1]] such that we have either i + t ∈ X and

j + t 6∈ X, or i + t 6∈ X and j + t ∈ X.

3Note that, when β is an integer, we have d∗
β(1) = (β − 1)ω. In that case, the β-

representations of real numbers ending with d∗
β(1) are the “improper” representations.
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Proof. Without loss of generality we may assume i < j and pX > 1.

Proceed by contradiction and assume that, for all t ∈ [[0, pX − 1]], we have

i+ t ∈ X ⇔ j + t ∈ X. Let p ∈ [[1, pX − 1]] be defined by p ≡ j− i (mod pX)

and let n be an integer satisfying n ≥ i. We can write n ≡ i + r (mod pX)

with r ∈ [[0, pX − 1]]. Then we have n + p ≡ j + r (mod pX). Therefore we

obtain n + p ∈ X ⇔ j + r ∈ X ⇔ i + r ∈ X ⇔ n ∈ X. This leads to a

contradiction since pX is minimal for this property. �

Definition 3.2.7. For a sequence (Ui)i≥0 of integers and a positive inte-

ger m, we let NU (m) ∈ [[1,m]] denote the number of values that are taken

infinitely often by the reduced sequence (Ui mod m)i≥0.

Example 3.2.8. If F = (Fi)i≥0 is the Fibonacci sequence, then we have,

for instance,

(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .);

(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .).

This shows that we have NF (4) = 4 and NF (11) = 7.

A number of papers are specifically intended to the study of the distribu-

tion of the Fibonacci sequence reduced modulo m; for instance, see [Wal60,

Mam61, Sha68, Bru70, KS72, Yal73, And74, Cat74, Tur74, DL77,

Vin78, Ehr89, Dar01, SC05]. More generally, for the study of linear re-

currence sequences reduced modulo m, see, for instance, [Eng31, War33,

Rau64, Rob66, Vin81, Nar84, Pin93, Wad96, Her04, WY06].

Proposition 3.2.9. Let U = (Ui)i≥0 be a positional numeration system

satisfying condition (19) and let X ⊆ N be an ultimately periodic U -recogni-

zable set of period pX . Then any DFA accepting repU (X) has at least NU (pX)

states.

Proof. Let aX be the preperiod of X. From Lemma 3.2.1 there exists

an integer L > 0 such that for any integer h ≥ L, the words

10h−| repU (t)| repU (t), t = 0, . . . , pX − 1

are greedy U -representations. The sequence (Ui mod pX)i≥0 takes infinitely

often N := NU (pX) different values. Let h1, . . . , hN ≥ L be integers satisfy-

ing

∀i, j ∈ [[1, N ]], Uhi
≥ aX and (i 6= j ⇒ Uhi

6≡ Uhj
(mod pX))

From Lemma 3.2.6, for all distinct i, j ∈ [[1, N ]], there exists ti,j ∈ [[0, pX −1]]

such that we have either Uhi
+ ti,j ∈ X and Uhj

+ ti,j 6∈ X, or Uhi
+ ti,j 6∈ X
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and Uhj
+ ti,j ∈ X. Therefore

wi,j = 0| repU (pX−1)|−| repU (ti,j)| repU (ti,j)

is a word such that we have either

10hi−| repU (pX−1)|wi,j ∈ repU (X) and 10hj−| repU (pX−1)|wi,j 6∈ repU (X),

or

10hi−| repU (pX−1)|wi,j 6∈ repU (X) and 10hj−| repU (pX−1)|wi,j ∈ repU (X).

Therefore the N words 10h1−| repU (pX−1)|, . . . , 10hN−| repU (pX−1)| are pairwise

non-equivalent for the Myhill-Nerode equivalence relation ∼repU (X). Then,

from Definition 1.3.6 on page 6, the minimal automaton of repU (X) has at

least N = NU (pX) states. �

The previous proposition has an immediate consequence for getting a

bound on the period of an eventually periodic set accepted by a given DFA.

Corollary 3.2.10. Let U = (Ui)i≥0 be a positional numeration system sat-

isfying condition (19). Assume

lim
m→+∞

NU (m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repU (X) is

accepted by a DFA with d states is bounded by the smallest non-negative

integer s such that, for all integers m ≥ s, we have NU (m) > d.

A result similar to the previous corollary (in the sense that it makes

possible to give an upper bound on the period) can be stated as follows.

Proposition 3.2.11. Let U = (Ui)i≥0 be a positional numeration system

satisfying condition (19), let X be an ultimately periodic U -recognizable set

of non-negative integers of period pX , and let c be a divisor of pX . If 1 occurs

infinitely many times in (Ui mod c)i≥0, then any DFA accepting repU (X) has

at least c states.

Proof. Let aX denote the preperiod of X. By applying several times

Lemma 3.2.1, there exist non-negative integers n1, . . . , nc such that

10nc10nc−1 · · · 10n10| repU (pX−1)|−| repU (t)| repU (t), t = 0, . . . , pX − 1

are greedy U -representations. Moreover, since 1 occurs infinitely many times

in the sequence (Ui mod c)i≥0, the integers n1, . . . , nc can be chosen such that
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we have

∀j ∈ [[1, c]], valU (10nj · · · 10n1+| repU (pX−1)|) ≡ j (mod c);

valU (10n1+| repU (pX−1)|) ≥ aX .

For all distinct i, j ∈ [[1, c]], from Lemma 3.2.6 and since c divides pX , the

words

10ni · · · 10n1 and 10nj · · · 10n1

are non-equivalent for the relation ∼repU (X). We show this by concatenating

some word of the kind 0| repU (pX−1)|−| repU (t)| repU (t) with t ∈ [[0, pX − 1]], as

in the proof of Proposition 3.2.9. This concludes the proof. �

Definition 3.2.12. Let U = (Ui)i≥0 be a sequence of integers and m a

positive integer. If the sequence (Ui mod m)i≥0 is ultimately periodic, then

we let ιU (m) denote its minimal preperiod and πU (m) denote its minimal

period.

In the previous definition we have chosen the notation ι to allude to the

word “index” which is equally used as preperiod in the literature.

Remark 3.2.13. Observe that for any sequence of integers U = (Ui)i≥0

ultimately satisfying a linear recurrence relation of length k of the kind

Ui+k = a1Ui+k−1 + · · · + akUi, with a1, . . . , ak ∈ Z, ak 6= 0, (21)

we have

∀m ∈ N \ {0}, NU (m) ≤ πU (m) ≤ (NU (m))k.

Therefore we have limm→+∞ NU (m) = +∞ ⇔ limm→+∞ πU (m) = +∞. In

particular, observe that it is the case for any linear numeration system; see

Definition 1.6.6 and Examples 1.6.10 and 1.6.11 on page 13. Also, note that,

for m = p · q, with gcd(p, q) = 1, we have πU (m) = lcm(πU (p), πU (q)).

Now, we want to obtain an upper bound on the preperiod of any ulti-

mately periodic U -recognizable set recognized by a given DFA.

Proposition 3.2.14. Let U = (Ui)i≥0 be a linear numeration system and

let X be an ultimately periodic U -recognizable set of non-negative integers of

period pX and preperiod aX . Then any DFA accepting repU (X) has at least

| repU (aX − 1)| − ιU (pX) states.

The arguments of the following proof are similar those found in [Hon86].
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Proof. Since U is linear, the sequence (Ui mod pX)i≥0 is ultimately

periodic with preperiod ιU (pX) and period πU (pX). Without loss of gen-

erality, we may assume | repU (aX − 1)| − ιU (pX) > 0. Proceed by con-

tradiction and assume that A is a DFA accepting repU (X) with less than

| repU (aX−1)|−ιU (pX) s. Then there exist words w,w4 such that the greedy

U -representation of aX − 1 can be factorized as

repU (aX − 1) = ww4

with |w| = | repU (aX − 1)| − ιU (pX). By the pumping lemma w can be

decomposed as w = w1w2w3 with w2 6= ε so that we have

∀i ∈ N, w1w
i
2w3w4 ∈ repU (X)⇔ w1w2w3w4 ∈ repU (X).

By the minimality of aX and pX , we must have either aX − 1 ∈ X and,

for all positive integers n, aX + npX − 1 6∈ X, or aX − 1 6∈ X and, for all

positive integers n, aX + npX − 1 ∈ X. Using the ultimate periodicity of

(Ui mod pX)i≥0 and since we have |w4| = ιU (pX), we get

∀i ∈ N, valU (w1w
iπU (pX)
2 w2w3w4)

≡ valU (w1w2w3w4) + i valU (w
πU (pX)
2 0|w2w3w4|) (mod pX).

Therefore, repeating the factor w
πU (pX)
2 of length multiple of πU (pX) ex-

actly pX times does not change the value modulo pX . Hence we get

valU (w1w
pXπU (pX)
2 w2w3w4) ≡ aX − 1 (mod pX),

leading to a contradiction. �

Theorem 3.2.15. Let U = (Ui)i≥0 be a linear numeration system such

that N is U -recognizable and satisfying condition (19). Assume

lim
m→+∞

NU (m) = +∞.

Then it is decidable whether or not a U -recognizable set is ultimately periodic.

Proof. The sequence U ultimately satisfies a strict linear recurrence re-

lation of length k of the kind (21), i.e, there exists ℓ ∈ N such that U satisfies

Ui+k = a1Ui+k−1 + · · ·+ akUi for all integers i ≥ ℓ. Let the prime decompo-

sition of |ak| be |ak| = pu1
1 · · · pur

r with uj > 0 for all j ∈ [[1, r]]. Consider a

U -recognizable set X ⊆ N that is given through a DFA A accepting repU(X)

and let d be the number of states of this automaton.

Assume that X is ultimately periodic with period

pX = pv1
1 · · · pvr

r c

with v1, . . . , vr, c ∈ N and gcd(ak, c) = 1. Then, from Proposition 3.2.9, we

obtain d ≥ NU (pX).
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First, let us give a bound on the part c coprime with ak. Using Re-

mark 3.2.13, we obtain

NU (c) ≤ πU (c) ≤ πU (pX) ≤ (NU (pX))k ≤ dk.

For all integers i ≥ ℓ, the term Ui+k is determined by the k previous terms

Ui+k−1, . . . , Ui. Moreover, gcd(ak, c) = 1 implies that ak is invertible mod-

ulo c. Hence, for all integers i ≥ ℓ, the term Ui mod c is also determined by

the k following terms Ui+1 mod c, . . . , Ui+k mod c. Therefore the shifted re-

duced sequence (Ui mod c)i≥ℓ is purely periodic. Then, from Definition 3.2.7,

this sequence takes exactly NU (c) different values because any term appears

infinitely often. Let α : N → N be the function mapping any m ∈ N onto

the smallest index i such that we have Ui ≥ m. Since the sequence U is

increasing, the map α is non-decreasing and we have limm→+∞ α(m) = +∞.

If we have α(c) ≤ ℓ, then c is bounded by the first integer c1 which satisfies

α(c1) > ℓ. Otherwise we have Uℓ < · · · < Uα(c)−1 < c. From this ob-

servation and the pure periodicity of the sequence (Ui mod c)i≥ℓ, it follows

NU (c) ≥ α(c)− ℓ. Thus we obtain

α(c) ≤ NU (c) + ℓ ≤ dk + ℓ.

Therefore, in this case, c is bounded by the first integer c2 that satisfies

α(c2) > dk + ℓ. These constants c1 and c2 are effectively computable and c

is bounded by c0 := max{c1, c2}.
Now, take j ∈ [[1, r]]. Using Remark 3.2.13 once again, we obtain

NU (p
vj

j ) ≤ dk.

The assumption limm→+∞ NU (m) = +∞ implies limv→+∞ NU (pv
j ) = +∞.

Observe that the map v 7→ NU (pv
j ) is non-decreasing. Consequently, the

exponent vj occurring in the decomposition of pX is bounded by sj where sj

is the smallest non-negative integer such that, for all integers v ≥ sj, we have

NU (pv
j ) > dk. This bound sj can be effectively computed as follows. For any

non-negative integer v, we can find NU (pv
j ) in a finite number of operations

by inspecting the first values of (Ui mod pv
j )i≥0 and looking for two identical

k-tuples made of k consecutive elements. Once the period is determined, we

immediately obtains the values that are repeated infinitely often. Since the

map v 7→ NU (pv
j ) is non-decreasing, we have to compute

NU (pj) ≤ NU (p2
j ) ≤ NU (p3

j ) ≤ · · ·

until finding the first value sj such that we have NU (p
sj

j ) > dk.

We have just proved that if X is ultimately periodic, then the admissible

periods are bounded by the constant

P = ps1
1 · · · psr

r c0,
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which is effectively computable. Then, using Proposition 3.2.14, the admis-

sible preperiods aX must satisfy

| repU (aX − 1)| ≤ d + max{ιU (p) | p ∈ [[1, P ]]}.

Since m 7→ | repU (m)| is a non-decreasing map and the preperiods ιU (p) are

computable for any positive integer p, a bound on the admissible preperiods

of X can effectively be given.

Consequently the sets of admissible preperiods and periods we have to

check are finite. To each pair (a, p) of admissible preperiods and periods cor-

responds at most 2a2p distinct ultimately periodic sets. Using Lemma 1.6.13,

one can build an automaton for each of them and then compare the lan-

guage L accepted by this automaton with repU (X). Since testing whether or

not we have L\repU (X) = ∅ and repU (X)\L = ∅ is decidable algorithmically,

this completes the proof. �

Remark 3.2.16. In the statement of the previous theorem, the assumption

about the U -recognizability of N is of particular interest. Recall that, for an

arbitrary linear numeration system, N is in general not U -recognizable. If N

is U -recognizable, then U satisfies a linear recurrence relation over Z (see

Theorem 1.6.8 on page 13) but the converse does not hold.

In view of the previous result, it is natural to wish to characterize linear

recurrence sequences U that satisfy limm→+∞ NU (m) = +∞. This is exactly

the aim of Section 3.5. However, we will already prove here the following

proposition in this direction, which provides an interesting particular case of

Theorem 3.2.15.

Proposition 3.2.17. Let U = (Ui)i≥0 be an increasing sequence of integers

eventually satisfying a linear recurrence relation of length k of the kind (21).

The following assertions are equivalent:

(i) limm→+∞ NU (m) = +∞;

(ii) for all prime divisors p of ak, limv→+∞ NU (pv) = +∞.

In particular, ak = ±1 implies limm→+∞ NU (m) = +∞.

Proof. Of course, it is enough to show that (ii) implies (i). Let the

prime decomposition of |ak| be |ak| = pu1
1 · · · pur

r with u1, . . . , ur > 0. Observe

that if a positive integer m can be decomposed as m = pv1
1 · · · pvr

r c, with

v1, . . . , vr, c ∈ N and gcd(ak, c) = 1, then we have

πU (m) = lcm(πU (pv1
1 ), . . . , πU (pvr

r ), πU (c)).
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Take j ∈ [[1, r]]. By assumption, we have limv→+∞ NU (pv
j ) = +∞. Hence,

in view of Remark 3.2.13, we get limv→+∞ πU (pv
j ) = +∞. Therefore πU (m)

gets larger than any constant by considering integers m which are divisible

by a sufficiently large power of pj. Using Remark 3.2.13 again, the same

conclusion holds for NU (m).

Let C = {c0, c1, c2, . . .} be the set of natural numbers coprime to ak and

assume c0 < c1 < c2 < · · · . By hypothesis, there exists ℓ ∈ N such that the

sequence (Ui mod c)i≥ℓ is purely periodic. As in the proof of Theorem 3.2.15,

let us consider the non-decreasing function α : N → N mapping any m ∈ N

onto the smallest index i satisfying Ui ≥ m. Since U is increasing, we have

limm→+∞ α(m) = +∞. Therefore there exists an integer N such that, for

all integers n ≥ N , we have α(cn) > ℓ. Similarly to what was done in the

proof of Theorem 3.2.15, we find NU (cn) ≥ α(cn)− ℓ for all integers n ≥ N .

Consequently, we obtain

lim
n→+∞

NU (cn) = +∞.

Any large enough integer m contains either a large power of pj for some

j ∈ [[1, r]] or some large c prime to ak. Consequently (i) is satisfied. �

Corollary 3.2.18. Let U = (Ui)i≥0 be a linear numeration system such

that N is U -recognizable. Assume that U eventually satisfies a linear recur-

rence relation of length k of the kind (21) with ak = ±1 and condition (19).

Then it is decidable whether or not a U -recognizable set is ultimately periodic.

Remark 3.2.19. We have thus obtained a decision procedure for Problem 2

when the linear numeration system U has a regular numeration language

and satisfies (19) and limm→+∞ NU (m) = +∞; hence, in particular, when U

ultimately satisfies a linear recurrence relation of the kind (21) with ak = ±1.

On the other hand, whenever gcd(a1, . . . , ak) = g ≥ 2 holds in (21), we have

Ui ≡ 0 mod gn for all n ∈ N and all large enough integers i. Therefore the

only value taken infinitely often by the reduced sequence (Ui mod gn)i≥0 is 0.

This implies that NU (m) equals 1 for infinitely many values of m. Hence, in

this case, the assumption about NU (m) in Theorem 3.2.15 does not hold. In

particular, note that the same observation can be made for the usual integer

base numeration systems: for all non-negative integers n and b with b ≥ 2,

the only value taken infinitely often by the sequences (bi mod bn)i≥0 is 0.

To conclude this section, we make a small digression by showing how to

use a result of H. Engstrom about preperiods [Eng31] to get some particular

linear numeration systems U satisfying limm→+∞ NU (m) = +∞. In his

paper H. Engstrom was interested in the problem of finding a general period
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associated with a given linear recurrence relation modulo m for any initial

conditions. Let us also mention the related work [War33] of M. Ward, in

which he considered the problem where the initial conditions are fixed and

then the period of the linear recurrence sequence reduced modulo m has to

be determined.

Theorem 3.2.20. [Eng31, Theorem 9] Let U = (Ui)i≥0 be a strict linear

recurrence sequence of length k ≥ 2 satisfying (21) and p be a prime divisor

of ak. If there exists s ∈ [[1, k−1]] satisfying ak, . . . , ak−s+1 ≡ 0 (mod p) and

ak−s 6≡ 0 (mod p), then we have ιU (pv) ≤ vs for all v ∈ N.

Remark 3.2.21. Assume that we are dealing with a strict linear numeration

system U = (Ui)i≥0 satisfying (21) and that the assumptions of the previous

theorem hold for all prime divisors p of ak, which is equivalent to have

gcd(a1, . . . , ak) = 1. So, for all prime divisors p of ak, there are sp in [[1, k−1]]

such that we have ak, . . . , ak−sp+1 ≡ 0 (mod p) and ak−sp
6≡ 0 (mod p). Let

χU = xk − a1x
k−1 − · · · − ak denote the characteristic polynomial of the

linear recurrence relation satisfied by U . Assume that β > 1 is a root of

multiplicity ℓ ≥ 1 of χU satisfying

• β > |γ| for any other root γ ∈ C of χU ;

• β < p1/sp for all prime divisors p of ak.

From Proposition 1.5.10 there exists a constant c > 0 such that we have

Ui ∼ c iℓ−1βi (i→ +∞). Let p be a prime divisor of ak and let jp(v) denote

the largest index j such that we have Uj < pv. Let t > sp be a real number

such that we have β < p1/t < p1/sp . For all large enough integers v, we have

U⌊vt⌋ < pv, hence, we also have jp(v) ≥ ⌊vt⌋. From the previous theorem it

follows ιU (pv) ≤ vsp for all v ∈ N. Therefore, for all large enough integers v,

UιU (pv) < · · · < Ujp(v) are the first terms of the periodic part of the sequence

(Ui mod pv)i≥0 and we obtain NU (pv) ≥ ⌊vt⌋ − vsp + 1 ≥ v(t − sp). This

means that, for all prime divisors p of ak, we have NU (pv)→ +∞ as v → +∞.

Therefore, using Proposition 3.2.17, we obtain limm→+∞ NU (m) = +∞ and

we can apply our decision procedure given by Theorem 3.2.15 whenever N is

U -recognizable.

Example 3.2.22. Consider the linear recurrence sequence given by

∀i ∈ {0, 1, 2}, Ui = i + 1 and ∀i ∈ N, Ui+3 = Ui+1 + 3Ui.

The first few terms of the sequence are

1, 2, 3, 5, 9, 14, 24, 41, 66, 113, 189, 311, 528, 878, 1461, 2462, 4095.
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With the above notation, we have s3 = 1 and β ≃ 1.6717 < 3, and the other

two complex roots have a modulus close to 1.34. Thanks to Theorem 3.2.20,

the preperiod ιU (3v) is bounded by v. On the other hand, we have Ui ∼ c βi

for some c > 0. Note that we have β < 31/2 < 3. Therefore, for all large

enough integers v, we get U2v ∼ c β2v < 3v. Consequently, we obtain that

the elements Uv < · · · < U2v appear in the periodic part of (Ui mod pv)i≥0.

In Figure 3.1 these elements have been underlined.

v preperiod period

3 1, 2, 3 (5, 9, 14, 24, 14, 12, 5, 0, 14, 15, 14, 3, 5, 18, 14, 6, 14, 21)

4 1, 2, 3, 5 (9, 14, 24, 41, 66, 32, 27, 68, 42, 68, 3, 32, 45, 41, 60, 14, . . .)

5 1, 2, 3, 5, 9 (14, 24, 41, 66, 113, 189, 68, 42, 149, 3, 32, 207, 41, 60, . . .)

Table 3.1. The preperiod of (Ui mod 3v)i≥0 is bounded by v.

3.3. Background on the p-adic Numbers

The aim of this section is to recap some background information on the p-

adic numbers. For more details in this area, see, for instance, the handbooks

[Kob84, Gou97, Rob00] or the lecture notes [Bak09]. In particular, the

proofs of all the result mentioned in this section can be found in those texts.

This material will be used in Section 3.5 to characterize linear numeration

systems U satisfying the condition limm→+∞ NU (m) = +∞. Remember that

these systems are those for which we have exhibited a decision procedure for

Problem 2; see Theorem 3.2.15 above.

Let p be a fixed prime number throughout this section. We can put an

absolute value | · |p on Z as follows.

Definition 3.3.1. For each integer n 6= 0, we can write |n| = pvℓ for non-

negative integers v and ℓ with gcd(p, ℓ) = 1. With these notation, the p-adic

absolute value on Z is defined by

|n|p =

{
p−v, if n 6= 0;

0, otherwise.

Example 3.3.2. We have

|7|3 = |1|3 = 1, |7|7 =
1

7
,

|15|3 = |6|3 =
1

3
, |15|5 =

1

5
, |15|7 = 1,

|9|3 = |18|3 =
1

9
, |18|2 =

1

2
, |18|5 = 1.
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In particular, note that we have |n|p ≤ 1 for all n ∈ Z. This absolute value

extends to Q in a natural way. Formally, we have the following definition.

Definition 3.3.3. The p-adic absolute value on Z extends to Q by declaring

∀m,n ∈ Z with n 6= 0,
∣∣∣
m

n

∣∣∣
p

=
|m|p
|n|p

.

In particular, for all a, b ∈ Q, we have |a · b|p = |a|p · |b|p. Furthermore,

the p-adic absolute value satisfies

∀a, b ∈ Q, |a + b|p ≤ max{|a|p, |b|p},
i.e, it is non-Archimedean.

Example 3.3.4. We have
∣∣∣∣
7

3

∣∣∣∣
3

= 3,

∣∣∣∣
7

3

∣∣∣∣
7

=
1

7
,

∣∣∣∣
15

21

∣∣∣∣
3

=

∣∣∣∣
15

3

∣∣∣∣
3

= 1,

∣∣∣∣
15

3

∣∣∣∣
5

=
1

5
,

∣∣∣∣
9

14

∣∣∣∣
3

=

∣∣∣∣
18

7

∣∣∣∣
3

=
1

9
,

∣∣∣∣
18

7

∣∣∣∣
2

=
1

2
,

∣∣∣∣
18

7

∣∣∣∣
7

= 7,

∣∣∣∣
9

14
+

7

3

∣∣∣∣
3

=

∣∣∣∣
33 + 2 · 72

3 · 14

∣∣∣∣
3

=
1
1
3

= 3 = max

{∣∣∣∣
9

14

∣∣∣∣
3

,

∣∣∣∣
7

3

∣∣∣∣
3

}
.

Proposition 3.3.5. There are Cauchy sequences in Q that do not have limit

with respect to the p-adic absolute value. Hence the field Q is not complete

with respect to the p-adic absolute value.

In view of this result, it is natural to consider the completion of Q.

Definition 3.3.6. The field of p-adic numbers, denoted by Qp, is the com-

pletion of Q with respect to the p-adic absolute value.

Recall that, in particular, this implies the following properties.

• The constructed set Qp is an extension field of Q.

• There exists a unique absolute value N on Qp that satisfies

∀a ∈ Q, N(a) = |a|p.
• The set Q is dense in Qp with respect to N .

• This absolute value N is non-Archimedean if and only if the p-adic

absolute value | · |p on Q is.

Again, we denote this extended absolute value by | · |p.
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Remark 3.3.7. Note that, since Qp is a complete non-Archimedean field

with respect to the p-adic absolute value, a series
∑

i≥0 γi converges in Qp if

and only if we have limi→+∞ |γi|p = 0.

Definition 3.3.8. The closed unit ball

Zp := {x ∈ Qp | |x|p ≤ 1}
is called the set of p-adic integers.

It is easily verified that the p-adic integers form a subring of Qp. There-

fore we will usually refer to Zp as the ring of p-adic integers.

Proposition 3.3.9. The set of ordinary integers Z is dense in Zp with re-

spect to the p-adic absolute value. Conversely, every Cauchy sequence in ZN

has a limit in Zp with respect to the p-adic absolute value.

Another (equivalent) way to define the p-adic numbers is to consider

them to be the formal expressions of the form

c−Np−N + · · · + c−1p
−1 + c0 + c1p + c2p

2 + · · · ,
with N ∈ Z and cj ∈ [[0, p − 1]] for all integers j ≥ −N . The p-adic integers

are then identified with the formal expressions involving only non-negative

powers of p. Such expressions are called the p-adic developments of p-adic

numbers. In particular, a noteworthy property from this representation of the

p-adic numbers is that the p-adic development of an ordinary non-negative

integer is always finite and corresponds to its usual integer base p decompo-

sition.

Proposition 3.3.10. The field Qp is not algebraically closed.

In view of the previous proposition, we consider naturally the algebraic

closure of Qp, which is denoted by Qp. The next proposition shows that the

absolute value | · |p on Qp extends to this algebraic closure.

Proposition 3.3.11. The p-adic absolute value | · |p on Qp extends to a

unique non-Archimedean absolute value N on Qp, i.e., there exists a unique

non-Archimedean absolute value N on Qp satisfying N(x) = |x|p whenever

x belongs to Qp.

Once again, we will denote the extended absolute value on Qp by | · |p.
The algebraic closure is not complete, however, as shown by the following

result.
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Proposition 3.3.12. There are Cauchy sequences in Qp that do not have

limit with respect to the p-adic absolute value. In other words, the field Qp

is not complete with respect to the p-adic absolute value.

Again, in view of this negative result, it is natural to consider the com-

pletion of this algebraic closure Qp.

Definition 3.3.13. The completion of Qp with respect to the p-adic absolute

value is denoted by Cp.

As previously, this new field Cp has a unique absolute value, still denoted

by | · |p, that restricts to the p-adic absolute value on Qp. Finally, the next

theorem, which is sometimes called the fundamental theorem of algebra for

p-adic numbers, shows that we have reached a complete algebraically closed

field.

Theorem 3.3.14. The field Cp is algebraically closed.

3.4. Some Material about Finitely Generated Abelian Groups

As in the previous section, we recall here some useful material for the

proof of Theorem 3.5.8 below. More details on this subject can be found, for

instance, in [BJN94] or in [Lan04].

Definition 3.4.1. A torsion Abelian group is an Abelian group such that

each of its elements has a finite order, that is, generates a finite subgroup.

Definition 3.4.2. A torsion-free Abelian group is an Abelian group such

that none of its elements, except the neutral element, has a finite order.

Lemma 3.4.3. Any finitely generated torsion Abelian group is finite.

Definition 3.4.4. Let G be an Abelian group and let (gi)i∈I be a family of

elements of G. If every x in G can be uniquely decomposed as x =
∑

i∈I xigi

with xi ∈ Z and xi = 0 for almost all i, then (gi)i∈I is said to be a basis of G.

A free Abelian group is an Abelian group that has a basis.

Lemma 3.4.5. Any free Abelian group is torsion-free.

Lemma 3.4.6. Every finitely generated free Abelian group is isomorphic

to Ze for some e ∈ N. In that case we say that e is the rank of the free

Abelian group.
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The next theorem is central in the study of finitely generated Abelian

groups. It will be used in the proof of Theorem 3.4.8. Note that this result

does not hold if the hypothesis “finitely generated” is removed from the

statement.

Theorem 3.4.7. Any finitely generated torsion-free Abelian group is a free

Abelian group.

The following theorem is usually referred to as the fundamental theorem

of finitely generated Abelian groups.

Theorem 3.4.8. Any finitely generated Abelian group G is the direct sum-

mand of a free Abelian group F and a torsion Abelian group T , that is,

G = F ⊕ T ∼= Ze ⊕ T, for some e ∈ N.

3.5. Linear Recurrence Sequences and Residue Classes

As it was observed in Remark 3.2.19, since our approach to solving Prob-

lem 2 requires the condition limm→+∞ NU (m) = +∞, it can only be ap-

plied to sequences which eventually satisfy a linear recurrence relation of

the kind (21) with gcd(a1, . . . , ak) = 1. In this section our aim is to de-

termine which linear recurrence sequences of integers U have the property

limm→+∞ NU (m) = +∞. To that end, in view of Proposition 3.2.17, it is

clear that we only have to focus on the behavior of NU (pv) for any prime p

dividing ak.

First, let us recall some characterizations and some stability results of lin-

ear recurrence sequences; for instance, see the books [GKP94, EvdPSW03,

BR09]. A part of the following theorem has already been given in Chapter 1;

see Proposition 1.5.10 on page 11.

Theorem 3.5.1. Let K be a field of characteristic zero, k be a positive in-

teger, and a1, . . . , ak be elements of K with ak 6= 0. The following assertions

are equivalent.

• The sequence (Ui)i≥0 ∈ KN satisfies the following strict linear re-

currence relation of length k:

∀i ∈ N, Ui+k = a1Ui+k−1 + · · ·+ akUi.

• The general term of the sequence (Ui)i≥0 ∈ KN is given by

∀i ∈ N, Ui = P1(i) αi
1 + · · ·+ Ps(i) αi

s,
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where α1, . . . , αs are the roots of the polynomial xk−a1x
k−1−· · ·−ak

with respective multiplicities m1, . . . ,ms and P1, . . . , Ps are polyno-

mials of degree less than m1, . . . ,ms respectively.

Note that, in the third point of this statement, the roots α1, . . . , αs and

the coefficients of the polynomials P1, . . . , Ps are contained in some extension

field of the coefficient field K.

Theorem 3.5.2. Let K be a field, k be a positive integer, and a1, . . . , ak be

elements of K. The following assertions are equivalent.

• The sequence (Ui)i≥0 ∈ KN satisfies the following linear recurrence

relation of length k:

∀i ∈ N, Ui+k = a1Ui+k−1 + · · · + akUi.

• The formal power series
∑

i≥0 Ui x
i ∈ K[[x]] is rational of the fol-

lowing form:

∑

i≥0

Ui x
i =

∑k−1
i=0 Ui x

i −∑i+j<k aiUj xi+j

1− a1x− · · · − akxk
. (22)

The following proposition is known as Fatou’s lemma.

Proposition 3.5.3. [Fat06] A rational power series S with integer coeffi-

cients can always be written as S = P/Q with P,Q ∈ Z[x] and Q(0) = 1.

Lemma 3.5.4. If a sequence (Ui)i≥0 of integers satisfies a linear recurrence

relation over Q, then it also satisfies a linear recurrence relation over Z. Fur-

thermore, the shortest linear recurrence relation over Q satisfied by (Ui)i≥0

has integer coefficients.

Definition 3.5.5. Let R be a ring and U = (Ui)i≥0 and V = (Vi)i≥0 be

sequences over R. The sum of U and V is the sequence (Ui + Vi)i≥0. For

all c ∈ R, the scalar multiplication by c of U is the sequence (cUi)i≥0. The

Hadamard product of U and V is the sequence (Ui Vi)i≥0. The Cauchy product

of U and V is the sequence (
∑i

j=0 Uj Vi−j)i≥0.

Proposition 3.5.6. Let R be a commutative ring. The class of linear re-

currence sequences over R (resp. strict linear recurrence sequences over R)

is closed under sum, scalar multiplication, the Hadamard product and the

Cauchy product.
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Throughout this section, we let U = (Ui)i≥0 be a sequence of integers

satisfying the following strict linear recurrence relation of length k:

∀i ∈ N, Ui+k = a1Ui+k−1 + · · ·+ akUi, with a1, . . . , ak ∈ Z, ak 6= 0. (23)

Note that this implies no loss of generality because, for any non-negative

integer ℓ, if U (ℓ) denotes the shifted sequence (Ui)i≥ℓ, then we have

lim
m→+∞

NU (m) = +∞⇔ lim
m→+∞

NU (ℓ)(m) = +∞.

Furthermore, we assume that U satisfies no shorter linear recurrence relation

with coefficients in Q. It is well known that this is equivalent to assume that k

is the greatest integer satisfying

det




U0 · · · Uk−1
...

...

Uk−1 · · · U2k−2


 6= 0.

This result is sometimes referred to as Kronecker’s theorem; for instance, see

[BR09]. We let

χU = xk − a1x
k−1 − · · · − ak

denote the associated characteristic polynomial and we define

PU = xkχU (1/x) = 1− a1x− · · · − akx
k.

Remark 3.5.7. Since we have assumed ak 6= 0, observe that if α1, . . . , αs are

the roots of χU , then their reciprocals 1/α1, . . . , 1/αs are exactly the roots

of PU . Note that, in particular, 0 cannot be a root of χU . Moreover, we have

assumed that the linear recurrence relation (23) satisfied by U has shortest

length k. Therefore the numerator and the denominator of the right-hand

side in (22) corresponding to the generating function
∑

i≥0 Ui xi of (Ui)i≥0

are relatively prime. Hence the poles of
∑

i≥0 Ui x
i are exactly the roots

of PU , that is, the reciprocals of the roots of χU .

Our goal is to prove the following result.

Theorem 3.5.8. Let p be a prime number. We have NU (pv) 6→ +∞ as

v → +∞ if and only if PU can be factorized as PU = A ·B with A,B ∈ Z[x]

satisfying:

(i) B ≡ 1 (mod p Z[x]);

(ii) A has no repeated roots and all its roots are roots of unity.

Furthermore, in that case, we have A(0) = B(0) = 1.

We note that one direction is fairly simple. Therefore, for the sake of

clarity, we have split the proof into two parts.
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First part of the proof of Theorem 3.5.8. Assume that PU has

such a factorization PU = A · B. Of course we must have A(0) = B(0) = 1.

From (ii) there is a natural number d such that A divides xd − 1. From

theorem 3.5.2 there exist polynomials Q and R such that we have

(xd − 1)
∑

i≥0

Ui xi =
(xd − 1) Q

PU
=

(xd − 1) Q

A ·B =
R

B
.

Note that Q is an integer polynomial, and since we have A ∈ Z[x] by hypoth-

esis, R must be an integer polynomial as well. Next, from (i), there exists

an integer polynomial C such that we have B = 1− p C. Hence we obtain

(xd − 1)
∑

i≥0

Ui xi =
R

1− p C
=
∑

i≥0

piR Ci.

In particular, this implies that, for any fixed non-negative integer v, the

series (xd − 1)
∑

i≥0 Ui xi is congruent to a polynomial modulo pv. This

means Ui+d ≡ Ui (mod pv) for all sufficiently large integers i. Therefore

there are at most d values that occur infinitely often modulo pv, that is, we

have NU (pv) ≤ d for every v ∈ N. �

Since the second part of the proof is much longer than the first one, we

have separated the following technical lemmas from it. The first two can

probably be considered to be well-known results in linear recurrence theory.

Nevertheless, we restate them here for the sake of being thorough.

Lemma 3.5.9. For all positive integers a and all b ∈ [[0, a−1]], the sequence

(Uai+b)i≥0 satisfies a strict linear recurrence relation over Z and the poles

of its generating function
∑

i≥0 Uai+b xi are ath powers of the poles of the

generating function
∑

i≥0 Ui xi of (Ui)i≥0. Furthermore, the shortest linear

recurrence relation over Q satisfied by (Uai+b)i≥0 has integer coefficients.

Proof. We know from Theorem 3.5.1 that we have

∀i ∈ N, Ui =
s∑

j=1

Pj(i)αi
j ,

where the αj’s are the roots of χU with multiplicities mj and the Pj ’s are

polynomials of degree at most mj − 1. Take a positive integer a and take

b ∈ [[0, a− 1]]. Then we obtain

∀i ∈ N, Uai+b =

s∑

j=1

Qj(i) (αa
j )i,

where Qj(i) = αb
j Pj(ai + b) is a polynomial of degree at most mj − 1.

Therefore, from Theorem 3.5.1, it follows that (Uai+b)i≥0 satisfies the linear
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recurrence relation of characteristic polynomial (x − αa
1)

m1 · · · (x − αa
s)

ms .

This polynomial can be rewritten as (x − βa
1 ) · · · (x − βa

k), where β1, . . . , βk

are the roots of χU , although they may be repeated. This polynomial has

its coefficients in Z since it is a symmetric polynomial in β1, . . . , βk and

χU = (x− α1)
m1 · · · (x− αs)

ms = (x− β1) · · · (x− βk)

has its coefficients in Z.4 From Theorems 3.5.1 and 3.5.2 the poles of∑
i≥0 Uai+b xi are contained in the set {1/αa

1 , . . . , 1/αa
s}. The second part

of the statement is a straightforward consequence of Lemma 3.5.4. �

Lemma 3.5.10. For all positive integers a and for each pole γ of
∑

i≥0 Ui x
i,

there exists b ∈ [[0, a−1]] such that γ is an ath root of a pole of
∑

i≥0 Uai+b xi.

Proof. Take a positive integer a. From Lemma 3.5.9 we know that, for

all b ∈ [[0, a − 1]], the shortest linear recurrence relation over Q satisfied by

(Uai+b)i≥0 has coefficients in Z. So, from Theorem 3.5.2, we have

∀b ∈ [[0, a− 1]],
∑

i≥0

Uai+b xi =
Q(b)

P
(b)
U

and
∑

i≥0

Uix
i =

Q

PU

for some relatively prime polynomials Q(b) and P
(b)
U in Z[x] and some poly-

nomial Q in Z[x] coprime to PU . Then we have

∀b ∈ [[0, a− 1]],
Q

PU
=

a−1∑

b=0

∑

i≥0

Uai+b xai+b

=

a−1∑

b=0

xb
∑

i≥0

Uai+b (xa)i

=
a−1∑

b=0

xb Q(b)(xa)

P
(b)
U (xa)

.

We obtain that PU divides
∏a−1

b=0 P
(b)
U (xa). So, if γ is a pole of

∑
i≥0 Ui xi,

i.e., a root of PU , then there exists b ∈ [[0, a − 1]] such that γa is a root

of P
(b)
U , that is, a pole of

∑
i≥0 Uai+b xi. This finishes the proof. �

Lemma 3.5.11. Suppose that the multiplicative subgroup of C×
p generated

by the poles of
∑

i≥0 Ui x
i is a free Abelian group. Take b1, . . . , bd ∈ Cp and

set Vi =
∏d

j=1(Ui − bj) for all i ∈ N. If the rational power series
∑

i≥0 Vi x
i

4It is a well-known result that a symmetric polynomial in A[β1, . . . , βk], where A is a

commutative ring, is a polynomial in A[e0, . . . , ek−1], where we define (x−β1) · · · (x−βk) =

xk − ek−1x
k−1 − · · · e0. For instance, see [Sti94, Lan04].



70 Chapter 3. A Decidability Problem

in Cp[[x]] has poles β1, . . . , βr in Cp satisfying |βj |p > 1 for all j ∈ [[1, r]],

then every pole γ ∈ Cp of
∑

i≥0 Ui x
i satisfies either |γ|p > 1 or γ = 1.

Proof. Let α1, . . . , αs ∈ Cp be the (distinct) roots of χU . Then, in view

of Remark 3.5.7, 1/α1, . . . , 1/αs are the poles of U :=
∑

i≥0 Ui xi. We first

claim that we have |αj |p ≤ 1 for all j ∈ [[1, s]]. To see this, note that, to be

a pole, each 1/αj must satisfy PU (1/αj) = 0, that is,

1− a1/αj − · · · − ak/αj
k = 0.

Consequently we have

∀j ∈ [[1, s]],
∣∣∣a1/αj + · · ·+ akαj

k
∣∣∣
p

= |1|p = 1.

Then, by the non-Archimedean property of the p-adic absolute value, for

all j ∈ [[1, s]], there exists ℓ ∈ [[1, k]] such that we have |aℓ/αj
ℓ|p ≥ 1 and so

(|αj |p)ℓ ≤ |aℓ|p. Since we have aℓ ∈ Z, it comes |aℓ|p ≤ 1, which was the first

claim. So the poles of U have p-adic absolute value greater than or equal

to 1. Without loss of generality, we may assume |α1|p = · · · = |αt|p = 1 for

some t ∈ [[0, s]] and |αj |p < 1 for all j ∈ [[t+1, s]]. If t is zero, then the lemma

holds. Therefore we may assume t ≥ 1.

Next, using Theorem 3.5.1, there exist polynomials P1, . . . , Ps ∈ Cp[x]

such that we have

∀i ∈ N, Ui =

s∑

j=1

Pj(i)αi
j .

Moreover, we have

∀i ∈ N, Vi =
d∏

j=1

(Ui − bj) = cdU
d
i + cd−1U

d−1
i + · · ·+ c0

for some c0, . . . , cd−1, cd ∈ Cp with cd = 1. Hence, by the multinomial

theorem, we obtain

∀i ∈ N, Vi =

d∑

j=0

cj

∑

j1+···+js=j
j1,...,js∈N

(
j

j1, . . . , js

) s∏

ℓ=1

(Pℓ(i)αi
ℓ)

jℓ

=

d∑

j=0

cj

∑

j1+···+js=j
j1,...,js∈N

(
j

j1, . . . , js

) s∏

ℓ=1

(Pℓ(i))
jℓ

(
s∏

ℓ=1

αjℓ

ℓ

)i

.

The sequence (Vi)i≥0 satisfies a strict linear recurrence relation over Cp by

Proposition 3.5.6. Since the roots of the characteristic polynomial associ-

ated with the shortest linear recurrence relation satisfied by (Vi)i≥0 are the
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reciprocals of the poles of the corresponding rational power series, from The-

orems 3.5.1 and 3.5.2, it follows that the set of poles of V :=
∑

i≥0 Vi xi is

contained in the set
{

s∏

ℓ=1

α−jℓ

ℓ | j1, . . . , js ∈ N, j1 + · · · + js ≤ d

}
.

From the assumptions the poles of V all have p-adic absolute values strictly

greater than 1. Note that
∣∣∣
∏s

ℓ=1 α−jℓ

ℓ

∣∣∣
p

=
∣∣∣
∏t

ℓ=1 α−jℓ

ℓ

∣∣∣
p

∣∣∣
∏s

ℓ=t+1 α−jℓ

ℓ

∣∣∣
p

> 1

holds if and only if we have jℓ > 0 for some ℓ ∈ [[t + 1, s]]. Therefore we

can conclude that the possible poles of V only supported by products on

α1, . . . , αt do not occur. So, for instance, α−d
1 is not a pole of V.

Let G denote the multiplicative subgroup of C×
p that is generated by

1/α1, . . . , 1/αt. By assumption, G is a subgroup of a finitely generated free

Abelian group. Hence we have G ∼= Ze for some e ∈ N. To conclude the

proof, it is enough to show e = 0 because, in that case, one can conclude

that the only possible pole γ of U such that |γ|p = 1 is 1. To see this,

suppose e > 0 and let γ1, . . . , γe be generators for a free Abelian group of

rank e. Note that we must have e ≤ t. Then we can write

∀j ∈ [[1, t]], αj =

e∏

i=1

γ
bi,j

i ,

where bi,j are integers, and these decompositions are unique. We relabel if

necessary so that we obtain

|b1,1| = max{|b1,j | | j ∈ [[1, t]]} > 0;

∀i ∈ [[2, e]], |bi,1| = max{|bi,j | | j ∈ [[1, t]] and ∀ℓ ∈ [[1, i − 1]], bℓ,j = bℓ,1}.

By construction, αd
1 cannot be written as a different word over α1, . . . , αt of

length at most d. Then the expression for Vi above has an occurrence of

cd (P1(i))
d (αd

1)
i

that cannot be canceled by any other pole, by our selection of α1. Conse-

quently, α−d
1 should be a pole of V which contradicts the conclusion of the

previous paragraph. So we have e = 0 and the lemma is proved. �

The following example illustrates the selection of α1 in the previous proof.

Example 3.5.12. We keep the same notation as in the proof of the previous

lemma. Suppose that U has 8 poles 1/α1, . . . , 1/α8 ∈ Cp having modulus 1

and that these poles generates a multiplicative subgroup that is isomorphic
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to Z3. Let γ1, γ2, γ3 be generators of this group. Assume

∀j ∈ [[1, 8]], αj =
3∏

i=1

γ
bi,j

i ,

where the bi,j’s are the integers given by the matrix

B = (bi,j)i∈[[1,3]]
j∈[[1,8]]

=



−9 −9 8 4 9 7 −9 2

4 3 0 −6 9 2 4 9

7 2 1 2 −1 5 6 0


 .

For instance, we have α1 = γ−9
1 γ4

2γ7
3 and α4 = γ4

1γ−6
2 γ2

3 . Since γ1, γ2, γ3

are generators, the equation αd
1 = αℓ1

1 · · ·αℓ8
8 is equivalent to the system of

equations

B (ℓ1, . . . , ℓ8)
t = (−9d, 4d, 7d)t,

where xt denotes the transposed vector of the vector x. Observe that two

columns of B cannot be equal because the poles 1/α1, . . . , 1/α8 are distinct.

We are looking for solutions (ℓ1, . . . , ℓ8) ∈ N8 satisfying ℓ1 + · · · + ℓ8 ≤ d.

Since we have

9 = |b1,1| = max{|b1,j | | j ∈ [[1, 8]]},
the first equation of this system implies ℓ3 = ℓ4 = ℓ6 = ℓ8 = 0. This is

because if ℓj > 0 holds for some j ∈ {3, 4, 6, 8}, then we would get

9d = |9ℓ1 + 9ℓ2 − 8ℓ3 − 4ℓ4 − 9ℓ5 − 7ℓ6 − 9ℓ7 − 2ℓ8| < 9(ℓ1 + · · ·+ ℓ8),

which is impossible. Hence we obtain ℓ1 + ℓ2 − ℓ5 + ℓ7 = d which, together

with the equation ℓ1 + ℓ2 + ℓ5 + ℓ7 ≤ d, implies ℓ5 = 0. Then, by the same

reasoning, since we have

4 = |b2,1| = max{|b2,j | | j ∈ [[1, 8]], b1,j = b1,1}
= max{|b2,j | | j ∈ {1, 2, 7}} = max{4, 3},

the second equation implies ℓ2 = 0. Finally, since we have

7 = |b3,1| = max{|b3,j | | j ∈ [[1, 8]], b1,j = b1,1, b2,j = b2,1}
= max{|b2,j | | j ∈ {1, 7}} = max{7, 6},

we get ℓ7 = 0 and ℓ1 = d using the third equation. This means that αd
1

cannot be written as another word over α1, . . . , α8 of length less than or

equal to d.

Lemma 3.5.13. Assume NU (pv) 6→ +∞ as v → +∞ and any pole γ of the

rational series
∑

i≥0 Ui x
i either satisfies |γ|p > 1 or is a root of unity. Then

the poles of
∑

i≥0 Ui xi that are roots of unity are simple.
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Proof. We first note that v 7→ NU (pv) is a non-decreasing function, i.e.,

for all v,w ∈ N, we have NU (pw) ≥ NU (pv) whenever w ≥ v. In particular,

since one has NU (pv) 6→ +∞, there are integers N and d such that, for all

integers v ≥ N , we have NU (pv) = d. Hence, for all integers v ≥ N , we can

pick integers a1,v, . . . , ad,v such that Ui ≡ a (mod pv) for infinitely many i

implies a ≡ aj,v (mod pv) for some j ∈ [[1, d]]. Since we have

{a1,w mod pv, . . . , ad,w mod pv} = {a1,v mod pv, . . . , ad,v mod pv}

for all integers v,w ≥ N satisfying w ≥ v, there is no loss of generality to

assume that in these conditions, we have

∀j ∈ [[1, d]], aj,w ≡ aj,v (mod pv).

It follows that, for each j ∈ [[1, d]], the integer sequence (aj,v)v≥N is Cauchy

in Zp. Hence, by Proposition 3.3.9, there exist b1, . . . , bd ∈ Zp such that we

have

∀j ∈ [[1, d]], aj,v
|·|p−−→ bj as v → +∞. (24)

Let α1, . . . , αs ∈ Cp be the distinct roots of χU . Then 1/α1, . . . , 1/αs

are the poles of U :=
∑

i≥0 Ui x
i; see Remark 3.5.7. By hypothesis, we may

assume that there exists t ∈ [[0, s]] such that α1, . . . , αt are roots of unity and

that, for all j ∈ [[t + 1, s]], we have |αj |p < 1. Then, from Theorem 3.5.1,

there exist polynomials P1, . . . , Ps ∈ Cp[x] such that we have

∀i ∈ N, Ui =

s∑

j=1

Pj(i)αi
j =

t∑

j=1

Pj(i)αi
j

︸ ︷︷ ︸
Ti:=

+

s∑

j=t+1

Pj(i)αi
j

︸ ︷︷ ︸
Wi:=

.

Since, for all j ∈ [[t+1, s]], we have |αj |p < 1 and since, for any polynomial Q

in Cp[x], the set {|Q(i)|p | i ∈ N} is bounded by a constant, we get

|Ui − Ti|p = |Wi|p → 0 as i→ +∞. (25)

Since α1, . . . , αt are roots of unity, there exists a positive integer a such that

we have αa
j = 1 for all j ∈ [[1, t]]. We define

∀b ∈ [[0, a− 1]], ∀i ∈ N, T
(b)
i = Tai+b.

Thus

T
(b)
i =

t∑

j=1

Pj(ai + b)αai+b
j =

t∑

j=1

αb
j Pj(ai + b), b = 0, . . . , a− 1,

are polynomials in i with coefficients in Cp. For all b ∈ [[0, a− 1]], we let Qb

denote this polynomial, that is, Qb(x) = T
(b)
x ∈ Cp[x].
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Choose ε > 0. By the definition of the bj’s, for all large enough integers i,

there exists ℓ(i) ∈ [[1, d]] such that we have |Ui − bℓ(i)|p < ε. In view of (25),

we obtain

|(Ti − b1) · · · (Ti − bd)|p ≤
d∏

j=1

(|Ti − Ui|p + |Ui − bℓ(i)|p + |bℓ(i) − bj |p)→ 0

as i→ +∞ because every factor is bounded by a constant and one tends to

zero. Consequently, since we have T
(b)
i = Qb(i) for all i ∈ N and b ∈ [[0, a−1]],

we obtain

∀b ∈ [[0, a− 1]], |(Qb(i)− b1) · · · (Qb(i)− bd)|p → 0 as i→ +∞.

For each b ∈ [[0, a− 1]], consider the polynomial Rb defined by

∀i ∈ N, Rb(i) = (Qb(i) − b1) · · · (Qb(i) − bd).

From the binomial theorem, for each positive integer i, we have

|Rb(i + pv)−Rb(i)|p ≤ Cp−v → 0 as v → +∞,

where C is the maximum of the p-adic absolute values of the coefficients of

the polynomial Rb. So, since we also have |Rb(i)|p → 0 as i → +∞, we

obtain that, for all integers i, we have

|Rb(i)|p ≤ |Rb(i) −Rb(i + pv)|p + |Rb(i + pv)|p → 0 as v → +∞.

We have thus shown that, for each b ∈ [[0, a−1]], the polynomial Rb vanishes

at all positive integers i. So each Qb is a constant polynomial since it takes

infinitely often the same value amongst b1, . . . , bd. It follows that Ti is purely

periodic with period a:

∀i ∈ N, Ti+a = Ti.

Consequently, since the p-adic absolute value in non-Archimedean and in

view of Remark 3.3.7, the rational series (xa−1)U has no pole on the closed

unit disc because we have

|Ui+a − Ui|p ≤ |Ti+a − Ti|p + |Wi+a −Wi|p → 0 as i→ +∞.

In particular, it has no pole on the unit circle. From the minimality as-

sumption on the length k of the linear recurrence relation satisfied by U ,

we have U = Q/PU with Q and PU relatively prime; see Remark 3.5.7. Let

m1, . . . ,mt denote the respective multiplicities of 1/α1, . . . , 1/αt as poles

of U. The corresponding factor (1−α1x)m1 · · · (1−αtx)mt of PU must divide

xa − 1 since the rational series (xa − 1)Q/PU has no pole on the unit circle.

Consequently, the multiplicities m1, . . . ,mt are all equal to 1. This concludes

the proof. �

Now, we come back to the proof of Theorem 3.5.8.
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Second part of the proof of Theorem 3.5.8. To do the other di-

rection is a little more work and we use p-adic methods. First, we define

b1, . . . , bd ∈ Zp satisfying (24) the same way as in the first part of the proof

of Lemma 3.5.13. We set

∀i ∈ N, Vi =
d∏

j=1

(Ui − bj).

We have Vi ∈ Zp for all i ∈ N. By construction, for any fixed non-negative in-

teger v, one has |Vi|p ≤ p−v for all sufficiently large integers i. Hence we have

|Vi|p → 0 as i → +∞. From Proposition 3.5.6 the sequence (Vi)i≥0 satisfies

a strict linear recurrence relation over Zp. Therefore, from Theorem 3.5.2,

the power series

V :=
∑

i≥0

Vix
i

is a rational power series in Qp[[x]]. Moreover, V converges on the closed unit

disc Zp since we have |Vi|p → 0, which is enough to guarantee convergence;

see Remark 3.3.7. Since V is a rational series and it converges on the unit

disc, its poles β1, . . . , βr ∈ Cp must satisfy |βj |p > 1 for all j ∈ [[1, r]].

To continue the proof, we will make use of Lemma 3.5.11. We note

that the statement of this lemma is very close to what we already have,

but it makes the additional assumption that the poles of U :=
∑

i≥0 Uix
i

generate a free Abelian multiplicative subgroup. In general, the poles of U

generate a finitely generated Abelian multiplicative subgroup of C×
p . From

the so-called fundamental theorem of finitely generated Abelian groups, that

is Theorem 3.4.8, this group is isomorphic to Ze⊗T , for some finite Abelian

group T and integer e ≥ 0.

Let us show how to get rid of the torsion group T to be able to invoke

Lemma 3.5.11. Set a = Card T . We may assume a ≥ 1. For any b ∈ [[0, a−1]],

instead of taking the sequence (Ui)i≥0, consider the sequence (Uai+b)i≥0. In

view of Lemma 3.5.9, the shortest linear recurrence relation satisfied by this

sequence has integer coefficients and the poles of its generating function U
(b)

are ath powers of the poles of U. Consequently, the poles of U
(b) generate

a finitely generated torsion-free Abelian group, which is necessarily a free

Abelian group by Theorem 3.4.7. By the same reasoning as in the proof of

Lemma 3.5.9, the generating function

V
(b) :=

∑

i≥0

Vai+b xi

is a rational power series over Zp and its poles are ath powers of the poles

β1, . . . , βr of V. Since the poles of V satisfy |βj |p > 1 for all j ∈ [[1, r]], we

obtain |βj
a|p = |βj |ap > 1 for all j ∈ [[1, r]].
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Now, we can invoke Lemma 3.5.11 applied to any sequence (Uai+b)i≥0

with b ∈ [[0, a − 1]]. We deduce that, for all b ∈ [[0, a − 1]], any pole γ of U
(b)

satisfies either |γ|p > 1 or γ = 1. In particular, each pole of U, which is an

ath root of a pole of U
(b) for some b ∈ [[0, a − 1]] by Lemma 3.5.10, is either

strictly greater than 1 in p-adic absolute value or a root of unity. Remember

that the poles of U are precisely the roots of PU ; see Remark 3.5.7. Hence

we factor

PU = (1− δ1x) · · · (1− δkx),

where 1/δ1, . . . , 1/δk ∈ Cp corresponds to the poles of U, although they may

be repeated. Let us factor PU as PU = A · B with

A =
∏

|δj |p=1
j∈[[1,k]]

(1− δjx) and B =
∏

|δj |p<1
j∈[[1,k]]

(1− δjx).

By assumption we have PU ∈ Z[x]. Moreover, if K is a splitting field of PU

over Q, then any automorphism of K must permute the set of the δj ’s with

|δj |p < 1, since the automorphism permutes the entire set of the δj ’s and it

must send roots of unity to roots of unity. From the fundamental theorem of

Galois theory, the rationals are exactly the elements in K that are fixed by

every automorphism of K. Thus B is a rational polynomial. Furthermore,

we have B(0) = 1. Note that, for n > 0, the coefficient of xn in B is given

by a sum of products of n elements in the set {δj | j ∈ [[1, k]], |δj |p < 1}. The

set of algebraic integers is a subring of Cp and the only rationals that are

algebraic integers are in fact integers. Since the δj ’s are algebraic integers,

we get that B is an integer polynomial. Moreover, since the p-adic absolute

value is non-Archimedean, the coefficient of xn in B, with n > 0, has p-adic

absolute value strictly less than 1. Note that an integer m satisfying |m|p < 1

is necessarily a multiple of p. Hence we obtain B ≡ 1 (mod pZ[x]).

Now, let us turn to the polynomial A. We have A(0) = 1 and A ∈ Z[x]

by the same reasoning as before. Moreover, the roots of A are roots of

unity. From Lemma 3.5.13 the poles of U that are roots of unity are simple.

Consequently, A has no repeated roots, which completes the proof. �

As it was stressed in the introduction of this section, we are now able to

check whether or not the number of values taken infinitely often by a linear

recurrence sequence modulo pv tends to infinity as v → +∞. Let us consider

the following example.

Example 3.5.14. Let us consider once again the linear recurrence sequence

U = (Ui)i≥0 given in [Fro97] and defined by Ui+4 = 3Ui+3 + 2Ui+2 + 3Ui

for all i ∈ N and Ui = i + 1 for all i ∈ [[0, 3]]. As shown in [Fro97], addition
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within this linear numeration system is not computable by a finite automa-

ton. Nevertheless, we can show NU (3v)→ +∞ as v → +∞ by applying the

previous theorem. We have PU = 1− 3x− 2x2 − 3x4 and it is easily verified

that this polynomial cannot be factorized as A · B with two factors satisfy-

ing the hypotheses of Theorem 3.5.8. This example shows that our decision

procedure given by Theorem 3.2.15 can take care of numeration systems not

handled by [ARS09, Ler05, Muc03].

Example 3.5.15. Consider a sequence U = (Ui)i≥0 satisfying the following

linear recurrence relation:

∀i ∈ N, Ui+5 = 6Ui+4 + 3Ui+3 − Ui+2 + 6Ui+1 + 3Ui.

With the above notation, we have χU = x5 − 6x4 − 3x3 + x2 − 6x− 3 and

PU = 1− 6x− 3x2 + x3 − 6x4 − 3x5 = (x3 + 1)︸ ︷︷ ︸
A

(−3x2 − 6x + 1)︸ ︷︷ ︸
B

.

With the initial conditions Ui = i + 1 for i ∈ [[0, 4]], the corresponding

sequence does not satisfy any shorter linear recurrence relation over Q since

we have

det




1 2 3 4 5

2 3 4 5 54

3 4 5 54 359

4 5 54 359 2344

5 54 359 2344 15129




= 8458240 6= 0.

Even if the greatest common divisor of the coefficients of the linear recurrence

relation is 1, since PU satisfies the assumptions of Theorem 3.5.8 for p = 3,

we obtain NU (3v) 6→ +∞ as v → +∞. The following table gives the first

values of the function v 7→ NU (3v).

v period NU (3v)

1 (1, 0, 1, 2, 0, 2) 3

2 (4, 0, 1, 5, 0, 8) 5

3 (22, 9, 19, 5, 18, 8) 6

4 (49, 63, 19, 32, 18, 62) 6

5 (211, 225, 19, 32, 18, 224) 6
...

...
...

3.6. A Decision Procedure for a Class of Abstract Numeration

Systems

We know that any ultimately periodic set of non-negative integers is S-

recognizable for any abstract numeration system S and that a DFA accepting

the set repS(X) of the S-representations in such a set X can effectively be
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obtained; see Theorem 1.7.9 on page 19. Then it makes sense to consider

the analogous to Problem 2 in the larger framework of abstract numeration

systems. Remember that abstract numeration systems are a generalization

of positional numeration systems U = (Ui)i≥0 for which N is U -recognizable.

Thus, in this section, we consider, with some extra hypotheses on the abstract

numeration system, the following decidability question.

Problem 3. Let

• S be an abstract numeration system;

• X be any S-recognizable set of non-negative integers, which is given

through a DFA accepting repS(X).

Is it decidable whether or not X is ultimately periodic, i.e., whether or not

X is a finite union of arithmetic progressions?

As shown by Proposition 1.7.6 on page 18, when computing the map

valS in an abstract numeration system S = (L,Σ, <), the different sequences

(uq(i))i≥0, for q ∈ QL, play the role of the single sequence (Ui)i≥0 defining

a positional numeration system as in Definition 1.6.1 on page 12. Moreover,

recall that the sequences (uq(i))i≥0 and (vq(i))i≥0 satisfy linear recurrence

relations with integer coefficients; see Proposition 1.5.7 on page 10.

We have then the following proposition analogous to Proposition 3.2.9.

Proposition 3.6.1. Let S = (L,Σ, <) be an abstract numeration system

such that all states q of the trim minimal automaton A = (Q,Σ, δ, q0, F )

of L satisfy

lim
i→+∞

uq(i) = +∞

and such that we have uL(i) > 0 for all i ∈ N. Let X ⊆ N be an ultimately

periodic set of period pX . Then any DFA accepting repS(X) has at least

⌈Nv(pX)/Card Q⌉ states, with v = (vL(i))i≥0.

Proof. Let aX be the preperiod of X. By hypothesis there exists a

minimal constant J > 0 such that, for all i ≥ J and all states q of the trim

minimal automaton of L, we have uq(i) ≥ pX . For any i ∈ N, consider the

word

wi = repS(vL(i))

which corresponds to the first word of length i + 1 in the genealogically

ordered language L. Consequently, for any integer i ≥ J − 1, the word wi

is factorizable as wi = xiyi with |yi| = J and we define qi = δL(q0, xi).

Note that each yi is the smallest word of length J accepted from qi. By

the definition of J for each integer i ≥ J − 1, there are at least pX words of
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length J leading from qi to a final state. We order them using the genealogical

order and we let

yi = yi,0 < yi,1 < · · · < yi,pX−1

denote the first pX of them. Note that we have

∀t ∈ [[0, pX − 1]], valS(xiyi,t) = valS(xiyi) + t = vL(i) + t.

The sequence v := (vL(i))i≥0 satisfies a linear recurrence relation over Z by

Proposition 1.5.7. Hence the sequence (vL(i) mod pX)i≥0 is ultimately peri-

odic and takes infinitely often N := Nv(pX) different values. Let h1, . . . , hN

be integers greater than J such that we have

∀i, j ∈ [[1, N ]], vL(hi) ≥ aX and (i 6= j ⇒ vL(hi) 6≡ vL(hj) (mod pX)).

In particular, we have

∀i ∈ [[1, N ]], repS(vL(hi)) = whi
= xhi

yhi
and qhi

= δL(q0, xhi
).

The elements in the set {qh1 , . . . , qhN
} can take only Card Q different values.

So at least σ := ⌈N/Card Q⌉ of them are the same. For the sake of simplicity,

assume that they are qh1, . . . , qhσ
. For all i, j ∈ [[1, σ]] and all t ∈ [[0, pX − 1]],

we thus have yhi,t = yhj ,t. By Lemma 3.2.6, for all distinct i, j in [[1, σ]],

there exists ti,j ∈ [[0, pX − 1]] such that we have either vL(hi) + ti,j ∈ X and

vL(hj) + ti,j 6∈ X, or vL(hi) + ti,j 6∈ X and vL(hj) + ti,j ∈ X. Therefore

the words xhi
and xhj

do not belong to the same equivalence class for the

Myhill-Nerode equivalence relation ∼repS(X). This can be shown by concate-

nating the word yhi,ti,j = yhj ,ti,j . Hence, from Definition 1.3.6 on page 6, the

minimal automaton of repS(X) has at least σ states. The conclusion easily

follows. �

Corollary 3.6.2. Let S = (L,Σ, <) be an abstract numeration system hav-

ing the same properties as in Proposition 3.6.1. Assume that the sequence

v = (vL(i))i≥0 satisfies

lim
m→+∞

Nv(m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that repS(X) is

accepted by a DFA with d states is bounded by the smallest non-negative

integer s such that, for all integers m ≥ s, we have Nv(m) > d CardQ.

Proposition 3.6.3. Let S = (L,Σ, <) be an abstract numeration system, let

A = (Q,Σ, δ, q0, F ) be the trim minimal automaton of L, and let X ⊆ N be an

ultimately periodic set of period pX and preperiod aX . Define uq = (uq(i))i≥0

and I = max{ιuq(pX) | q ∈ Q}. Then any DFA accepting repS(X) has at

least ⌈(| repS(aX − 1)| − I)/Card Q⌉ states.
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Proof. For all q ∈ QL, the sequence uq satisfies a linear recurrence rela-

tion over Z by Proposition 1.5.7. The sequences (uq(i) mod pX)i≥0 are thus

ultimately periodic and I is well defined. Now, define P = lcmq∈Q πuq(pX).

Let B = (R,Σ, λ, r0, G) be a DFA accepting repS(X). Our aim is to show

| repS(aX − 1)| ≤ CardR · CardQ + I.

If we have | repS(aX − 1)| ≤ Card R · Card Q, then we are done. Thus,

from now on, assume | repS(aX − 1)| > CardR · CardQ. By applying the

pumping lemma to the product automaton5 A× B, there exist finite words

x, y, z over Σ with y 6= ε, such that we have

repS(aX − 1) = xyz;

|xy| ≤ Card R · Card Q;

δ(q0, x) = δ(q0, xy);

λ(r0, x) = λ(r0, xy);

∀n ∈ N, xynz ∈ repS(X)⇔ xyz ∈ repS(X). (26)

Therefore it suffices to show |z| ≤ I. Proceed by contradiction and assume

that we have |z| > I. Using Proposition 1.7.6 on page 18 and the periodicity

of the sequences (uq(i) mod pX)i≥0, we obtain

valS(xypXP yz) ≡ valS(xyz) (mod pX). (27)

Let us give some extra details on how we derive identity (27). Set r = |x|,
s = |y|, and t = |z|. For all positive integers n, using Proposition 1.7.6

for w = xynz, we get |w| = r + ns + t and

valS(xynz) =
∑

q∈Q

(
r−1∑

i=0

βq,i(w)uq(|w| − i− 1)

+
r+s−1∑

i=r

βq,i(w)uq(|w| − i− 1) + · · ·+
r+ns−1∑

i=r+(n−1)s

βq,i(w)uq(|w| − i− 1)

+

r+ns+t−1∑

i=r+ns

βq,i(w)uq(|w| − i− 1)

)
,

5The product automaton A×B is defined as follows. For any state (q, r) in the set of

states Q × R, when reading a ∈ Σ, one reaches in A × B the state (δ(q, a), λ(r, a)). The

initial state is (q0, r0) and the set of final states is F × G. Roughly speaking, the product

automaton mimics the behavior of both automata A and B.
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where the first (resp. second, third) line corresponds, as explained below,

to the contribution of x (resp. yn, z). From the definition (4) of the coeffi-

cients βq,i(w) on page 18 for w = xynz with n ∈ N \ {0}, we obtain

βq,r+ℓs+j(w) = Card{a < w[r + ℓs + j] | δ(q0, w[0, r + ℓs + j − 1] a) = q}
= Card{a < y[j] | δ(q0, xyℓ(y[0, j − 1])a) = q}
= Card{a < y[j] | δ(q0, x(y[0, j − 1])a) = q}
= Card{a < w[r + j] | δ(q0, w[0, r + j − 1] a) = q}
= βq,r+j(w)

for all q ∈ Q, all ℓ ∈ [[0, n − 1]], and all j ∈ [[0, s − 1]]. Consequently, the

previous expansion becomes

valS(xynz) =
∑

q∈Q

( r−1∑

i=0

βq,i(w)uq(|w| − i− 1)

+

r+s−1∑

i=r

βq,i(w)

n−1∑

ℓ=0

uq(|w| − i− ℓs− 1)

+
r+ns+t−1∑

i=r+ns

βq,i(w)uq(|w| − i− 1)

)
.

Now, choose n = pXP +1. Hence we have |w| = r +pXPs+ s+ t. For q ∈ Q

and i ∈ [[r, r + s− 1]], we have

n−1∑

ℓ=0

uq(|w| − i− ℓs− 1) = uq(|w| − i− 1) +

pXP∑

ℓ=1

uq(|w| − i− ℓs− 1)

and the second term is congruent to 0 modulo pX by the definitions of P

and I since we are considering |z| = t > I. Consequently, we have

valS(xynz) ≡
∑

q∈Q

( r−1∑

i=0

βq,i(w)uq(|w| − i− 1)

+

r+s−1∑

i=r

βq,i(w)uq(|w| − i− 1)

+

r+ns+t−1∑

i=r+ns

βq,i(w)uq(|w| − i− 1)

)
(mod pX).

By the same reasoning as previously, observe that, for all j ∈ [[0, t − 1]], we

have βq,r+ns+j(xynz) = βq,r+s+j(xyz). Then we easily derive (27).

Now, we make use of the minimality of aX to obtain a contradiction.

Assume aX − 1 ∈ X, the other case being similar. Therefore aX +npX− 1 is

not in X for all positive integers n. From (26) we obtain xypXP yz ∈ repS(X)



82 Chapter 3. A Decidability Problem

but from (27) this word represents a number of the kind aX + npX − 1 with

n ∈ N \ {0}, which cannot belong to X. This completes the proof. �

Theorem 3.6.4. Let S = (L,Σ, <) be an abstract numeration system such

that all states q of the trim minimal automaton of L satisfy

lim
i→+∞

uq(i) = +∞

and such that we have uL(i) > 0 for all i ∈ N. Moreover, assume

lim
m→+∞

Nv(m) = +∞,

with v = (vL(i))i≥0. Then it is decidable whether or not an S-recognizable

set is ultimately periodic.

Proof. This proof is essentially the same as the one of Theorem 3.2.15.

Let A = (Q,Σ, δ, q0, F ) be the trim minimal automaton of L. Then consider

an S-recognizable set X ⊆ N given by a DFA with d states. The sequence

v := (vL(i))i≥0 ultimately satisfies a linear recurrence relation of the kind

(21) having ak 6= 0 as last coefficient. Moreover, it is an increasing sequence,

since we have uL(i) > 0 for all i ∈ N. Let the prime decomposition of |ak|
be |ak| = pu1

1 · · · pur
r with u1, . . . , ur > 0.

Assume that X is periodic with period

pX = pv1
1 · · · pvr

r c

with v1, . . . , vr, c ∈ N and gcd(ak, c) = 1. From Proposition 3.6.1 we ob-

tain Nv(pX) ≤ dCard Q. Therefore, by using Remark 3.2.13, we obtain

Nv(c) ≤ (dCard Q)k and Nv(p
vj

j ) ≤ (dCard Q)k for all j ∈ [[1, r]]. We have

exactly the same reasoning as in the proof of Theorem 3.2.15 to find upper

bounds on c and on the exponents vj , for j ∈ [[1, r]]. Hence, if X is ulti-

mately periodic, then its period pX is bounded by a constant P that can

effectively be estimated. Now, define uq := (uq(i))i≥0 for all q ∈ Q and

I(p) = max{ιuq(p) | q ∈ Q} for all p ∈ [[1, P ]]. Then, using Proposition 3.6.3,

the admissible preperiods aX for X to be ultimately periodic must satisfy

| repS(aX − 1)| ≤ dCard Q + max{I(p) | p ∈ [[1, P ]]}.
Since m 7→ | repS(m)| is a non-decreasing map and the quantities I(p) can

be effectively computed for any positive integer p, the latter observation

provides a computable bound on the preperiod aX of X.

Consequently the sets of admissible periods and preperiods we have to

check are finite. Thanks to Theorem 1.7.9 on page 19, we are able to build

an automaton for each ultimately periodic set corresponding to a pair of ad-

missible preperiods and periods. Then we only have to compare the accepted

languages with repS(X). This finishes the proof. �
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Example 3.6.5. Consider the abstract numeration system defined in Ex-

ample 1.7.5 once again: S = ({a, ab}∗ ∪ {c, cd}∗, {a, b, c, d}, a < b < c < d).

The trim minimal automaton of the numeration language is depicted in Fig-

ure 3.1. Remember from Example 1.7.5 that there is no positional numer-

a

a

b

a

c

c

d

c

Figure 3.1. The trim minimal automaton of {a, ab}∗ ∪ {c, cd}∗.

ation system which corresponds to this abstract numeration system. More-

over, it was shown in Example 1.5.8 that the numeration language L satisfies

vL(i + 3) = 2vL(i + 2)− vL(i) for all i ∈ N. Then, using Proposition 3.2.17,

it is clear that S satisfies all the assumptions of the previous theorem.

3.7. Connection with the HD0L Periodicity Problem

In this last section we show how Theorem 3.6.4 can be used to decide

particular instances of the HD0L periodicity problem. First, let us define

what is a HD0L system.

Definition 3.7.1. A D0L system is a triple G = (∆, f, w) where

• ∆ is an alphabet;

• f : ∆∗ → ∆∗ is a morphism;

• w is a finite word over ∆.

Definition 3.7.2. A HD0L system is a 5-tuple G = (∆,Γ, f, g, w) where

• (∆, f, w) is a D0L system;

• Γ is an alphabet;

• g : ∆∗ → Γ∗ is a morphism.

Let G = (∆,Γ, f, g, w) be a HD0L system. If w is a prefix of f(w)

and if g(fω(w)) is an infinite word over Γ, where fω(w) denotes the limit

limn→+∞ fn(w), then we define the infinite word (or ω-word) generated by G

to be

ω(G) = g(fω(w)).

The question is to decide whether or not the infinite word ω(G) is ultimately

periodic. This problem is called the HD0L periodicity problem. From [HR04]

we know that we may assume that w is a letter. Furthermore, it is well

known [Cob72, Pan83, AS03] that we can assume that f is a non-erasing
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morphism and g is a coding, that is, f(a) 6= ε for all a ∈ ∆ and g(∆) ⊆ Γ. In

[HR04] J. Honkala and M. Rigo showed that the HD0L periodicity problem

is equivalent to Problem 3. Also, see Theorem 4.1.15 below.

Thanks to [RM02], given a HD0L system G, one can canonically build

an abstract numeration system S = (L,Σ, <) and a DFAO

M = (Q,Σ, δ, q0,Γ, τ)

such that we have

∀n ∈ N, ω(G)[n] = τ(δ(q0, repS(n))).

Such a word is said to be an S-automatic word. This notion will be more

precisely studied in the next chapter. From [Rig00] we know that the sets

Xa = {n ∈ N | ω(G)[n] = a}, for a ∈ Γ,

are S-recognizable. Hence, if S satisfies the assumptions of Theorem 3.6.4,

then one can decide whether or not these sets Xa are ultimately periodic.

Then, observe that the infinite word ω(G) is ultimately periodic if and only

if, for each a ∈ Γ, the set of non-negative integers Xa is ultimately periodic.

Therefore, if G is such that the associated abstract numeration system S

satisfies the assumptions of Theorem 3.6.4, then one can decide whether or

not ω(G) is ultimately periodic.

Example 3.7.3. Consider the HD0L system G = ({a, b, c}, {a, b}, f, g, a)

where the morphisms f and g are defined by

f :





a 7→ ab

b 7→ ac

c 7→ b

and g :





a 7→ a

b 7→ b

c 7→ a.

The canonically associated DFAO is depicted in Figure 3.2. The details of

such a construction are given in Chapter 4; see Definition 4.6.2. Thus this

example should probably be read again in the light of the further develop-

ments of Chapter 4. Let M be the language accepted by the corresponding

a b c

a b a

0
1

0

1

0

Figure 3.2. The DFAO associated with G.

DFA where all states are final. Then the canonically associated abstract

numeration system is S = (L, {0, 1}, 0 < 1) with

L = M \ 0{0, 1}∗ = {ε, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, . . .}.
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We compute

vL(0) = 1, vL(1) = 2, vL(2) = 4,

∀i ∈ N, vL(i + 3) = vL(i + 2) + 2vL(i + 1)− vL(i).

From Proposition 3.2.17 it follows limm→+∞ Nv(m) = +∞. Hence we easily

verify that the hypotheses of Theorem 3.6.4 are all satisfied. Thus we can

decide whether or not

ω(G) = g(fω(a)) = abaaabbabaaaaabaaabbabbabaa · · ·
is ultimately periodic.





CHAPTER 4

Multidimensional S-Automatic Words and

Morphisms

4.1. Introduction

In this chapter, in the vein of A. Maes’s doctoral dissertation [Mae99b],

we study the relationship between infinite words generated by finite automata

and infinite words generated by morphisms but extended to the framework

of multidimensional infinite words. The content of this chapter can be found

in [CKR, CKR09].

Nowadays, the notion of automatic sequences is widely known. One of

the many interests of these sequences, or infinite words, is that they link

together automata theory and number theory. Indeed, automatic sequences

are a powerful tool to obtain results in number theory using methods from

automata theory. The reader interested in these automatic sequences and

their generalizations can find more details in [AS03].

Definition 4.1.1. Let b ≥ 2 be an integer. An infinite word x over an alpha-

bet Γ is b-automatic if, for all non-negative integers n, its (n+1)st letter x[n]

is obtained by “feeding” a DFAO A = (Q, [[0, b − 1]], δ, q0,Γ, τ) with the Ub-

representation of n:

∀n ∈ N, τ(δ(q0, repUb
(n))) = x[n].

In his seminal paper [Cob72] A. Cobham proved the following charac-

terization of b-automatic infinite words. Before stating it, let us recall some

basic definitions.

Definition 4.1.2. If µ is a morphism on an alphabet Σ and a is a letter in Σ

such that the image µ(a) begins with a, then we say that µ is prolongable on a.

If a morphism µ is prolongable on a letter a, then the limit limn→+∞ µn(a)

is well defined. As usual, we denote this limit by µω(a). Furthermore, this

limit word is a fixed point of µ. Observe that it is an infinite word if and

only if there is a letter b occurring in µ(a) that satisfies µn(b) 6= ε for all

non-negative integers n.

87
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Definition 4.1.3. An infinite word is said to be pure morphic if it can be

written as µω(a) for some morphism µ prolongable on a letter a. It is said to

be morphic if it the image under a coding, i.e., a letter-to-letter morphism,

of some pure morphic word.

Definition 4.1.4. Let Σ and ∆ be two alphabets and b be a positive integer.

A morphism µ : Σ∗ → ∆∗ is said to be b-uniform if the images of the letters

in Σ are all words of length b.

Theorem 4.1.5. [Cob72] Let b ≥ 2 be an integer. An infinite word is b-

automatic if and only if it is the image under a coding of a fixed point of a

b-uniform morphism.

Let us illustrate Cobham’s characterization thanks to the following two

examples.

Example 4.1.6. Consider the 2-automatic word x generated by the DFAO

depicted in Figure 4.1. The beginning of the computation of x is given in

the next table.

a b c

1 0 1

0

1

1

0

0, 1

Figure 4.1. A DFAO generating x.

n 0 1 2 3 4 5 6 7 8 · · ·
repU2

(n) ε 1 10 11 100 101 110 111 1000 · · ·
a · repU2

(n) a c b b c a c a b · · ·
x 1 1 0 0 1 1 1 1 0 · · ·

We want to build a 2-uniform morphism f prolongable on some letter α and

a coding g satisfying g(fω(α)) = x. To that end, we observe that the DFAO

depicted in Figure 4.2 generates the same 2-automatic word and has a loop

of label 0 at the initial state. The images under the morphism f associated

with this DFAO are all of length 2 and are defined by f(σ)[i] = σ · i for

i = 0, 1. The coding g mimics the output function. Thus we have

f :





α 7→ αc

a 7→ bc

b 7→ ca

c 7→ bb

and g :





α 7→ 1

a 7→ 1

b 7→ 0

c 7→ 1

.
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α c b a

1 101

0

1 0

1

1

0

0, 1

Figure 4.2. Another DFAO generating x.

Now, it is easily verified that we have g(fω(α)) = x, as desired.

Example 4.1.7. Consider the 2-uniform morphism f prolongable on the

letter a and the coding g defined by

f :





a 7→ ab

b 7→ ac

c 7→ cb

and g :





a 7→ 1

b 7→ 1

c 7→ 0

.

We have g(fω(a)) = 11101101111001101110 · · · . We associate the DFAO

depicted in Figure 4.3 in the following way. The states are the letters a, b, c

and a is the initial state. The alphabet is {0, 1}. The output function is g.

Transitions are defined by σ · i = f(σ)[i] for i = 0, 1. The 2-automatic word

a b c

1 1 0

0
1

0

1

1

0

Figure 4.3. The DFAO associated with f and g.

generated by this DFAO is g(fω(a)); see the following table.

n 0 1 2 3 4 5 6 7 8 · · ·
repU2

(n) ε 1 10 11 100 101 110 111 1000 · · ·
a · repU2

(n) a b a c a b c b a · · ·
g(fω(a)) 1 1 1 0 1 1 0 1 1 · · ·

An extension of Theorem 4.1.5 obtained by O. Salon deals with a multi-

dimensional setting and an integer base b numeration system. In this frame-

work images of letters under a morphism are hypercubes of constant size b.

To work with d-tuples of words of the same length, we introduce the following

map.1

1We already used this map, in an informal way, on page 23 in the introduction of

Chapter 2.
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Definition 4.1.8. Let d be a positive integer. If w(1), . . . , w(d) are finite

words over an alphabet Σ, the padding map (·)# : (Σ∗)d → ((Σ ∪ {#})d)∗ is

defined by

(w(1), . . . , w(d))# = (#m−|w(1)|w(1), . . . ,#m−|w(d)|w(d)),

where we set m = max{|w(1)|, . . . , |w(d)|}. In what follows we will use the

notation Σ# as a shorthand for the alphabet Σ ∪ {#}.

Example 4.1.9. We have (ab, bbaa)# = (##ab, bbaa).

Note that, with the same notation as in the previous definition, a d-tuple

(w(1), . . . , w(d))# in ((Σ#)d)
∗

never begins with (#, . . . ,#).

Definition 4.1.10. Let d be a positive integer. A d-dimensional infinite

word x over an alphabet Γ is a map from Nd to Γ, that is, x : Nd → Γ.

We use notation such as xn1,...,nd
or x[n1, . . . , nd] to denote the value of x at

(n1, . . . , nd).

The following definition was given in [Sal87a] except that the words were

read from right to left.

Definition 4.1.11. Let b ≥ 2 and d ≥ 1 be integers. A d-dimensional

infinite word x over an alphabet Γ is said to be b-automatic if there exists a

DFAO A = (Q, [[0, b − 1]]d, δ, q0,Γ, τ) such that we have

∀n1, . . . , nd ∈ N, τ(δ(q0, (repUb
(n1), . . . , repUb

(nd))
0)) = xn1,...,nd

.

Theorem 4.1.12. [Sal87a, Sal87b] Let b ≥ 2 and d ≥ 1 be integers. A

d-dimensional infinite word is b-automatic if and only if it is the image under

a coding of a fixed point of a b-uniform d-dimensional morphism.

We give an example from [Sal87a] illustrating the previous notions.

Example 4.1.13. The Thue-Morse word is the fixed point t beginning

with 0 of the 2-uniform morphism µ over {0, 1} defined by µ(0) = 01 and

µ(1) = 10, that is, t = µω(0) = 0110100110010110 · · · . This word t is 2-

automatic from Theorem 4.1.5. Now, define a bidimensional infinite word u

by um,n = t[m + n] for all m,n ∈ N. This word is depicted in Figure 4.4.

First, we determine a 2-uniform bidimensional morphism and a coding which

generate u and second, we exhibit an DFAO reading pairs of letters which

produces u. Let Σ denote the alphabet {(0, 0), (0, 1), (1, 0), (1, 1)}. It is clear

that u is generated by the morphism f over the alphabet Σ prolongable
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0 1 2 3 4 5 6 7 8 · · ·
0 0 1 1 0 1 0 0 1 1 · · ·
1 1 1 0 1 0 0 1 1 0

2 1 0 1 0 0 1 1 0 0

3 0 1 0 0 1 1 0 0 1

4 1 0 0 1 1 0 0 1 0

5 0 0 1 1 0 0 1 0 1

6 0 1 1 0 0 1 0 1 1

7 1 1 0 0 1 0 1 1 0

8 1 0 0 1 0 1 1 0 1
...

...
. . .

Figure 4.4. A bidimensional word built on the Thue-Morse word.

on (0, 1) defined by

(0, 1) 7→ (0, 1) (1, 1)

(1, 1) (1, 0)
, (1, 1) 7→ (1, 0) (0, 1)

(0, 1) (1, 0)
,

(1, 0) 7→ (1, 0) (0, 0)

(0, 0) (0, 1)
, (0, 0) 7→ (0, 1) (1, 0)

(1, 0) (0, 1)
,

and the coding g over the alphabet Σ defined by

g :

{
(0, 1), (0, 0) 7→ 0

(1, 1), (1, 0) 7→ 1
.

Indeed, in u, each row corresponds to the shifted previous row. Therefore,

in the fixed point fω((0, 1)), the second components of the pairs occurring

in a row anticipate the first components occurring in the next row. By ap-

plying the coding g, we then obtain g(fω((0, 1))) = u. Next, we easily check

that the DFAO over Σ depicted in Figure 4.5 generates u as a 2-automatic

bidimensional infinite word. For instance, the letter 1 at position (3, 5) is

computed as

A · (11, 101)0 = A · (011, 101) = B · (11, 01) = A · (1, 1) = D

and the output corresponding to the state D is 1.

Another possible extension of Theorem 4.1.5 in the unidimensional set-

ting is to relax the terms of the hypothesis on the uniformity of the morphism.

In this case, Cobham’s result still holds but integer base numeration systems

are replaced by abstract numeration systems.
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A B

C D

0 1

0 1

(0, 0)
(0, 1), (1, 0)

(1, 1)

(0, 1), (1, 0)

(0, 0), (1, 1)

(0, 0)

(0, 1), (1, 0)

(1, 1)

(0, 0), (1, 1)

(0, 1), (1, 0)

Figure 4.5. A DFAO generating u.

Definition 4.1.14. Let S be an abstract numeration system. An infinite

word x over an alphabet Γ is S-automatic if, for all non-negative integers n,

its (n+1)st letter x[n] is obtained by “feeding” a DFAO A = (Q,Σ, δ, q0,Γ, τ)

with the S-representation of n:

∀n ∈ N, τ(δ(q0, repS(n))) = x[n].

Theorem 4.1.15. [Rig00, RM02] An infinite word is S-automatic for

some abstract numeration system S if and only if it is morphic.

From Remark 1.7.14 on page 20 we know that the set of squares is S-

recognizable for some abstract numeration system S. This implies that its

characteristic word is S-automatic, as shown by the following example.

Example 4.1.16. Consider once again the abstract numeration system

S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c)

of Remark 1.7.14. Since the set X = {n2 | n ∈ N} of squares is S-

recognizable, its characteristic word, i.e., the infinite word

χX = 11001000010000001000 · · ·

over {0, 1} defined by χX [n] = 1 for n ∈ X and χX [n] = 0 for n 6∈ X, is S-

automatic. Indeed, it is computed by the DFAO depicted in Figure 4.6. This

DFAO is built on the trim minimal automaton of the numeration language.

Since we have repS(X) = a∗, the output function τ is simply defined by

τ(a) = 1 and τ(b) = τ(c) = 0. This word χX is also morphic because it

is generated by the morphism f iterated from α and the coding g that are
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AB C

10 0

a

b

b

c

c

Figure 4.6. A DFAO generating the squares.

defined by

f :





α 7→ αABB

A 7→ ABB

B 7→ B

and g :





α 7→ 1

A 7→ 1

B 7→ 0

.

Note that this morphism f is not directly associated with the DFAO of

Figure 4.6. Actually, to associate a morphism with this DFAO, we have to

add a sink state D to make a complete graph. We then obtain the morphism r

over the 4-letter alphabet {A,B,C,D} defined by

r : β 7→ βABC, A 7→ ABC, B 7→ DBD, C 7→ DDC, D 7→ DDD.

Next, we have to erase all occurrences of the letter D (which correspond

to words not belonging to the numeration language) in the infinite fixed

point rω(α). This process does not give a real coding since it produces a

morphism s which maps D to the empty word:

s : β 7→ 1, A 7→ 1, B 7→ 0, C 7→ 0, D 7→ ε.

However, the generated word s(rω(β)) is morphic (for instance, see [AS03,

Theorem 7.7.4]), i.e., we can build a morphism µ prolongable on some letter γ

and a coding ν generating the same word:

ν(µω(γ)) = s(rω(β)) = g(fω(α)) = χX .

The mentioned result from [AS03] will be illustrated in Example 4.5.2 below.

The aim of this chapter is to extend Theorem 4.1.15 to a multidimensional

setting. The notion of an S-automatic multidimensional word is simple to

define. However, difficulties occur when one has to iterate a morphism under

which the images of the letters are no longer hypercubes of constant size.

It is worth mentioning the work of [ABS04], where a different notion of

bidimensional morphisms is introduced in connection with problems arising

in discrete geometry. Also, see [Pey87] for questions related to frequencies of

letters in bidimensional automatic words and [NR07] for their generalization

to the S-automatic case. In [DFNR] bidimensional S-automatic sequences

turn out to be useful in the context of combinatorial game theory. Indeed,

they play a central role in finding new characterizations of P -positions for
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the famous Wythoff game and some of its variations. Another motivation

for studying the set of multidimensional S-automatic words w over {0, 1} is

to consider them to be characteristic words of subsets Pw of Nd, to extend

the Presburger structure 〈N;<〉 by the corresponding predicates Pw and to

study the decidability of the corresponding first-order theory. In addition,

see [CT02] for the relationship with second-order monadic theory.

The organization of this chapter is given below. Our main result —

Theorem 4.6.1— can be precisely stated as follows.

Theorem. Let d ≥ 1 be an integer. The d-dimensional infinite word x is S-

automatic for some abstract numeration system S = (L,Σ, <) with ε ∈ L if

and only if it is the image under a coding of a shape-symmetric pure morphic

word.

Our first task is to present the different concepts occurring in this state-

ment. In Sections 4.2 and 4.3 we define multidimensional S-automatic words

and multidimensional morphisms respectively. Then, in Section 4.4, we

define the notion of a shape-symmetric word as originally introduced by

A. Maes.

In particular, to prove our main result, we have to handle erasing mor-

phisms in a multidimensional setting. To that aim, we need to generalize

the well-known result (see [AS03, Theorem 7.7.4]) that states that a word

obtained by erasing from a morphic word over an alphabet Σ all occurrences

of the letters in a subset of Σ is either finite or morphic. In Section 4.5,

first, we give an example illustrating this result in the unidimensional case.

Second, we define how to erase a hyperplane from a d-dimensional array.

Finally, in Section 4.6, we prove our main result. Throughout the proof,

we strive to clarify the concepts under consideration with a number of ex-

amples.

4.2. Multidimensional S-Automatic Words

The following notion was introduced in [RM02] as a natural generaliza-

tion of the multidimensional b-automatic sequences introduced in [Sal87a,

Sal87b]; see Definition 4.1.11 above.

Definition 4.2.1. Let d be a positive integer. A d-dimensional infinite word

x over an alphabet Γ is said to be S-automatic for some abstract numeration

system S = (L,Σ, <) if there exists a DFAO A = (Q, (Σ#)d, δ, q0,Γ, τ) such

that we have

∀n1, . . . , nd ∈ N, τ(δ(q0, (repS(n1), . . . , repS(nd))
#)) = xn1,...,nd

.
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Example 4.2.2. Consider the abstract numeration system

S = ({a, ba}∗{ε, b}, {a, b}, a < b)

and the DFAO depicted in Figure 4.7. The first few words in the numeration

p q

r s

(#, a), (a, a),
(a, b) (#, b), (a,#), (b,#)

(b, a), (b, b)(#, a), (#, b), (b, b)

(a,#), (b,#), (b, a)
(a, a), (a, b)

(a, b), (b,#),
(b, a)

(#, a), (#, b), (a,#), (b, b)

(a, a), (b, b)

(a, b), (b,#),
(b, a)

(#, a), (#, b), (a,#)

(a, a)

Figure 4.7. A deterministic finite automaton with output.

language enumerated with respect to the genealogical order are

ε, a, b, aa, ab, ba, aaa, aab, aba, baa, bab, aaaa.

We do not consider the transitions on input (#,#) since this automaton is fed

with entries of the form (repS(n1), repS(n2))
#. If the outputs of the DFAO

are considered to be the states themselves, then we produce the bidimensional

S-automatic word given in Figure 4.8.

ε a b a
a

a
b

ba a
a
a

a
a
b

· · ·
ε p p q p q p p q · · ·
a q p p p p s p p

b q s s s s q s s

aa p s q p p p p p

ab q q s s s s s s

ba p s q q s q q s

aaa q p p q s s p p

aab q s s s r q s s
...

...
. . .

Figure 4.8. A bidimensional S-automatic word.
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4.3. Multidimensional Morphisms

Let d be a positive integer fixed throughout this section.

Notation. For all d-tuples n in Nd and all i ∈ [[1, d]], we let ni denote the ith

component of n and nbi denote the (d − 1)-tuple (n1, . . . , ni−1, ni+1, . . . , nd)

in Nd−1. Let m and n be two d-tuples in Nd. We write m ≤ n (resp. m < n)

if we have mi ≤ ni (resp. mi < ni) for all i ∈ [[1, d]]. In particular, we set

0 = (0, . . . , 0) and 1 = (1, . . . , 1).

Definition 4.3.1. A d-dimensional array over an alphabet Σ is a map

x : [[0, s1 − 1]] × · · · × [[0, sd − 1]] → Σ, where s1, . . . , sd are positive integers

or +∞. As a rule, we set [[0, s − 1]] = N for s = +∞. Let x be such a d-

dimensional array. If the d-tuple n = (n1, . . . , nd) belongs to the domain of x,

then we use the notation xn1,...,nd
, xn, x[n1, . . . , nd], or x[n] indifferently. The

shape of x, denoted by |x|, is the d-tuple s = (s1, . . . , sd) in (N∪{+∞})d. We

extend the definition of d-dimensional arrays to empty d-dimensional arrays,

which we will denote by εs, i.e., to d-dimensional arrays of shapes s ∈ Nd

having at least a zero component. If, for all i ∈ [[1, d]], we have |x|i < +∞,

then x is said to be bounded. We let Bd(Σ) denote the set of d-dimensional

bounded arrays over Σ. If x is bounded of shape |x| = (c, c, . . . , c) for some

c ∈ N, then it is said to be a square of size c.

A d-dimensional word is a d-dimensional array of shape (+∞, . . . ,+∞),

that is, infinite in all directions.

Definition 4.3.2. Let x be a d-dimensional array. If s, t are d-tuples in Nd

satisfying 0 ≤ s ≤ t ≤ |x| − 1, then x[s, t] is said to be a factor of x and is

defined to be the array y of shape t− s + 1 given by y[n] = x[n + s] for all

n ∈ Nd satisfying n ≤ t− s. For any u ∈ Nd, we let Factu(x) denote the set

of factors of x of shape u.

Note that, for d = 1, the notation |x| (resp. x[n], x[m,n] for n,m ∈ N

with n ≤ m) is compatible with that used to denote the length (resp. the

(n+1)st letter, the factor x[m] · · · x[n]) of a (unidimensional) word. Also note

that, in the unidimensional setting, there is only one empty word ε0 = ε0 = ε,

since, of course, there is only one component that can vanish.

Example 4.3.3. Consider the bidimensional bounded array

x =
a b a a b

c d b c d
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of shape (2, 5). We have

x[(0, 0), (1, 1)] =
a b

c d
and x[(0, 2), (1, 4)] =

a a b

b c d
.

For instance, we have Fact1(x) = {a, b, c, d} and

Fact(2,3)(x) =

{
a b a

c d b
,

b a a

d b c
,

a a b

b c d

}
.

Now, we would like to concatenate arrays. Note that this is not always

possible. To do this safely, we need the following definition.

Definition 4.3.4. Let x, y be two d-dimensional arrays. If we have

|x|bi = |y|bi = (s1, . . . , si−1, si+1, . . . , sd) > 0

for some i ∈ [[1, d]], then we define the concatenation of x and y in the

direction i to be the d-dimensional array x⊙i y of shape

(s1, . . . , si−1, |x|i + |y|i, si+1, . . . , sd)

satisfying

x = (x⊙i y)[0, |x| − 1];

y = (x⊙i y)[(0, . . . , 0, |x|i, 0, . . . , 0), (0, . . . , 0, |x|i, 0, . . . , 0) + |y| − 1].

Let εs be a d-dimensional empty word of shape

s = (s1, . . . , si−1, 0, si+1, . . . , sd) ≥ 0

having a zero component at the ith position for some i ∈ [[1, d]]. We extend

the definition to the concatenation of εs and any d-dimensional word x of

shape

(s1, . . . , si−1, si, si+1, . . . , sd), for si ∈ N,

in the direction i by

εs ⊙i x = x⊙i εs = x.

In particular, we have εs ⊙i εs = εs.

Example 4.3.5. Consider the two bidimensional arrays

x =
a b

c d
and y =

a a b

b c d

of shape |x| = (2, 2) and |y| = (2, 3) respectively. Since |x|b2 = |y|b2 = 2, we

obtain

x⊙2 y =
a b a a b

c d b c d
.

However, x⊙1 y is not defined because we have 2 = |x|b1 6= |y|b1 = 3.
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Let x be a d-dimensional array over an alphabet Σ and µ : Σ → Bd(Σ)

be a map. Note that µ(x) is not always well-defined. Depending on the

shapes of the images by µ of the letters in Σ, when trying to build µ(x) by

concatenating the images µ(xn), we can obtain “holes” or “overlaps”. Thus

µ cannot necessarily be iterated. Therefore, in order to define morphisms,

we must introduce some restrictions on µ. First, we need two quite technical

definitions.

Definition 4.3.6. Let x be a d-dimensional array of shape s = (s1, . . . , sd).

For all i ∈ [[1, d]] and k ∈ [[0, si−1]], we let x|i,k denote the (d−1)-dimensional

array of shape

|x|bi = sbi = (s1, . . . , si−1, si+1, . . . , sd)

defined by setting the ith coordinate equal to k in x, that is,

x|i,k[n1, . . . , ni−1, ni+1, . . . , nd] = x[n1, . . . , ni−1, k, ni+1, . . . , nd]

for all nj ∈ [[0, sj − 1]] with j ∈ [[1, d]] \ {i}.

Definition 4.3.7. Let µ : Σ → Bd(Σ) be a map and x be a d-dimensional

array which satisfies

∀i ∈ [[1, d]], ∀k ∈ [[0, |x|i − 1]], ∀a, b ∈ Fact1(x|i,k), |µ(a)|i = |µ(b)|i. (28)

Then µ(x) is the d-dimensional array defined by

µ(x) = ⊙1
0≤n1<|x|1

(
· · ·
(
⊙d

0≤nd<|x|d
µ(xn1,...,nd

)
)
· · ·
)

.

Note that the order of the products in the different directions is unim-

portant.

Example 4.3.8. Consider the map µ given by

a 7→ a a

b d
, b 7→ c

b
, c 7→ a a , d 7→ d .

Take

x =
a b

c d
.

We have |µ(a)|1 = |µ(b)|1 = 2, |µ(c)|1 = |µ(d)|1 = 1, |µ(a)|2 = |µ(c)|2 = 2,

and |µ(b)|2 = |µ(d)|2 = 1. Thus µ(x) is well-defined and given by

µ(x) =

a a c

b d b

a a d

.

However, µ2(x) is not well-defined.
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Now, we are ready to introduce the definition of a d-dimensional mor-

phism.

Definition 4.3.9. Let µ : Σ → Bd(Σ) be a map. If, for all a ∈ Σ and

all positive integer n, µn(a) is inductively well-defined from µn−1(a), i.e.,

if µn−1(a) satisfies (28) for all positive integer n, then µ is said to be a

d-dimensional morphism.

Remark 4.3.10. A. Maes showed that determining whether or not a map

µ : Σ→ Bd(Σ) is a d-dimensional morphism is a decidable problem [Mae98,

Mae99a, Mae99b].

The usual notion of a prolongable morphism can also be given in this

multidimensional setting; see Definition 4.1.2.

Definition 4.3.11. If µ is a d-dimensional morphism and a is a letter such

that we have (µ(a))0 = a, then we say that µ is prolongable on a.

Observe that, if µ is a d-dimensional morphism prolongable on the let-

ter a, the limit µω(a) = limn→+∞ µn(a) is well defined and it is a fixed point

of µ beginning with a. It is a d-dimensional infinite word if and only if we

have

∀i ∈ [[1, d]], ∃b ∈ Fact1(µ(a)), ∀n ∈ N, |µn(b)|i 6= 0.

In this case, it is the only fixed point of µ beginning with a. Also, note

that, if a d-dimensional infinite word x is a fixed point of a d-dimensional

morphism µ, then (28) implies

∀i ∈ [[1, d]], ∀k ∈ N, ∀a, b ∈ Fact1(x|i,k), |µ(a)|i = |µ(b)|i.

Definition 4.3.12. A d-dimensional infinite word x is said to be pure mor-

phic if it can be written as x = µω(a) for a d-dimensional morphism µ

prolongable on the letter a. It is said to be morphic if it is the image under

a coding of a pure morphic word.

4.4. Shape-Symmetric Morphic Words

The so-called property of shape-symmetry that we introduce now is a

natural generalization of uniform morphisms under which all the images of

letters are squares of the same size [Sal87a, Sal87b]. This property was

first introduced by A. Maes, and was mainly used in connection with log-

ical questions about the decidability of first-order theories where 〈N;<〉 is
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extended by some morphic predicate [Mae98, Mae99a, Mae99b]. Again,

we fix an integer d ≥ 2 for the whole section.

Definition 4.4.1. Let µ : Σ→ Bd(Σ) be a d-dimensional morphism having

the infinite word x as a fixed point. If the images µ(xn,...,n), for n ∈ N, of

the letters on the diagonal of x are all squares, then x is said to be shape-

symmetric (with respect to µ).

Remark 4.4.2. Two equivalent formulations of shape-symmetry are given

as follows. Let µ : Σ → Bd(Σ) be a d-dimensional morphism having the d-

dimensional infinite word x as a fixed point. This word is shape-symmetric

if and only if we have

∀i, j ∈ [[1, d]], ∀k ∈ N, ∀a ∈ Fact1(x|i,k), ∀b ∈ Fact1(x|j,k), |µ(a)|i = |µ(b)|j ,

or, if and only if, for any permutation f of [[1, d]], we have

∀n1, . . . , nd ∈ N, |µ(xn1,...,nd
)| = (s1, . . . , sd)

⇒ |µ(xnf(1),...,nf(d)
)| = (sf(1), . . . , sf(d)).

Example 4.4.3. The following bidimensional morphism µ has a fixed point

µω(a) which is shape-symmetric:

µ(a) = µ(f) =
a b

c d
, µ(b) =

e

c
, µ(c) = e b , µ(d) = f ,

µ(e) =
e b

g d
, µ(g) = h b , µ(h) =

h b

c d
.

In Figure 4.9 we have represented the beginning of the array. Some elements

are underlined for the use of Example 4.6.10.

Definition 4.4.4. Let µ : Σ→ Bd(Σ) be a d-dimensional morphism having

the d-dimensional infinite word x as a fixed point. The shape sequence of x

with respect to µ in the direction i ∈ [[1, d]] is the sequence

Shapeµ,i(x) = (|µ(x|i,k)|i)k≥0.

For a unidimensional morphism µ having the infinite word x as a fixed point,

the shape sequence of x with respect to µ is Shapeµ(x) = (|µ(x[k])|)k≥0.

Remark 4.4.5. Let µ : Σ → Bd(Σ) be a d-dimensional morphism having

the d-dimensional infinite word x as a fixed point. Note that x is shape-

symmetric if and only if we have Shapeµ,1(x) = · · · = Shapeµ,d(x).
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ε 1 10 10
0

10
1

10
00

10
01

10
10

10
00

0

10
00

1

· · ·
ε a b e e b e b e e b · · ·
1 c d c g d g d c g d

10 e b f e b h b f h b

100 e b e a b e b e h b

101 g d c c d g d c c d

1000 e b e e b a b e e b

1001 g d c g d c d c g d

1010 h b f e b e b f h b

10000 e b e e b e b e a b

10001 g d c g d g d c c d
...

...
. . .

Figure 4.9. A infinite fixed point of µ.

4.5. Erasing Hyperplanes from Multidimensional Arrays

To prove our main result, we will have to generalize the following well-

known theorem to the multidimensional setting. A. Cobham already foretold

this result. Then, J.-J. Pansiot gave a proof in [Pan83]. In their book

[AS03] J.-P. Allouche and J. Shallit proposed another proof, which follows

Cobham’s original ideas.

Theorem 4.5.1. If x is a morphic word over an alphabet Σ, then the word

obtained by erasing from x all occurrences of the letters in a subset of Σ is

either finite or morphic.

In this section we give an example illustrating the proof from [AS03] in

the unidimensional case. Then, we define how to erase hyperplanes from a

multidimensional array. It will essentially be used in the second part of the

proof of Theorem 4.6.1.

Example 4.5.2. Define a morphism f over the alphabet Σ = {a, b, c, d, e} by

f : a 7→ abce, b 7→ aded, c 7→ c, d 7→ cc, e 7→ aeb.

We have fω(a) = abceadedcaebabceccaebcccabceaebaded · · · . Set Γ = {c, e}
and let us show that the word y = abaddabababababadd · · · obtained by

erasing from fω(a) the letters in Γ is still morphic. First, observe that the

letter c is dead with respect to the morphism f and the subset Γ, i.e., it

satisfies fn(c) ∈ Γ∗ for all n ∈ N. Hence, by erasing this letter from the
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images by f of any other letters, we obtain a morphism

g : a 7→ abe, b 7→ aded, d 7→ ε, e 7→ aeb

over the alphabet Σ \ {c} = {a, b, d, e} such that the infinite word obtained

by erasing from gω(a) all occurrences of the letters in Λ = Γ \ {c} = {e}
is also y. Next, the letter d is moribund with respect to the morphism g

and the subset Λ, i.e., there exists a non-negative integer N such that gN (d)

contains at least one letter not belonging to Λ and we have gn(d) ∈ Λ∗ for

all integers n > N . Here, we can take N = 0. Now, we factor the images

of the other letters, which are called robust letters, so that we obtain factors

having only one letter in Σ \ Λ = {a, b, d}:

g(a) = a︸︷︷︸
w(a,1)

· be︸︷︷︸
w(a,2)

, g(b) = a︸︷︷︸
w(b,1)

· de︸︷︷︸
w(b,2)

· d︸︷︷︸
w(b,3)

, g(e) = ae︸︷︷︸
w(e,1)

· b︸︷︷︸
w(e,2)

.

With each of these factors w(σ, i), we associated a new symbol σi, so that

we obtain the new alphabet ∆ = {a1, a2, b1, b2, b3, e1, e2}. Now, define a

morphism µ over this alphabet by

µ : a1, b1 7→ a1a2, a2 7→ b1b2b3e1e2, b2 7→ e1e2, b3 7→ ε,

e1 7→ a1a2e1e2, e2 7→ b1b2b3.

The image of e1 is a1a2e1e2 because the corresponding factor in g(e) is

w(e, 1) = ae and we have g(ae) = g(a) · g(e) = a · be · ae · b, where the

factor a = w(a, 1) (resp. be = w(a, 2), ae = w(e, 1), b = w(e, 2)) corresponds

to a1 (resp. a2, e1, e2). The image of b3 is ε because the corresponding fac-

tor in g(b) is w(b, 3) = d, which contains no robust letter. The other images

are computed by using the same reasoning. Next, we define the coding ν

over ∆ by

ν : a1, b1, e1 7→ a, a2, e2 7→ b, b2, b3 7→ d.

The image by ν of a letter σi ∈ ∆ is the letter in Σ \ Λ = {a, b, d} occurring

in the corresponding factor w(σ, i). From these computations we have ob-

tained a morphism µ prolongable on the letter a1 and a coding ν satisfying

ν(µω(a1) = y. In particular, this shows that y is a morphic word.

Definition 4.5.3. Let d ≥ 2 be an integer and x be a d-dimensional array

over Σ∪ {e} of shape (s1, s2, . . . , sd) > 0, where e does not belong to Σ. For

any i ∈ [[1, d]] and k ∈ [[0, si − 1]], the (d− 1)-dimensional array x|i,k is called

an e-hyperplane of x if each letter in x|i,k is equal to e. Then erasing an e-

hyperplane x|i,k of x means replacing x with a d-dimensional array x′ = y⊙iz

with

y =

{
x[0, (s1, . . . , si−1, k, si+1, . . . , sd)− 1], if k ≥ 1;

ε(s1,...,si−1,0,si+1,...,sd), otherwise
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and

z =

{
x[(0, . . . , 0, k + 1, 0, . . . , 0), |x| − 1], if k < si − 1;

ε(s1,...,si−1,0,si+1,...,sd), otherwise.

We let ρe denote the map which associates with any d-dimensional array x

over Σ ∪ {e} the array ρe(x) obtained by erasing every e-hyperplane of x

iteratively. Furthermore, we say that x is e-erasable if the array ρe(x) does

not contain the letter e as a factor.

Observe that a d-dimensional array x is e-erasable if, for each position n

such that we have x[n] = e, there exists an integer i ∈ [[1, d]] such that x|i,ni

is an e-hyperplane.

Example 4.5.4. Consider the bidimensional array

x =

a b a e e a

e e e e e e

a a e e e b

e e a e b b

b a b e e a

of shape (5, 6). Clearly, x|2,3 is an e-hyperplane. By erasing x|2,3 from x,

we obtain the bidimensional array x′ = y ⊙2 z of shape (5, 5), with y =

x[(0, 0), (4, 2)] and z = x[(0, 4), (4, 5)]. Then x′
|1,1 is an e-hyperplane of x′.

By erasing x′
|1,1 from x′, we obtain the bidimensional array x′′ = y′ ⊙1 z′

of shape (4, 5), with y′ = x′[(0, 0), (0, 4)] and z′ = x′[(2, 0), (4, 4)]. The

erased arrays x′ and x′′ are depicted in Figure 4.10. Furthermore, we have

x′ = y ⊙i z =

a b a e a

e e e e e

a a e e b

e e a b b

b a b e a

and x′′ = y′ ⊙i z′ =

a b a e a

a a e e b

e e a b b

b a b e a

Figure 4.10. The successive e-erased arrays from x.

ρe(x) = x′′ since there is no e-hyperplane in x′′. Because the letter e still

occurs in x′′, the bidimensional array x is not e-erasable.

4.6. Characterization of S-Automatic Arrays

Let us recall that our goal is to prove the following result.
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Theorem 4.6.1. Let d be a positive integer. The d-dimensional infinite

word x is S-automatic for some abstract numeration system S = (L,Σ, <)

with ε ∈ L if and only if x is the image under a coding of a shape-symmetric

pure morphic word.

The case d = 1 is given by Theorem 4.1.15. The main difficulties in

generalizing the proof of Theorem 4.1.15 appear in the step from the unidi-

mensional case to the bidimensional case. Therefore, and also for the sake of

clarity, we have chosen to present the proof in the case d = 2. We have split

the proof into two parts.

Part 1. Assume x = ν(µω(a)), where µ : Σ→ B2(Σ) is a bidimensional

morphism prolongable on a and ν : Σ∗ → Γ∗ is a coding such that y = µω(a)

is shape-symmetric. In this part we show that x is S-automatic for some

abstract numeration system S = (L,Σ, <) with ε ∈ L.

Let Y1 = (yn,0)n≥0 be the first column of y. This word Y1 is a unidimen-

sional infinite word over a subset Σ1 of Σ. It is clear that Y1 is generated by

a unidimensional morphism µ1 derived from µ: one only has to consider the

first column occurring in the images by µ of the letters in Σ.

Definition 4.6.2. With each (unidimensional) morphism µ : Σ∗ → Σ∗ and

with each letter a ∈ Σ, we can canonically associate a DFA, denoted by Aµ,a,

and defined as follows. Define rµ = maxb∈Σ |µ(b)|. The alphabet of Aµ,a is

[[0, rµ − 1]]. The set of states is Σ. The initial state is a and every state is

final. The (partial) transition function δµ is defined by δµ(b, i) = µ(b)[i] for

all b ∈ Σ and i ∈ [[0, |µ(b)| − 1]]. Removing the words having 0 as a prefix

from the accepted language, we obtain the directive language of (µ, a). We

let Lµ,a denote this directive language.

Note that Lµ,a is a prefix-closed language since all states in Aµ,a are final.

In particular, we have ε ∈ Lµ,a. The reason why the directive language of

a morphism is called in this way will be made clear; see Lemma 4.6.5 and

Corollary 4.6.6.

Example 4.6.3. Let us consider the morphism µ of Example 4.4.3 again.

Then we obtain Σ1 = {a, c, e, g, h} and

µ1 : a 7→ ac, c 7→ e, e 7→ eg, g 7→ h, h 7→ hc.

Furthermore, we have Y1 = µω
1 (a) = aceegegheghhceghhchceegh · · · . The

DFA associated with (µ1, a) is depicted in Figure 4.11. The first few words

in Lµ1,a ordered with respect to the genealogical order are

ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000.
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a c e

h g
0

1 0
01

0

1

0

Figure 4.11. The automaton Aµ1,a.

Lemma 4.6.4. Let µ : Σ∗ → Σ∗ be a morphism prolongable on a ∈ Σ. The

counting function of the associated directive language is given by

uLµ,a(s) =

{ |µs(a)| − |µs−1(a)|, if s ∈ N \ {0};
1, if s = 0.

Proof. Since Lµ,a is a prefix-closed language, it must contain ε. There-

fore we have uLµ,a(0) = 1. Now, take a positive integer s. The adjacency

matrix M = (Mb,c)b,c∈Σ in NΣ×Σ of Aµ,a is defined by

∀b, c ∈ Σ, Mb,c = Card{i ∈ [[0, |µ(b)| − 1]] | δµ(b, i) = c}.

We know that [M s]b,c is the number of paths of length s from b to c in Aµ,a;

for example, see [Ber70, GR01]. Since all states are final, the number Ns of

words of length s accepted by Aµ,a is obtained by summing up all the entries

in the row of M s corresponding to a. Because µ is prolongable on a, the

automaton Aµ,a has a loop of label 0 at a. Therefore the number of words of

length s accepted by Aµ,a and starting with 0 is equal to the number Ns−1 of

words of length s−1 accepted by Aµ,a. Consequently, the number of words of

length s in the directive language Lµ,a is exactly Ns −Ns−1. The matrix M

can also be related to the morphism µ because Mb,c is also the number of

occurrences of c in µ(b). In particular, summing up all entries in the row

of M s corresponding to a gives |µs(a)|. This completes the proof. �

Lemma 4.6.5. Let µ : Σ∗ → Σ∗ be a morphism prolongable on a ∈ Σ and S

be the abstract numeration system defined by

S = (Lµ,a, [[0, rµ − 1]], 0 < · · · < rµ − 1).

Write µω(a) = y0y1y2 · · · with yn ∈ Σ for all n ∈ N. Then, for each n ∈ N,

the (n + 1)st letter of µω(a) is given by

yn = δµ(a, repS(n))
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and, by setting valS(0) = 0, its image by µ is

µ(yn) = µω(a)[valS(repS(n)0), valS(repS(n)(|µ(yn)| − 1))],

i.e., the factor of µω(a) from the position indexed by the S-value of the con-

catenation repS(n)0 ∈ Lµ,a to the position indexed by the S-value of the

concatenation repS(n)(|µ(yn)| − 1) ∈ Lµ,a. The latter formula is equiva-

lent to

∀i ∈ [[0, |µ(yn)| − 1]], µ(yn)[i] = yvalS(repS(n)i).

Proof. Proceed by induction on the length s of the words in Lµ,a. The

only word of length 0 in Lµ,a is repS(0) = ε. Since µ is prolongable on a,

we have y0 = a = δµ(a, repS(0)). Furthermore, for any i ∈ [[0, |µ(a)| − 1]], we

have valS(i) = i. So, for any i ∈ [[0, |µ(a)| − 1]], we obtain µ(y0)[i] = yi.

Now, take a positive integer s and assume that the lemma holds for all

integers m which satisfy | repS(m)| ∈ [[0, s − 1]]. Take a positive integer n

satisfying | repS(n)| = s. Let us write repS(n) = wk with |w| = s − 1 and

k ∈ [[0, |µ(δµ(a,w))|−1]]. Since Lµ,a is prefix-closed, there exists an integer m

such that we have w = repS(m). Hence we obtain

δµ(a, repS(n)) = δµ(a,wk)

= δµ(δµ(a, repS(m)), k)

= δµ(ym, k) (by the induction hypothesis)

= µ(ym)[k] (by the definition of δµ)

= yvalS(repS(m)k) (by the induction hypothesis)

= yn.

We have thus shown yℓ = δµ(a, repS(ℓ)) for all ℓ ∈ [[0, |µs(a)| − 1]]. Further-

more, from Lemma 4.6.4, we obtain

| repS(n)| = t⇔ n ∈ [[|µt−1(a)|, |µt(a)| − 1]]. (29)

Therefore we can write

µs+1(a) = µs−1(a)uynv︸ ︷︷ ︸
µs(a)

µ(u)µ(yn)µ(v)

for some finite words u, v. Hence we obtain

∀i ∈ [[0, |µ(yn)| − 1]], µ(yn)[i] = y|µs(a)|+|µ(u)|+i.

By the definition of Lµ,a we have

∀i ∈ [[0, |µ(yn)| − 1]], valS(repS(n)i) = valS(repS(n)0) + i.

Hence it suffices to show valS(repS(n)0) = |µs(a)| + |µ(u)| to conclude the

proof.
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From relation (29) we know that |µs(a)| is the S-value of the first word

of length s + 1 in Lµ,a with respect to the genealogical order. Next, from

the definition of Lµ,a and from the first part of the proof, it follows that Lµ,a

contains exactly |µ(δµ(a, repS(ℓ)))| = |µ(yℓ)| words of the form repS(ℓ)j,

where ℓ belongs to [[0, |µs(a)| − 1]] and j is a letter. Since repS(|µs−1(a)|)
is the first word of length s in Lµ,a with respect to the genealogical order,

we get that |µ(u)| =
∑n−1

ℓ=|µs−1(a)| |µ(yℓ)| is exactly the number of words of

length s + 1 in Lµ,a of the form repS(ℓ)j with | repS(ℓ)| = s and ℓ < n, i.e.,

the number of words in Lµ,a of length s + 1 less than repS(n)0 with respect

to the genealogical order. This finishes the proof. �

Corollary 4.6.6. Let µ : Σ∗ → Σ∗ be a morphism prolongable on a ∈ Σ

and S be the abstract numeration system defined by

S = (Lµ,a, [[0, rµ − 1]], 0 < · · · < rµ − 1).

Assume µω(a) = y0y1y2 · · · and repS(n) = w0 · · ·wℓ with n ∈ N, where

the yi’s and the wi’s are letters. Define z(0) = µ(a) and z(j+1) = µ(z(j)[wj ])

for all j ∈ [[0, ℓ − 1]]. Then we have yn = z(ℓ).

Example 4.6.7. Let us continue Example 4.6.3. The fixed point Y1 of µ1

starts with

aceegegh = y0 · · · y7

and repS(7) = 1010. From Lemma 4.6.5 the letter y7 = h has been generated

by applying µ1 to the letter in the position valS(101) = 4, that is, y4 = g.

We have y7 = µ1(g)[0]. In turn, the letter y4 occurs in the image under µ1

of the letter in the position valS(10) = 2, that is, y2 = e. Thus we have

y4 = µ1(e)[1]. Then the letter y2 appears in the image of the letter in the

position valS(1) = 1, that is, y1 = c. Finally we have y2 = µ1(c)[0].

The following result is self-evident.

Lemma 4.6.8. Let x and y be two infinite words and λ and µ be two mor-

phisms such that there exist two letters a and b such that we have x = λω(a)

and y = µω(b). The directive languages Lλ,a and Lµ,b are equal if and only

if we have Shapeλ(x) = Shapeµ(y).

Example 4.6.9. If one considers the morphism µ2 defined by µ2 : a 7→ ab,

b 7→ e, e 7→ eb (which is derived from the first row of the bidimensional

morphism in Example 4.4.3), then we obtain the DFA Aµ2,a depicted in

Figure 4.12. The automata in Figure 4.11 and Figure 4.12 clearly accept the

same language (the second one being minimal).
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a b e

0

1

0

0
1

Figure 4.12. The automaton Aµ2,a.

Let Y2 = (y0,n)n≥0 be the first row of y. This word Y2 is a unidimen-

sional infinite word over a subset Σ2 of Σ. It is clear that Y2 is generated

by a morphism µ2 derived from µ. Since y is shape-symmetric, thanks to

Remark 4.4.5 and to Lemma 4.6.8, we can define

Lµ1,a = Lµ2,a =: L and rµ1 = rµ2 =: rµ.

We consider the abstract numeration system built upon this language L (with

the natural order on digits). With the above discussion and in particular in

view of Lemma 4.6.5, it is clear that, for all m,n ∈ N, all u, v ∈ [[0, rµ − 1]]∗,

and all b, c ∈ [[0, rµ − 1]], we have

(µ(yvalS(u),valS(v)))b,c = ym,n ⇔ ub = repS(m) and vc = repS(n). (30)

Example 4.6.10. Consider the letter c occurring in the position (4, 7) in the

fixed point y of µ underlined in Figure 4.9. We have (valS(101), valS(1010)) =

(4, 7). If we consider the pair (valS(10), valS(101)) = (2, 4), then we ob-

tain (µ(y2,4))1,0 = (µ(b))1,0 = c = y4,7. In other words, the letter y4,7

comes from the letter y2,4. We can continue in this way. Since we have

(valS(1), valS(10)) = (1, 2), we also have b = y2,4 = (µ(y1,2))0,1. Then

we get y1,2 = c = (µ(y0,1))1,0 because we have (valS(ε), valS(1)) = (0, 1).

Finally we obtain y0,1 = b = (µ(y0,0))0,1 = (µ(a))0,1 because we have

(valS(ε), valS(ε)) = (0, 0).

Now, we extend Definition 4.6.2 to the multidimensional case.

Definition 4.6.11. For each d-dimensional morphism µ : Σ → Bd(Σ) and

for each letter a ∈ Σ, define a DFA Aµ,a over the alphabet [[0, rµ − 1]]d, with

rµ = max{|µ(b)|i | b ∈ Σ, i ∈ [[1, d]]}.
The set of states is Σ, the initial state is a and all states are final. The

(partial) transition function is defined by

∀b ∈ Σ, ∀n ≤ |µ(b)|, δµ(b,n) = (µ(b))n.

Thanks to (30), the automaton Aµ,a satisfies

∀m,n ∈ N, δµ(a, (repS(m), repS(n))0) = ym,n,
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where we have padded the shortest word with enough 0’s to make two words

of the same length; see Definition 4.1.8. If we consider the coding ν as the

output function, the corresponding DFAO generates x as an S-automatic

word. Note that padding with 0’s works correctly since 0 is the lexicographi-

cally smallest letter and the directive language L does not contain any words

starting with 0. This concludes the first part of the proof.

Example 4.6.12. Again, consider the bidimensional morphism µ of Exam-

ple 4.4.3 and its shape-symmetric fixed point µω(a) depicted in Figure 4.9.

If S = (L, {0, 1}, 0 < 1) is the abstract numeration system built on the di-

rective language L = {ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, . . .}, then the

corresponding DFAO generates µω(a) as an S-automatic word. This DFAO

is depicted in Figure 4.13, where the output function is the identity. For

instance, if we continue Example 4.6.10, then, by reading the bidimensional

word (repS(4), repS(7))0 = (0101, 1010), we obtain

y0,0 = a
(0,1)→ y0,1 = b

(1,0)→ y1,2 = c
(0,1)→ y2,4 = b

(1,0)→ y4,7 = c.

The letters appearing in this sequence of transitions correspond to the un-

derlined ones in Figure 4.9.

a

b

c

d e

f

g

h

(0, 0)

(1, 0)

(0, 1)

(1, 1)
(0, 0)

(1, 0)

(0, 1)

(1, 1) (0, 0)

(1, 0)(0, 1) (0, 0)

(0, 0)

(0, 0)

(0, 1)

(1, 1) (1, 0)

(0, 0)(0, 1)

(0, 0)
(0, 1)

(1, 1)

(1, 0)

Figure 4.13. A DFAO generating µω(a) as an S-automatic word.

Part 2. Assume that x = (xm,n)m,n≥0 is a bidimensional S-automatic

infinite word over an alphabet Γ for some abstract numeration system

S = (L,Σ, <), with ε ∈ L.
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Assume Σ = {a1, . . . , ar} and a1 < · · · < ar. Let

A = (QA, (Σ#)2, δA, q0,Γ, τA)

be a DFAO generating x. We assume that # =: a0 is a symbol not belonging

to Σ and a0 < a1. Recall that this means

∀m,n ∈ N, τA(δA(q0, (repS(m), repS(n))#)) = xm,n.

Without loss of generality, we suppose δA(q, (#,#)) = q for all q ∈ QA.

Example 4.6.13. Consider once again the automaton given by Figure 4.7.

Then the word x introduced in this proof corresponds to the bidimensional

infinite word depicted in Figure 4.8.

In this part we prove that x can be represented as the image under a

coding of a shape-symmetric bidimensional pure morphic word. We present

the proof in three steps. First, we show that x can be obtained by applying

an erasing map to a fixed point of a uniform bidimensional morphism. In

the second step we prove that x is morphic. The generating morphism µ and

the coding ν are obtained using a construction based on a unidimensional

construction from [AS03]. Finally, we show that the fixed point of µ under

consideration is shape-symmetric.

Definition 4.6.14. Let d be a positive integer and (Σ, <) be the totally

ordered alphabet ({a0, a1, . . . , ar}, a0 < · · · < ar). Any complete DFA of the

form A = (Q,Σd, δ, q0, F ) can be canonically associated with a d-dimensional

morphism denoted by µA : Q → Bd(Q) and defined as follows. The image

of a letter q in Q is a d-dimensional square x of size r + 1 defined by xn =

δ(q, (an1 , . . . , and
)) for all n ∈ Nd satisfying n ≤ (r, . . . , r).

Example 4.6.15. Consider the alphabet Σ = {#, a, b} with # < a < b and

the automaton A depicted in Figure 4.7, with added loops on inputs (#,#)

at all states. Then we obtain

µA(p) =

p p q

q p p

q s s

, µA(q) =

q p p

p s q

q q s

,

µA(r) =

r p p

s r r

s s p

, µA(s) =

s r r

r q s

s s r

,

and µA
ω(p) is the bidimensional infinite word depicted in Figure 4.14. Note

that µA
ω(p) is different from the S-automatic word given in Figure 4.8.

However, by erasing certain rows and columns in Figure 4.14, namely the
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ones corresponding to words not belonging to L = {a, ba}∗{ε, b}, we obtain

the same word as in Figure 4.8.

L× L ε a b a
#

a
a

a
b

b# ba bb a
#

#

a
#

a

a
#

b

a
a
#

a
a
a

a
a
b

a
b# · · ·

ε p p q p p q q p p p p q p p q q · · ·
a q p p q p p p s q q p p q p p p

b q s s q s s q q s q s s q s s q

a# q p p p p q p p q q p p p p q p

aa p s q q p p q p p p s q q p p q

ab q q s q s s q s s q q s q s s q

b# q p p s r r s r r q p p s r r s

ba p s q r q s r q s p s q r q s r

bb q q s s s r s s r q q s s s r s

a## q p p p p q p p q p p q p p q q

a#a p s q q p p q p p q p p q p p p

a#b q q s q s s q s s q s s q s s q

aa# p p q s r r q p p q p p p p q p

aaa q p p r q s p s q p s q q p p q

aab q s s s s r q q s q q s q s s q

ab# q p p q p p s r r q p p s r r s
...

...
. . .

Figure 4.14. The fixed point µA
ω(p).

From the assumption L is a regular language over Σ. Hence there exists

a DFA accepting L and we may easily modify it to obtain a DFA

L = (QL,Σ#, δL, ℓ0, FL)

accepting #∗L and satisfying δL(ℓ0,#) = ℓ0. Note that ℓ0 is a final state

since ε belongs to L. Next, let us define a “product” automaton

P = (Q, (Σ#)2, δ, p0, F )

imitating the behavior of A and two copies of the automaton L, one for each

dimension. The set of states of P is Q = QA ×QL × QL, where the initial

state p0 is (q0, ℓ0, ℓ0). The transition function δ : Q× (Σ#)2 → Q is defined

by

δ((q, k, ℓ), (a, b)) = (δA(q, (a, b)), δL(k, a), δL(ℓ, b)),

where (q, k, ℓ) belongs to Q and (a, b) is a pair of letters in (Σ#)2. The set of

final states is F = QA × FL × FL. Let y = (ym,n)m,n≥0 be the infinite word
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satisfying

∀m,n ∈ N, δ(p0, (repS(m), repS(n))#) = ym,n.

Note that both the first and the second component of (repS(m), repS(n))#

belong to the language #∗L. Therefore δ(p0, (repS(m), repS(n))#) is a final

state. Let us define a coding τ : F → Γ by

∀(q, k, ℓ) ∈ F, τ((q, k, ℓ)) = τA(q).

By construction, it is clear that we have τ(y) = x.

We consider the canonically associated morphism µP : Q→ B2(Q) given

in Definition 4.6.14. Note that µP is prolongable on p0 since we have

(µP (p0))0 = δ(p0, (a0, a0))

= (δA(q0, (#,#)), δL(ℓ0,#), δL(ℓ0,#))

= (q0, ℓ0, ℓ0) = p0.

Example 4.6.16. Let us continue Example 4.2.2 and once again consider

the abstract numeration system S = ({a, ba}∗{ε, b}, {a, b}, a < b) and the

DFAO depicted in Figure 4.7, with additional loops on inputs (#,#) at

all states. The minimal automaton of #∗{a, ba}∗{ε, b} is depicted in Fig-

ure 4.15. If P is the corresponding product automaton, then the fixed point

g h k ℓ

#

a

b

#
a

b #, b

a

#, a, b

Figure 4.15. The minimal automaton accepting #∗{a, ba}∗{ε, b}.

µP
ω((p, g, g)) of µP is the bidimensional infinite word depicted in Figure 4.16.

Let e be a new symbol. Remember that ρe is the erasing map defined

in Section 4.5. Let ρ denote the map ρe ◦ λ, where λ is the morphism on

(Q ∪ {e})∗ defined by

λ(p) =

{
e, if p 6∈ F ;

p, otherwise.

We first claim that y = ρ(µP
ω(p0)). Observe that the infinite word

λ(µP
ω(p0)) is e-erasable. Namely, all letters in a fixed row Y of the bidi-

mensional infinite word µP
ω(p0) are of the form (q, k, ℓ) where the second

component k is fixed. If k does not belong to FL, the word λ(Y ) is a uni-

dimensional e-hyperplane of λ(µP
ω(p0)). Thus the map ρ erases all rows

where the second component k does not belong to FL. The same holds for
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(p, g, g) (p, g, h) (q, g, k) (p, g, ℓ) (p, g, h) (q, g, k) (q, g, ℓ) · · ·
(q, h, g) (p, h, h) (p, h, k) (q, h, ℓ) (p, h, h) (p, h, k) (p, h, ℓ)

(q, k, g) (s, k, h) (s, k, k) (q, k, ℓ) (s, k, h) (s, k, k) (q, k, ℓ)

(q, ℓ, g) (p, ℓ, h) (p, ℓ, k) (p, ℓ, ℓ) (p, ℓ, h) (q, ℓ, k) (p, ℓ, ℓ)

(p, h, g) (s, h, h) (q, h, k) (q, h, ℓ) (p, h, h) (p, h, k) (q, h, ℓ)

(q, k, g) (q, k, h) (s, k, k) (q, k, ℓ) (s, k, h) (s, k, k) (q, k, ℓ)

(q, ℓ, g) (p, ℓ, h) (p, ℓ, k) (s, ℓ, ℓ) (r, ℓ, h) (r, ℓ, k) (s, ℓ, ℓ)

(p, h, g) (s, h, h) (q, h, k) (r, h, ℓ) (q, h, h) (s, h, k) (r, h, ℓ)

(q, ℓ, g) (q, ℓ, h) (s, ℓ, k) (s, ℓ, ℓ) (s, ℓ, h) (r, ℓ, k) (s, ℓ, ℓ)

(q, ℓ, g) (p, ℓ, h) (p, ℓ, k) (p, ℓ, ℓ) (p, ℓ, h) (q, ℓ, k) (p, ℓ, ℓ)
...

. . .

Figure 4.16. The fixed point µP
ω((p, g, g)).

columns and third components ℓ of the letters in Q. Hence the bidimen-

sional infinite word ρ(µP
ω(p0)) only contains letters belonging to F . By the

construction of the morphism µP , those letters come from the automaton

P by “feeding” it with words belonging to ((Σ#)2)∗ ∩ (#∗L)2. More pre-

cisely, all rows and columns corresponding to words not belonging to L are

erased and (ρ(µP
ω(p0)))m,n is equal to δ(p0, (repS(m), repS(n))#) = ym,n.

Hence, by defining ϑ = τ ◦ ρ, we get a map from Σ to Γ such that we have

x = ϑ(µP
ω(p0)).

Example 4.6.17. We continue Example 4.6.16. This time we consider the

bidimensional S-automatic word depicted in Figure 4.8. This word corre-

sponds to the bidimensional infinite word obtained by erasing all rows and

columns corresponding to words not belonging to L = {a, ba}∗{ε, b} from

the bidimensional infinite word µA
ω(p) depicted in Figure 4.14. In the latter

figure the elements in L have been underlined. By the previous construction

we obtain that this word is also the bidimensional infinite word obtained by

first erasing all rows with ℓ as the second component and all columns with ℓ

as the third component from the bidimensional infinite word µP
ω((p, g, g))

depicted in Figure 4.16 and then applying the coding τ .

Next, we show that x is morphic by getting rid of the erasing map ρ.

We construct a morphism µ prolongable on some letter α and a coding ν

such that we have x = ν(µω(α)). We follow the guidelines of [AS03, Theo-

rem 7.7.4]. Also, see Example 4.5.2 above, which illustrates the proof from

[AS03] in the unidimensional case. First, we need the following definitions.
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Definition 4.6.18. Let µ be a morphism on some finite alphabet Σ and

let Ψ be a subset of Σ. We say that a letter a ∈ Σ is

(i) (µ,Ψ)-dead if we have µn(a) ∈ Ψ∗ for every n ∈ N;

(ii) (µ,Ψ)-moribund if there exists m ∈ N such that the word µm(a)

contains at least one letter in Σ \ Ψ and, for every integer n > m,

we have µn(a) ∈ Ψ∗;

(iii) (µ,Ψ)-robust if there exist infinitely many n ∈ N such that the word

µn(a) contains at least one letter in Σ \Ψ.

The following lemma from [AS03, Lemma 7.7.3] is also valid for multi-

dimensional morphisms, since the proof is only based on the finiteness of the

alphabet Σ.

Lemma 4.6.19. Let µ be a morphism on some finite alphabet Σ and let Ψ

be a subset of Σ. Then there exists a positive integer T such that the mor-

phism ϕ = µT satisfies:

(a) If a is (ϕ,Ψ)-moribund, then we have ϕn(a) ∈ Ψ∗ for all n ∈ N\{0}
and a ∈ Σ \Ψ.

(b) If a is (ϕ,Ψ)-robust, then the word ϕn(a) contains at least one letter

in Σ \Ψ for all n ∈ N \ {0}.

Remark 4.6.20. Note that, from Lemma 4.6.19, a letter in Ψ is either

(ϕ,Ψ)-dead or (ϕ,Ψ)-robust. Furthermore, a letter in Σ \Ψ is either (ϕ,Ψ)-

moribund or (ϕ,Ψ)-robust.

We may assume, by taking a power of µP if necessary, that µP satisfies the

properties (a) and (b) listed for ϕ in Lemma 4.6.19 with Ψ = F c = Q\F . For

the sake of simplicity, we use the words dead, moribund and robust instead

of (µP , F c)-dead, (µP , F c)-moribund and (µP , F c)-robust from now on.

We classify the states of QL and Q into four categories. The type of a

state k ∈ QL is

Tk =





∆, if k 6∈ FL and ∀a ∈ Σ#, δL(k, a) 6∈ FL;

M, if k ∈ FL and ∀a ∈ Σ#, δL(k, a) 6∈ FL;

RF c, if k 6∈ FL and ∃a ∈ Σ#, δL(k, a) ∈ FL;

RF , if k ∈ FL and ∃a ∈ Σ#, δL(k, a) ∈ FL.

The type of a state p = (q, k, ℓ) ∈ Q is

Tp =





∆, if p is dead;

M, if p is moribund;

RF c, if p ∈ F c and p is robust;

RF , if p ∈ F and p is robust.
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From these definitions it is clear that the type of (q, k, ℓ) ∈ Q only depends

on the types of k and ℓ ∈ QL according to Figure 4.17. Note that, using

the properties (a) and (b) of Lemma 4.6.19, it suffices to consider transitions

δL(k, a) by each letter a ∈ Σ# instead of transitions δL(k,w) by all words w

in (Σ#)∗. For instance, if the type of k is RF c and the type of ℓ is RF , then

we have k 6∈ FL. Hence (q, k, ℓ) belongs to F c for all q ∈ QA. Furthermore,

there exist m,n ∈ [[0, r]] such that we have δL(k, am) ∈ FL and δL(ℓ, an) ∈ FL.

This means that (µP((q, k, ℓ)))m,n belongs to F . Hence, from Lemma 4.6.19

and Remark 4.6.20, (q, k, ℓ) is robust.

H
H

H
H

H
H

Tk

Tℓ ∆ M RF c RF

∆ ∆ ∆ ∆ ∆

M ∆ M ∆ M

RF c ∆ ∆ RF c RF c

RF ∆ M RF c RF

Figure 4.17. Type Tp of a letter p = (q, k, ℓ) ∈ Q.

Let us define two morphisms λ∆ and λM on (Q ∪ {e})∗ in a similar way

as λ was defined above:

λ∆(p) =

{
e, if p is dead;

p, otherwise
and λM (p) =

{
e, if p is moribund;

p, otherwise.

From the property (b) of Lemma 4.6.19 we know that if p is robust, then

µP(p) contains at least one letter in F . Since every dead letter must belong

to F c, for all robust p ∈ Q, the word λ∆(µP(p)) contains at least one letter

in F . For any ℓ ∈ QL, let us define a sequence (dℓ(i))0≤i≤hℓ
such that we have

dℓ(0) = 0, dℓ(hℓ) = r+1, and, for all i ∈ [[0, hℓ−1]], we have dℓ(i) < dℓ(i+1)

and there exists exactly one index n ∈ [[dℓ(i), dℓ(i + 1)− 1]] satisfying

δL(ℓ, an) ∈ FL. (31)

Note that hℓ is the number of letters an ∈ Σ# satisfying condition (31).

Hence, for each robust letter p = (q, k, ℓ), we obtain hk, hℓ ≥ 1. Thus we

may define the factorization

λ∆(µP(p)) =

wp(0, 0) wp(0, 1) · · · wp(0, hℓ − 1)

wp(1, 0) wp(1, 1) · · · wp(1, hℓ − 1)
...

...
. . .

...

wp(hk − 1, 0) wp(hk − 1, 1) · · · wp(hk − 1, hℓ − 1)

,

where each bidimensional array is

wp(i, j) = λ∆(µP(p))[(dk(i), dℓ(j)), (dk(i + 1)− 1, dℓ(j + 1)− 1)]
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contains exactly one letter in F .

Example 4.6.21. Let us continue Example 4.6.17. Recall that the product

automaton P is produced from the automaton A depicted in Figure 4.7 and

the automaton L depicted in Figure 4.15. Note that the type of the state ℓ

in L is Tℓ = ∆ and all other states have type RF . From Figure 4.16 we see

that we have

µP(p, g, g) =

(p, g, g) (p, g, h) (q, g, k)

(q, h, g) (p, h, h) (p, h, k)

(q, k, g) (s, k, h) (s, k, k)

and

µP(q, h, g) =

(q, ℓ, g) (p, ℓ, h) (p, ℓ, k)

(p, h, g) (s, h, h) (q, h, k)

(q, k, g) (q, k, h) (s, k, k)

.

By definition, hℓ is the number of letters an in Σ# such that δL(ℓ, an) belongs

to FL. Hence we obtain hg = 3 and hh = 2. Then, from Figure 4.17, we find

λ∆(µP(p, g, g)) = µP(p, g, g) and

λ∆(µP(q, h, g)) =

e e e

(p, h, g) (s, h, h) (q, h, k)

(q, k, g) (q, k, h) (s, k, k)

.

Since all letters in µP(p, g, g) belong to F , the array w(p,g,g)(i, j) is a square

of size 1 for every (i, j) ∈ [[0, hg − 1]]× [[0, hg − 1]]. We also obtain

w(q,h,g)(0, 0) =
e

(p, h, g)
, w(q,h,g)(0, 1) =

e

(s, h, h)
,

w(q,h,g)(0, 2) =
e

(q, h, k)
, w(q,h,g)(1, 0) = (q, k, g) ,

w(q,h,g)(1, 1) = (q, k, h) , w(q,h,g)(1, 2) = (s, k, h) .

Next, we show that if p is a robust state in Q, then the bidimensional

array λM (λ∆(µP(p))) is e-erasable. Proceed by contradiction and assume

that v := λM (λ∆(µP(p))) is not e-erasable. Then there must exist m,n ∈ N

such that we have vm,n = e, vm,n′ 6= e for some n′, and vm′,n 6= e for some m′.

By construction, the letter p′ = (µP (p))m,n = (q, k, ℓ) is mapped onto e if we

have either Tp′ = ∆ or Tp′ = M . For the same reason, the letters vm,n′ =

(q′, k, ℓ′) and vm′,n = (q′′, k′, ℓ) must be robust. Thus there exist letters

am′′ , an′′ ∈ Σ# such that we have δL(k, am′′) ∈ FL and δL(ℓ, an′′) ∈ FL.

Hence it follows that p′ = (q, k, ℓ) is robust since the letter (µP(p′))m′′,n′′

belongs to F , which is a contradiction.



4.6. Characterization of S-Automatic Arrays 117

Now, we are ready to introduce a bidimensional morphism µ on a new

alphabet Ξ and a coding ν ′ : Ξ → Q such that we have y = ν ′(µω(α)) for

some letter α ∈ Ξ. The alphabet of the new symbols is

Ξ = {α(p, i, j) | p = (q, k, ℓ) ∈ Q is robust, (i, j) ∈ [[0, hk − 1]]× [[0, hℓ − 1]]}.
For each letter α(p, i, j) in Ξ, if we have

(ρe(λM (wp(i, j))))m,n = (q′, k′, ℓ′) = p′,

for suitable (m,n) (that is, (m,n) < |ρe(λM (wp(i, j)))|), then we define

up,i,j(m,n) to be the array of shape (hk′ , hℓ′) satisfying

(up,i,j(m,n))i′,j′ = α((q′, k′, ℓ′), i′, j′) = α(p′, i′, j′)

for all (i′, j′) ∈ [[0, hk′ − 1]] × [[0, hℓ′ − 1]]. The image of α(p, i, j) under the

morphism µ : Ξ→ B2(Ξ) is defined to be the array

up,i,j(0, 0) up,i,j(0, 1) · · · up,i,j(0, s2 − 1)

up,i,j(1, 0) up,i,j(1, 1) · · · up,i,j(1, s2 − 1)
...

...
. . .

...

up,i,j(s1 − 1, 0) up,i,j(s1 − 1, 1) · · · up,i,j(s1 − 1, s2 − 1)

,

with (s1, s2) = |ρe(λM (wp(i, j)))|. Note that the above concatenation of the

arrays up,i,j(m,n) is well defined. Since all letters occurring in a row of

wp(i, j) are of the form (q′, k′, ℓ′) where the second component k′ is fixed, it

means that letters occurring in a same row of ρe(λM (wp(i, j))) have the same

second component k′. Hence we have |up,i,j(m,n)|b2 = |up,i,j(m,n′)|b2 = hk′ .

Thus the words up,i,j(m,n) and up,i,j(m,n′) can be concatenated in the di-

rection 2. The same holds for up,i,j(m,n) and up,i,j(m
′, n) in the direction 1.

The coding ν ′ : Ξ→ Q is defined by

ν ′(α(p, i, j)) = ρ(wp(i, j)). (32)

Note that, from the definition of wp(i, j), there is only one letter belonging

to F in wp(i, j). Hence the array λ(wp(i, j)) is e-erasable, since only one

letter is different from e.

Following the proof of [AS03, Theorem 7.7.4], we may prove by induction

on n that, for all robust letters p = (q, k, ℓ) and for all n ∈ N, we have

ν ′ ◦ µn(z) = ρ(µn+1
P (p)), (33)

with

z =

α(p, 0, 0) α(p, 0, 1) · · · α(p, 0, hℓ − 1)

α(p, 1, 0) α(p, 1, 1) · · · α(p, 1, hℓ − 1)
...

...
. . .

...

α(p, hk − 1, 0) α(p, hk − 1, 1) · · · α(p, hk − 1, hℓ − 1)

.
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Since µP is prolongable on p0 and x = ϑ(µP
ω(p0)) is a bidimensional infinite

word, the letter p0 must be robust. Furthermore, we have p0 ∈ F . There-

fore we obtain (wp0(0, 0))0,0 = (ρe(λM (wp0(0, 0))))0,0 = p0. Then, we find

(up0,0,0(0, 0))0,0 = α(p0, 0, 0). Consequently, the morphism µ is prolongable

on α := α(p0, 0, 0). From (33) it follows

∀n ∈ N, ν ′(µn+1(α)) =

[
ν ′(µn(up0,0,0(0, 0))) U

V W

]

=

[
ρ(µn+1

P (p0)) U

V W

]
,

where U, V and W are bidimensional arrays. Since ρ(µn+1
P (p0)) tends to y

as n tends to infinity, we have

ν ′(µω(α)) = ρ(µω
P(p0)) = y.

Hence, by defining the coding ν : Ξ→ Γ as ν = τ ◦ ν ′, we obtain

ν(µω(α)) = τ(y) = x.

This concludes the second step of the proof.

Example 4.6.22. Let us continue Example 4.6.21. We obtain

ρe(λM (λ∆(µP(q, h, g)))) =
(p, h, g) (s, h, h) (q, h, k)

(q, k, g) (q, k, h) (s, k, k)
.

Since w(p,g,g)(i, j) is a square of size 1 for every (i, j) ∈ [[0, 2]]× [[0, 2]], we have

|ρe(λM (w(p,g,g)(i, j)))| = (1, 1)

and

(ρe(λM (w(p,g,g)(i, j))))0,0 = w(p,g,g)(i, j) = (µP(p, g, g))i,j .

In particular, we have

(ρe(λM (w(p,g,g)(0, 0))))0,0 = (p, g, g);

(ρe(λM (w(p,g,g)(1, 0))))0,0 = (q, h, g).

Hence, u(p,g,g),0,0(0, 0) is an array of shape (hg, hg) = (3, 3) satisfying

(u(p,g,g),0,0(0, 0))i′ ,j′ = α((p, g, g), i′ , j′)

for all (i′, j′) ∈ [[0, 2]]× [[0, 2]]. We obtain that the image µ(α((p, g, g), 0, 0)) is

u(p,g,g),0,0(0, 0) =

α((p, g, g), 0, 0) α((p, g, g), 0, 1) α((p, g, g), 0, 2)

α((p, g, g), 1, 0) α((p, g, g), 1, 1) α((p, g, g), 1, 2)

α((p, g, g), 2, 0) α((p, g, g), 2, 1) α((p, g, g), 2, 2)

.

Similarly, we obtain |u(p,g,g),1,0(0, 0)| = (hh, hg) = (2, 3) and

(u(p,g,g),1,0(0, 0))i′ ,j′ = α((q, h, g), i′ , j′)
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for all (i′, j′) ∈ [[0, 1]] × [[0, 2]]. Therefore the image µ(α((p, g, g), 1, 0)) is

u(p,g,g),1,0(0, 0) =
α((q, h, g), 0, 0) α((q, h, g), 0, 1) α((q, h, g), 0, 2)

α((q, h, g), 1, 0) α((q, h, g), 1, 1) α((q, h, g), 1, 2)
.

Next, we apply the coding ν to the images above. In view of (32), we get

ν ′(µ(α((p, g, g), 0, 0))) = µP(p, g, g)

and

ν ′(µ(α((p, g, g), 1, 0))) =
(p, h, g) (s, h, h) (q, h, k)

(q, k, g) (q, k, h) (s, k, k)
.

Since we have ν = τ ◦ν ′, the infinite word ν(µω(α((p, g, g), 0, 0))) begins with

ν
(
µ(α((p, g, g), 0, 0)) ⊙1 µ(α((p, g, g), 1, 0))

)
=

p p q

q p p

q s s

p s q

q q s

,

which corresponds to the upper left corner of the infinite word depicted in

Figure 4.8.

Finally, we have to show that w = µω(α) is shape-symmetric, that is,

that |µ(wn,n)| is a square for all n ∈ N. First, observe that since we have

α = α(p0, 0, 0), where the second and the third component of p0 = (q0, ℓ0, ℓ0)

are equal, the letters (µω(α))n,n must be of the form α((q, k, k), i, i). Second,

if p = (q, k, k) is a robust letter belonging to Q, then µ(α(p, i, i)) is a square

for all i ∈ [[0, hk − 1]]. This completes the proof.





CHAPTER 5

Representing Real Numbers

5.1. Introduction

In [LR02] P. Lecomte and M. Rigo showed how to represent an interval

of real numbers in an abstract numeration system built over an exponen-

tial regular language satisfying some suitable conditions. In this chapter

we provide a wider framework and we show that their results can be ex-

tended to abstract numeration systems built on a language that is not nec-

essarily regular. Our aim is to provide a unified approach for representing

real numbers in various numeration systems encountered in the literature

[AFS08, DT89, LR01, Lot02]. The material of this chapter can be found

in [CLGR].

We will follow the structure given below. In Section 5.2 we consider

generalized abstract numeration systems S, that is, having a numeration

language L which is not necessarily regular. In particular, we extend the

computation of the numerical S-value of words in L to these generalized

abstract numeration systems.

Then, in Section 5.3, we show that the infinite words obtained as limits of

words of a language are exactly the infinite words having all its prefixes in the

corresponding prefix-closure. In view of this result, to represent real numbers,

we shall only consider abstract numeration systems built on a prefix-closed

language.

In Section 5.4 we show how to represent an interval [s0, 1] of real numbers

in a generalized abstract numeration system built on a language satisfying

some general hypotheses. To that aim, we divide [s0, 1] into particular subin-

tervals Iy for each word y that is a prefix of infinitely many words in L. Our

hypotheses are satisfied if and only if these subintervals Iy are well defined

and become smaller and smaller as the length of the corresponding prefixes y

becomes larger and larger. We also note that our formalism to represent

real numbers generalizes that of usual positional numeration systems like

integer base numeration systems defined in Example 1.6.2 on page 12 or

β-numerations introduced in Remark 3.2.4 on page 51.

121
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In Section 5.5 we show that the methods developed in Section 5.4 for

representing real numbers generalize those from [LR02], where converging

sequences of words were mainly considered.

Next, in Section 5.6, we apply some results from [BB97] to show that,

if the numeration language is context-free, then the representations of the

limit points of the subintervals Iy must be ultimately periodic.

Finally, in Section 5.7, we give three applications of our methods, which

were not settled by the results of [LR02]. First, we consider a non-regular

language L such that its prefix-closure Pref(L) is regular. In a second part we

illustrate the representation of real numbers in the generalized abstract nu-

meration system built on the language of the prefixes of Dyck words. In this

case neither the Dyck language D nor its prefix-closure Pref(D) is recognized

by a finite automaton. We compute the complexity functions of the latter

language and we show that we can apply our results to the corresponding

abstract numeration system. The third application that we consider is the

abstract numeration system built on the language L3/2 recently introduced

in [AFS08]. We show that our method, up to some scaling factor, leads to

the same representation of real numbers as that given in [AFS08].

5.2. Generalized Numeration Systems

In this chapter we consider abstract numeration systems S = (L,Σ, <)

where L is not necessarily regular. In this case, to avoid any confusion, we

will refer to them as generalized abstract numeration systems.

Example 5.2.1. Let us consider the language

L = {w ∈ {a, b}∗ : ||w|a − |w|b| ≤ 1}
and the generalized abstract numeration system S = (L, {a, b}, a < b). The

minimal automaton of L is given in Figure 5.1. Note that L is context-free

0 1 2 3-1-2-3
a a a

bbbbbb

a a a a

bb

a

Figure 5.1. The minimal automaton of L.

but not regular. Therefore its minimal automaton must be infinite. The first

few words in L are ε, a, b, ab, ba, aab, aba, abb, baa, bab, bba, aabb, abab, abba.

For instance, we have repS(5) = aab and valS(aabb) = 11.

The next result is another formulation of Proposition 1.7.6 on page 18

but extended to any language.
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Proposition 5.2.2. Let S = (L,Σ, <) be a generalized abstract numeration

system and let A = (Q,Σ, δ, q0, F ) be a deterministic automaton recogniz-

ing L. The S-value of a word w in L is given by

valS(w) = vq0(|w| − 1) +

|w|−1∑

i=0

∑

a<w[i]

uq0·w[0,i−1]a(|w| − i− 1).

5.3. Languages with Uncountable Adherence

One can endow Σω ∪ Σ∗ with a metric space structure as follows.

Definition 5.3.1. Let Σ be an alphabet. The usual distance d over Σω

is defined as follows. For two distinct infinite words x and y over Σ, we

define d(x, y) = 2−ℓ(x,y), where ℓ(x, y) = inf{i ∈ N | x[i] 6= y[i]} denotes

the length of the largest common prefix between x and y. Furthermore, we

set d(x, x) = 0 for all x ∈ Σω. This distance can be extended to Σω ∪ Σ∗

by replacing finite words z over Σ by z#ω ∈ (Σ ∪ {#})ω, where # is a

new letter, not belonging to the alphabet Σ. A sequence (w(n))n≥0 of words

over Σ converges to a word w over Σ if d(w(n), w) tends to 0 as n tends

to +∞. We use notation such as w(n) → w or limn→+∞ w(n) = w to mean

that (w(n))n≥0 converges to w.

This distance d is ultrametric1, that is, it satisfies

∀x, y, z ∈ Σω ∪ Σ∗, d(x, y) ≤ max{d(x, z), d(y, z)}.

Example 5.3.2. Consider the finite words x = 0012012 and y = 00021,

and the infinite word z = 0002010101 · · · over the alphabet {0, 1, 2}. We

have d(x, y) = d(x, z) = 2−2 = 1
4 and d(y, z) = 2−4 = 1

16 . The se-

quence (aac(db)nca)n≥0 of words over {a, b, c, d} converges to the infinite

word aac(db)ω .

The notion of adherence was introduced in [Niv78] and was extensively

studied in [BN80].

Definition 5.3.3. Let L be a language over an alphabet Σ. The adherence

of L, denoted by Adh(L), is the ω-language of the infinite words over Σ

whose prefixes are the prefixes of words in L:

Adh(L) = {w ∈ Σω | Pref(w) ⊆ Pref(L)}.
1This notion is closely related to that of non-Archimedean absolute value mentioned

in Section 3.3 on page 62. Indeed, if N is a non-Archimedean absolute value, then the

distance d(x, y) = N(x − y) induced is ultrametric.
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Note that Adh(L) is empty if and only if L is finite. Indeed, if L if

infinite, from König’s lemma2, there is at least an infinite word belonging to

Adh(L). For the usual topology on Σω ∪ Σ∗, which has been defined above,

the closure L̄ of a language L over Σ satisfies the equality L̄ = L ∪Adh(L).

The following lemma provides a characterization of the adherence of a

language. This result was proved in [BN80] but we restate the proof for the

sake of thoroughness.

Lemma 5.3.4. Let L be a language over an alphabet Σ. The adherence of L

is the ω-language of the infinite words over Σ that are limits of words in L:

Adh(L) = {w ∈ Σω | ∃(w(n))n≥0 ∈ LN, w(n) → w}.

Proof. Take an infinite word w in Adh(L). Then, from the definition,

for all n ∈ N, we have w[0, n − 1] ∈ Pref(L). Thus, for all n ∈ N, there

exists a finite word z(n) over Σ such that w(n) := w[0, n−1]z(n) belongs to L.

Obviously we have w(n) → w. Consequently, w belongs to the right-hand

side set in the statement. Conversely, take an infinite word w which is the

limit of a sequence (w(n))n≥0 of words in L. Then, for all ℓ ∈ N, there exists

n ∈ N such that we have w[0, ℓ − 1] ∈ Pref(w(n)) ⊆ Pref(L). This shows

that w belongs to Adh(L). �

The notion of center of a language can be found in [BN80].

Definition 5.3.5. Let L be a language over an alphabet Σ. The center of L,

denoted by Center(L), is the prefix-closure of the adherence of L:

Center(L) = Pref(Adh(L)).

Note that the center of a language contains only finite words. The next

lemma gives a characterization of the center of a language. This result was

proved in [BN80] but, again, we have chosen to restate the proof here in

order to be thorough.

Lemma 5.3.6. Let L be a language over an alphabet Σ. The center of L is

the language of the prefixes of an infinite number of words in L:

Center(L) = {w ∈ Pref(L) | w−1L is infinite}.

2König’s lemma states that, in any infinite tree in which any node has a finite number

of sons, there is at least an infinite path. In other words, if L is an infinite prefix-closed

language over an alphabet Σ, then there is an infinite word over Σ having all its prefixes

in L. For instance, see the handbooks [Ber70, GR01].



5.3. Languages with Uncountable Adherence 125

Proof. Take a word w in Center(L). By definition there exists a infinite

word z over Σ such that wz belongs to Adh(L). Then, for all n ∈ N, the

word w · z[0, n − 1] belongs to Pref(L). Thus, for all n ∈ N, there exists a

finite word y(n) over Σ such that w(n) := w · z[0, n − 1] · y(n) belongs to L.

Furthermore, there are infinitely many such words w(n). This shows that w

belongs to the right-hand side set in the statement. Conversely, let w be

a prefix of infinitely many words in L. Hence there exists a letter a in Σ

such that wa is the prefix of infinitely many words in L. By iterating this

argument, there exists a sequence (an)n≥0 of letters in Σ such that wa0 · · · an

belongs to Pref(L) for all n ∈ N. This implies that the infinite word wa0a1 · · ·
belongs to Adh(L). Hence w belongs to Center(L). �

Definition 5.3.7. If L is a language over an alphabet Σ, then we let

L∞ = {w ∈ Σω | ∃∞n ∈ N, w[0, n − 1] ∈ L}

denote the ω-language of infinite words over Σ having infinitely many prefixes

in L, where the notation ∃∞n means “there exist infinitely many n”.

Again, observe that L∞ is empty if and only if L is finite. The following

lemma is self-evident.

Lemma 5.3.8. For any language L, we have L∞ ⊆ Adh(L). Furthermore,

if L is a prefix-closed language, then we have

L∞ = Adh(L) = {w ∈ Σω | ∀n ∈ N, w[0, n − 1] ∈ L}.

Let us recall two results from [LR02].

Proposition 5.3.9. Let L be a regular language. The adherence Adh(L)

is uncountably infinite if and only if, in any DFA accepting L, there exist

at least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1), with r, s ≥ 2,

starting from the same accessible and coaccessible state p1 = q1.

Proposition 5.3.10. Let L be a regular language. The ω-language L∞ is

uncountably infinite if and only if, in any DFA accepting L, there exist at

least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1), with r, s ≥ 2,

starting from the same accessible state p1 = q1 and such that each of them

contains at least a final state.

Once again, let us recall that the class of regular languages splits into

two parts: the exponential regular languages and the polynomial regular

languages. From Theorem 1.5.4 on page 10 we know that the polynomial
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regular languages over an alphabet Σ are exactly those that are finite unions

of languages of the form

xy∗1z1y
∗
2 · · · y∗kzk,

with k ∈ N and x, yi, zi ∈ Σ∗ for all i ∈ [[1, k]]. The following result is thus a

straightforward consequence of Proposition 5.3.9.

Corollary 5.3.11. If L is a regular language, then the following assertions

are equivalent:

• Adh(L) is uncountable;

• L is exponential;

• Pref(L) is exponential.

If the language L is not regular, then only the sufficient conditions of

Proposition 5.3.9 and Proposition 5.3.10 hold true.

Proposition 5.3.12. Let A be a (possibly infinite) deterministic automa-

ton accepting a language L. If there exist in A at least two distinct cycles

(p1, . . . , pr, p1) and (q1, . . . , qs, q1), with r, s ≥ 2, starting from the same ac-

cessible and coaccessible state p1 = q1, then Adh(L) is uncountably infinite

and L is exponential.

Proposition 5.3.13. Let A be a (possibly infinite) deterministic automa-

ton accepting a language L. If there exist in A at least two distinct cycles

(p1, . . . , pr, p1) and (q1, . . . , qs, q1), with r, s ≥ 2, starting from the same ac-

cessible state p1 = q1 and such that each of them contains at least a final

state, then L∞ is uncountably infinite and L is exponential.

There exist non-regular exponential languages L with an uncountable

associated ω-language L∞, and consequently also with an uncountable ad-

herence Adh(L), that are recognized by deterministic automata without dis-

tinct cycles satisfying the conditions of Proposition 5.3.12. For instance, see

Example 5.7.3 of Section 5.7 regarding the 3
2 -number system. Note that the

corresponding trim minimal automaton depicted in Figure 5.7 has an infinite

number of final states. In fact, by considering automata having a finite set

of final states, we recover the necessary condition of Proposition 5.3.10.

Proposition 5.3.14. Let L be a language recognized by a (possibly infi-

nite) deterministic automaton A having a finite set of final states. The ω-

language L∞ is uncountably infinite if and only if there exist in A at least

two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1), with r, s ≥ 2, starting
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from the same accessible state p1 = q1 and such that each of them contains

at least a final state.

Proof. In view of Proposition 5.3.13, we only have to show that the

condition is necessary. We let q0 denote the initial state of A. Since there is

only a finite number of final states, if w belongs to L∞, then there exist a final

state f and infinitely many integers n such that we have q0 ·w[0, n− 1] = f .

If the automaton A does not contain such distinct cycles, then this implies

that any word in L∞ is of the form xyω, where x, y are finite words. Since

there is a countable number of such words, L∞ would be a countable set. By

contraposition, the conclusion follows. �

Corollary 5.3.15. Let L be a language recognized by a (possibly infinite)

deterministic automaton A having a finite set of final states. If the ω-lan-

guage L∞ is uncountably infinite, then L is exponential.

Remark 5.3.16. Any deterministic automaton recognizing a non-regular

prefix-closed language has an infinite number of final states. This is because,

in such an automaton, all coaccessible states are final.

There exist exponential (and prefix-closed) languages L with a countable,

and even finite, adherence Adh(L). We give an example of such a language.

Example 5.3.17. Let us consider

L = {w ∈ {a, b}∗ | ∃u ∈ {a, b}∗ : w = a⌊|w|/2⌋u}.

The minimal automaton of this language is depicted in Figure 5.2. Note that

this automaton contains no distinct cycles as in Proposition 5.3.12. We have

uL(n) =

{
2

n
2 , if n ≡ 0 (mod 2);

2
n+1

2 , if n ≡ 1 (mod 2).

Also, we have Adh(L) = L∞ = {aω}.

a a a

b b b b

a, ba, ba, ba, b

a, b

a

a, b

Figure 5.2. The minimal automaton of L.
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5.4. Representation of Real Numbers

In the framework of [LR02] a real number is represented as a limit of a se-

quence of words in a regular language L. Observe that in this context, thanks

to Lemma 5.3.4, the set of possible representations is Adh(L). Therefore one

could consider abstract numeration systems built on the prefix-closure of the

numeration language instead of the one built on the numeration language

itself; see also Remarks 5.4.4 and 5.4.5 below. This point of view is relevant

if we compare it with the framework of the standard integer base numeration

systems. In these systems the numeration language is of the form

Lb = {1, 2, . . . , b− 1}{0, 1, . . . , b− 1}∗ ∪ {ε}, for b ≥ 2,

which is, of course, a prefix-closed language. Note that this is also the case

for non-standard numeration systems like β-numeration systems and substi-

tutive numeration systems [DT89, Lot02]. Adopting this new framework,

we will only consider abstract numeration systems built on prefix-closed lan-

guages. Therefore, to represent real numbers, we will no longer distinguish

abstract numeration systems built on two distinct languages L and M having

the same prefix-closure Pref(L) = Pref(M).

Let S = (L,Σ, <) be a generalized abstract numeration system built on

a prefix-closed language L. Let A = (Q,Σ, δ, q0, F ) be an accessible deter-

ministic automaton recognizing L. We fix these notation once and for all

throughout this section. Furthermore, we make the following three assump-

tions:

Hypotheses.

(H1) The set Adh(L) is uncountable;

(H2) ∀w ∈ Σ∗, ∃rw ≥ 0, limn→+∞
uq0·w(n−|w|)

vq0 (n) = rw;

(H3) ∀w ∈ Adh(L), limℓ→+∞ rw[0,ℓ−1] = 0.

Observe that, for all w 6∈ Center(L), we have rw = 0. Also, note that,

since we have assumed that L is a prefix-closed language, from Lemma 5.3.8

we have Adh(L) = L∞.

Notation. We set r0 = rε and

s0 = 1− r0 = lim
n→+∞

vq0(n− 1)

vq0(n)
.

By convention, for any word w and any state q, we set w[0, n] = ε and

vq(n) = 0 for n < 0.
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Remark 5.4.1. In [LR02] the authors considered regular languages L with

uncountably infinite Adh(L) such that, for each state q of a DFA recogniz-

ing L, either Lq is finite, or we have uq(n) ∼ Pq(n)θn
q (n → +∞), with

Pq ∈ R[x] and θq ≥ 1. One can note that such languages satisfy the hy-

potheses (H1), (H2) and (H3) above. For all states q and all ℓ ∈ N, it can be

shown that we have

lim
n→+∞

uq(n− ℓ)

vq0(n)
=

(θq0 − 1) aq

θℓ+1
q0

with θq0 > 1 and aq := limn→+∞
uq(n)
uq0 (n) . Since there is only a finite number

of states, this is sufficient to verify our assumptions. Also, note that, for the

integer base numeration systems, the three hypotheses are directly satisfied.

We shall represent real numbers by infinite words w in Adh(L) by con-

sidering the corresponding numerical limit

lim
n→+∞

valS(w[0, n − 1])

vq0(n)
. (34)

Our aim is to show that, for all w ∈ Adh(L), the limit (34) exists; this is

Proposition 5.4.10.

Remark 5.4.2. This way of representing integers generalizes the integer

base case. The decimal representation of 11
13 is 0.(846153)ω . It is obtained by

considering the following consecutive approximations:

8

10
,

84

100
,

846

1000
,

8461

10000
,

84615

100000
, . . . .

Note that, for all integers b ≥ 2 and all n ∈ N, we have vLb
(n) = bn.

Thus, the denominator and the numerator of the nth fraction correspond to

vL10(n) and to the numerical value in base 10 of the prefix of length n of

the infinite word (846153)ω respectively. The binary representation of 11
13 is

0.(110110001001)ω . It is obtained by considering the following consecutive

approximations:

1

2
,

3

4
=

6

8
,

13

16
,

27

32
=

54

64
=

108

128
=

216

256
,

433

512
= 0.845703125, . . . .

Again, the nth denominator of this sequence of approximations is vL2(n)

and the corresponding numerator is the numerical value in base 2 of the

prefix of length n of the infinite word (110110001001)ω . For instance, we

have 108 = valU2(1101100).

Note that this also generalizes the formalism of β-numeration systems.

Take a real number β > 1. With the same notation as in Remark 3.2.4 on

page 51, remember that the numeration alphabet is ∆β = [[0, ⌈β⌉−1]]. Hence
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we have v∆β
(n) = ⌈β⌉n for all n ∈ N. Next, let (ci)i≥1 be a β-representation

of a real number x ∈ [0, 1], that is, a sequence (ci)i≥1 that satisfies

x =

+∞∑

i=1

ci β
−i, with ci ∈ ∆β ∀i ∈ N \ {0}.

Define valβ(w) =
∑|w|−1

i=0 w[i]β|w|−i−1 for all w ∈ ∆∗
β. Again, the numerical

value of x can be obtained by considering the consecutive approximations:

valβ(c1)

β
,

valβ(c1c2)

β2
,

valβ(c1c2c3)

β3
, . . . .

In the next remark and in Example 5.7.2 we will make use of the following

well-known result from [Bou07, Ch. V.4].

Proposition 5.4.3. Let (xn)n≥0 and (yn)n≥0 be two sequences of non-nega-

tive real numbers. If the series
∑+∞

n=0 xn is not bounded, then we have

xn ∼ yn ⇒
n∑

i=0

xi ∼
n∑

i=0

yi (n→ +∞). (35)

If the series
∑+∞

n=0 xn is bounded, then we have

xn ∼ yn ⇒
+∞∑

i=n

xi ∼
+∞∑

i=n

yi (n→ +∞). (36)

Remark 5.4.4. If the abstract numeration system is built on a language

that is not prefix-closed, we cannot guarantee that the limit (34) exists. For

instance, consider the abstract numeration system built on the language L

in Example 5.2.1, which is not prefix-closed. The sequences ((ab)n)n≥0 and

((ab)na)n≥0 of words in L converge to the same infinite word (ab)ω but the

corresponding numerical sequences do not converge to the same real number.

More precisely, using the notation of Example 5.2.1, we show

lim
n→+∞

valS((ab)n)

v0(2n)
=

3

4
and lim

n→+∞

valS((ab)na)

v0(2n + 1)
=

3

5
. (37)

Consequently, the limit

lim
n→+∞

valS((ab)ω[0, n − 1])

v0(n)

does not exist. Let us prove (37). This fact essentially comes from the

staircase behavior of (u0(n))n≥0:

u0(n) =

{ (n
n
2

)
, if n ≡ 0 (mod 2);

2
( n

n−1
2

)
, if n ≡ 1 (mod 2).
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5 10 15 20

2

4
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8

10

12

Figure 5.3. The first 20 values of u0(n) up to a logarithmic scaling.

In particular this implies that limn→+∞
v0(n−1)
v0(n) does not exist. Using

Stirling’s formula3, we obtain

u0(2n) ∼ 1√
π

n− 1
2 4n and u0(2n + 1) ∼ 4√

π
n− 1

2 4n (n→ +∞). (38)

Then, using (35) and
∑n

i=0 i−1/24i ∼ 1
3n−1/24n+1 (n→ +∞), it follows

v0(2n) ∼ 8

3
√

π
n− 1

2 4n and v0(2n − 1) ∼ 5

3
√

π
n− 1

2 4n (n→ +∞). (39)

Hence we obtain

lim
n→+∞

v0(2n − 1)

v0(2n)
=

5

8
and lim

n→+∞

v0(2n)

v0(2n + 1)
=

2

5
.

From Proposition 5.2.2 we then obtain

valS((ab)n)

v0(2n)
=

v0(2n− 1)

v0(2n)
+

∑n−1
i=0 u2(2i)

v0(2n)
,

valS((ab)na)

v0(2n + 1)
=

v0(2n)

v0(2n + 1)
+

∑n−1
i=0 u2(2i + 1)

v0(2n + 1)

for all n ∈ N. Observe that we have

u2(2n) =

(
2n

n− 1

)
∼ u0(2n) (n→ +∞),

u2(2n + 1) =

(
2n + 1

n

)
+

(
2n + 1

n− 1

)
∼ u0(2n + 1) (n→ +∞).

Therefore, in view of (35), (38), and (39), it follows

lim
n→+∞

∑n−1
i=0 u2(2i)

v0(2n)
=

1

8
and lim

n→+∞

∑n−1
i=0 u2(2i + 1)

v0(2n + 1)
=

1

5

3n! ∼
√

2π e−n nn+ 1

2 (n → +∞)
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and we obtain the two limits of (37).

Remark 5.4.5. Considering prefix-closed languages not only avoids numer-

ical convergence problems as in Remark 5.4.4 but also makes it possible to

get rid of problems arising from languages L such that there are infinitely

many non-negative integers n for which we have L ∩ Σn = ∅ as discussed

in [LR02, Remark 4].

Definition 5.4.6. If w is an infinite word in Adh(L) and x is a real number

satisfying

lim
n→+∞

valS (w[0, n − 1])

vq0(n)
= x,

then we say that w is an S-representation of x.

Example 5.4.7. Let us consider the generalized abstract numeration system

built on the prefix-closure of the Dyck language that will be described in

Example 5.7.2. In Table 5.1 we give some numerical approximations. Further

on, we will be able to compute

lim
n→+∞

valS((aab)ω[0, n − 1])

vq0(n)
=

39

49
= 0.79592 · · · .

w valS(w) vq0(|w|) valS(w)
vq0 (|w|)

a 1 2 0.50000

aa 2 4 0.50000

aab 5 7 0.71429

aaba 9 13 0.69231

aabaa 17 23 0.73913

aabaab 32 43 0.74419

aabaaba 60 78 0.76923

aabaabaa 112 148 0.75676

aabaabaab 213 274 0.77737

aabaabaaba 404 526 0.76806

aabaabaabaa 771 988 0.78036

aabaabaabaab 1479 1912 0.77354

aabaabaabaaba 2841 3628 0.78308

aabaabaabaabaa 5486 7060 0.77705

aabaabaabaabaab 10591 13495 0.78481

Table 5.1. Some numerical approximations.
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0.780

0.785

0.790
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Figure 5.4. The first 100 values of valS((aab)ω [0,n−1])
vq0 (n) .

Note that, for all w ∈ Adh(L) and n ∈ N, we have

valS(w[0, n − 1]) ∈ [vq0(n− 1),vq0(n)− 1].

Therefore the represented real numbers x must belong to the interval [s0, 1].

Let us divide [s0, 1] into some subintervals Iy for all prefixes y of infinitely

many words in L, i.e., for all y ∈ Center(L). First, observe that, for all

ℓ ∈ N, if the integer n ≥ ℓ is large enough, then all words in L of length n

have a prefix in Center(L) ∩ Σℓ. Therefore, for all y ∈ Center(L) and for

every large enough integer n ≥ |y|, the number of words of length n in L

having a prefix of length |y| lexicographically less than y is equal to
∑

x<y
x∈Center(L)∩Σ|y|

uq0·x(n− |y|).

Consequently, in the latter conditions, the S-value of the first word of length n

in L having y as a prefix is equal to

vq0(n− 1) +
∑

x<y
x∈Center(L)∩Σ|y|

uq0·x(n− |y|).

Now, for each y ∈ Center(L) and each integer n ≥ |y|, define

αy,n =
vq0(n− 1)

vq0(n)
+

∑

x<y
x∈Center(L)∩Σ|y|

uq0·x(n− |y|)
vq0(n)

and

Iy,n =

[
αy,n, αy,n +

uq0·y(n− |y|)
vq0(n)

]
.
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In view of Hypothesis (H2), for all y ∈ Center(L), we may define

αy = lim
n→+∞

αy,n = s0 +
∑

x<y
x∈Center(L)∩Σ|y|

rx.

Then, for all y ∈ Center(L), we let Iy denote the limit interval:

Iy = lim
n→+∞

Iy,n = [αy, αy + ry].

Furthermore, we set Iy = ∅ for all y ∈ L \Center(L). From [LR02] we know

that

∀ℓ ∈ N, [s0, 1] =
⋃

y∈Center(L)∩Σℓ

Iy

and

∀ y, z ∈ Σ∗, Iyz ⊆ Iy. (40)

More precisely, if a1, . . . , ak are the letters in Σ and if the order on Σ is given

by a1 < · · · < ak, then, for all y ∈ Center(L) and all j ∈ [[1, k]] such that we

have yaj ∈ Center(L), one has

Iyaj
=

[
αy +

j−1∑

i=1

ryai
, αy +

j∑

i=1

ryai

]
. (41)

Remark 5.4.8. Take y ∈ Center(L) and let w be a word in Σ∗ having y as

a prefix and such that |w| is large enough so that every word of length |w|
has a prefix in Center(L) ∩ Σ|y|. Then, from Proposition 5.2.2, it follows

valS(w) = vq0(|w| − 1) +
∑

x<y
x∈Center(L)∩Σ|y|

uq0·x(|w| − |y|)

+

|w|−1∑

i=|y|

∑

a<w[i]

uq0·w[0,i−1]a(|w| − i− 1). (42)

Lemma 5.4.9. For all w ∈ Adh(L), the following limit exists

lim
ℓ→+∞

αw[0,ℓ−1].

Proof. First, note that, for all non-negative integers ℓ ∈ N, we have

w[0, ℓ − 1] ∈ Center(L) from the definition of the center of a language. On

the one hand, observe that (40) implies αw[0,ℓ−1] ≤ αw[0,ℓ] for all ℓ ∈ N. On

the other hand, we also have αw[0,ℓ−1] ≤ 1 for all ℓ ∈ N. Hence (αw[0,ℓ−1])ℓ≥0

is a bounded and non-decreasing sequence. So it must converge. �

Notation. For all w ∈ Adh(L), we define αw = limℓ→+∞ αw[0,ℓ−1].
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Note that we have αw ≥ αw[0,ℓ−1] for all ℓ ∈ N. Now, we prove that the

limit (34) exists.

Proposition 5.4.10. For all w ∈ Adh(L), we have

lim
n→+∞

valS(w[0, n − 1])

vq0(n)
= αw.

Proof. Take w ∈ Adh(L). In view of Remark 5.4.8 and from the defi-

nition of the αy,n’s, we obtain that, for all ℓ ∈ N and all integers n ≥ ℓ large

enough with respect to ℓ, we have

αw[0,ℓ−1],n ≤
valS(w[0, n − 1])

vq0(n)
< αw[0,ℓ−1],n +

uq0·w[0,ℓ−1](n− ℓ)

vq0(n)
. (43)

Now, choose any ε > 0. From the definition of the αy’s and from Hypothe-

sis (H2), we know that, for all ℓ ∈ N, there exists N(ℓ) ≥ ℓ such that, for all

integers n ≥ N(ℓ), we have

αw[0,ℓ−1] −
ε

2
<

valS(w[0, n − 1])

vq0(n)
< αw[0,ℓ−1] + rw[0,ℓ−1] +

ε

2
.

From Hypothesis (H3) and Lemma 5.4.9 there also exists k ∈ N such that,

for all integers ℓ ≥ k, we have

rw[0,ℓ−1] <
ε

2
and 0 ≤ αw − αw[0,ℓ−1] <

ε

2
.

It follows that, for all integers n ≥ N(k), we have

αw − ε < αw[0,k−1] −
ε

2
<

valS(w[0, n − 1])

vq0(n)
< αw + ε.

Hence the proposition is proved. �

Now, we are ready to introduce the S-value of an infinite word in Adh(L).

Thus, the definition of the map valS : L→ N extends to L ∪Adh(L).

Definition 5.4.11. The application valS : Adh(L) → [s0, 1] : w 7→ αw is

called the numerical S-value function. For all words w in Adh(L), we say

that valS(w) is the numerical S-value (or simply the S-value) of w.

Proposition 5.4.12. For all w, z ∈ Adh(L) satisfying w ≤lex z, one has

valS(w) ≤ valS(z).

Proof. Let w, z be infinite words in Adh(L) satisfying w <lex z. We

deduce from (41) that if we have k = inf{i ∈ N |w[i] < z[i]}, then, for all

integers ℓ ≥ k, we have αw[0,ℓ−1] ≤ αz[0,ℓ−1]. By letting ℓ tend to infinity in

both sides of this inequality, we have the conclusion. �
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Now, let us recall a result from [BB97].

Lemma 5.4.13. [BB97] If K is an infinite language over a totally ordered

alphabet, then Adh(K) contains a minimal element with respect to the lexi-

cographical order.

This leads to the following definition.

Definition 5.4.14. For all y ∈ Center(L), we let my (resp. My) denote the

minimal (resp. maximal) word in Adh(L) with respect to the lexicographical

order having y as a prefix.

Note that, for all y ∈ Center(L), we have my = yu (resp. My = yv),

where u (resp. v) is the minimal (resp. maximal) word in Adh(y−1L) with

respect to the lexicographical order.

Example 5.4.15. Continuing Example 5.2.1, we have maab = aabaω and

Maab = aabω. Further on, we will see that for the Dyck language, we have

maab = aabaω and Maab = aabb(ab)ω; see Example 5.7.2.

For each y ∈ Center(L), these minimal and maximal words my and My

respectively are representations of the limit points of the corresponding in-

terval Iy, as shown by the following lemma.

Lemma 5.4.16. For all y ∈ Center(L), we have

valS(my) = αy and valS(My) = αy + ry.

Proof. Take y ∈ Center(L). From (41) it follows that, for all inte-

gers ℓ ≥ |y|, we have αmy [0,ℓ−1] = αy and αMy[0,ℓ−1] + rMy [0,ℓ−1] = αy + ry.

Therefore we obtain that, for all integers ℓ ≥ |y|, we have

αy ≤ valS(my) ≤ αy + rmy [0,ℓ−1];

αy + ry − rMy[0,ℓ−1] ≤ valS(My) ≤ αy + ry.

We conclude by using Hypothesis (H3). �

Proposition 5.4.17. The S-value function valS : Adh(L) → [s0, 1] is uni-

formly continuous.

Proof. Take w, z ∈ Adh(L). Assume d(w, z) = 2−ℓ. We thus have

w[0, ℓ− 1] = z[0, ℓ− 1]. Then, from Lemma 5.4.16, the S-values valS(w) and
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valS(z) belong to Iw[0,ℓ−1]. Hence, from Hypothesis (H3), we have

| valS(w) − valS(z)| ≤ rw[0,ℓ−1] → 0 as ℓ→ +∞.

This finishes the proof. �

Using Lemma 5.4.16, we are able to give an expression of the numerical

S-value of a word in Adh(L).

Proposition 5.4.18. For all w ∈ Adh(L), we have

valS(w) = s0 +
+∞∑

i=0

∑

a<w[i]

rw[0,i−1]a.

Proof. Take w ∈ Adh(L). From the definition of the adherence, the

prefixes w[0, ℓ − 1] belong to Center(L) for all ℓ ∈ N. Recall that we have

rw = 0 for all w 6∈ Center(L). Therefore, using (41), we obtain

αw[0,ℓ−1] = s0 +
∑

x<w[0,ℓ−1]

x∈Center(L)∩Σℓ

rx

= s0 +
ℓ−1∑

i=0

∑

a<w[i]

∑

|y|=ℓ−i−1

rw[0,i−1]ay

= s0 +

ℓ−1∑

i=0

∑

a<w[i]

rw[0,i−1]a

for all ℓ ∈ N. From Lemma 5.4.9 and by letting ℓ tend to infinity in the

latter equality, we obtain the expected result. �

5.5. Link with Converging Sequences of Words

The following proposition links together the framework of [LR02], where

converging sequences of words were mainly considered, and the framework

that has been developed in the previous section to represent real numbers.

Proposition 5.5.1. Let S = (Pref(L),Σ, <) be a generalized abstract nu-

meration system built on the prefix-closure of a language L over an alpha-

bet Σ and let A = (Q,Σ, δ, q0, F ) be a deterministic automaton recognizing

Pref(L). Assume that Pref(L) satisfies Hypotheses (H1), (H2), and (H3)

above. Then, for all sequences of words (w(n))n≥0 ∈ LN converging to w, we

have

lim
n→+∞

valS(w(n))

vq0(|w(n)|) = valS(w).
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Proof. Let (w(n))n≥0 ∈ LN be a sequence of words converging to w.

Thanks to Lemma 5.3.4, this implies Pref(w) ⊆ Pref(L), that is, w belongs

to Adh(L). For any ℓ ∈ N, there exists N(ℓ) such that, for all integers

n ≥ N(ℓ), we have w(n)[0, ℓ − 1] = w[0, ℓ − 1] and any word in L of length

greater than or equal to |w(n)| has a prefix in Center(L)∩Σℓ. Then, in view

of Remark 5.4.8 and (43), for all ℓ ∈ N and for all integers n ≥ N(ℓ), we

obtain
∣∣∣∣∣
valS

(
w[0, |w(n)| − 1]

)

vq0(|w(n)|) − valS
(
w(n)

)

vq0(|w(n)|)

∣∣∣∣∣ ≤
uq0·w[0,ℓ−1](|w(n)| − ℓ)

vq0(|w(n)|) .

Choose any ε > 0. From Hypothesis (H2), for all ℓ ∈ N, there exists M(ℓ)

such that, for all integers n ≥M(ℓ), we have

uq0·w[0,ℓ−1](|w(n)| − ℓ)

vq0(|w(n)|) < rw[0,ℓ−1] +
ε

2
.

From Hypothesis (H3) there exists k ∈ N such that, for all integers ℓ ≥ k, we

have rw[0,ℓ−1] < ε
2 . Then, for all integers n ≥ max{N(k),M(k)}), we have

∣∣∣∣∣
valS

(
w[0, |w(n)| − 1]

)

vq0(|w(n)|) − valS
(
w(n)

)

vq0(|w(n)|)

∣∣∣∣∣ < ε.

This completes the proof. �

5.6. Ultimately Periodic Representations

In this section we use results from [BB97] to obtain syntactical prop-

erties about the representations of the endpoints of the intervals Iy, for

y ∈ Center(L), whenever L is a language satisfying the assumptions of Sec-

tion 5.4.

Proposition 5.6.1. [BB97] If L is an infinite context-free language over

a totally ordered alphabet, then the minimal word of Adh(L) is ultimately

periodic and can be effectively computed.

Of course, this result can be adapted to the case of the maximal word of

the adherence of a language. Thus we have the following corollary.

Corollary 5.6.2. Let L be an infinite context-free language over a totally

ordered alphabet. For all y ∈ Center(L), the infinite words my and My

are ultimately periodic and can be effectively computed. In particular, the

languages Pref(my) and Pref(My) are regular.
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Proof. Take y ∈ Center(L). We only show the “minimal” case, the

other one being similar. By definition, my is the minimal word of the ad-

herence Adh(y(y−1L)), where y(y−1L) is the language of the words in L

beginning with y. Since L is an infinite context-free language and y belongs

to Center(L), y(y−1L) is an infinite context-free language as well. Then,

from Proposition 5.6.1, my is an ultimately periodic infinite word. For the

second part of the statement, observe that if an infinite word w is ultimately

periodic, then its prefix language Pref(w) is regular. �

Note that, in general, there exist ultimately periodic representations that

are not endpoints of any interval Iy, for y ∈ Center(L). For instance, in the

integer base 10 numeration system, the U10-representation of 1
3 is 0.33333 · · ·

and 1
3 is not the endpoint of any interval

[
k

10ℓ ,
k+1
10ℓ

]
, with ℓ in N \ {0} and k

in [[0, 10ℓ − 1]].

Let us also mention the following interesting result from [BB97]. Re-

member that the minimal language Min<(L) of a language L over a totally

ordered alphabet is the set of the minimal words of each length with respect

to the induced lexicographical order; see Definition 1.2.4 on page 4.

Proposition 5.6.3. [BB97] Assume that L is an infinite language that sat-

isfies L = Center(L). Then we have Min<(L) = Pref(mε).

Corollary 5.6.4. If L is a context-free language satisfying L = Center(L),

then Min<(L) is regular.

To finish this section, it is probably worth mentioning here the main

theorem from [BB97], which has become well-known today.

Theorem 5.6.5. [BB97] If L is a context-free language, then so Min<(L) is.

Again note that all these results can easily be adapted to the maximal

language of a language L.

5.7. Applications

In this section we apply our techniques to three examples to represent

real numbers in situations that were not settled in [LR02]. The first one

demonstrates how it can be easier to consider the prefix-closure of a language

instead of the language itself; compare this example with Remark 5.4.4.

Example 5.7.1. Once again, consider the language

L = {w ∈ {a, b}∗ | ||w|a − |w|b| ≤ 1}



140 Chapter 5. Representing Real Numbers

from Example 5.2.1. This language is not prefix-closed. Observe that we

have Pref(L) = {a, b}∗, which is, of course, a regular language. It is easy to

check that for the abstract numeration system S = (Pref(L), {a, b}, a < b),

the hypotheses (H1), (H2) and (H3) are satisfied. More precisely, for all

words w in {a, b}∗, we have rw = 2−|w|−1. Using the same notation as in

Example 5.2.1, we have

lim
n→+∞

v0(n− 1)

v0(n)
=

1

2
.

Therefore we represent the interval [12 , 1]. We have Center(L) = {a, b}∗ and,

for all ℓ ∈ N, the intervals corresponding to words of length ℓ are exactly the

intervals [
1

2
+

k

2ℓ+1
,
1

2
+

k + 1

2ℓ+1

]
, for k ∈ [[0, 2ℓ − 1]].

The second example illustrates the case of a non-regular language with

a non-regular prefix-closure.

Example 5.7.2. The Dyck language is the language

D = {w ∈ {a, b}∗| |w|a = |w|b and ∀u ∈ Pref(w), |u|a ≥ |u|b}

of well-parenthesized words over two letters. Its minimal automaton AD

is depicted in Figure 5.5. For each m ∈ N, we let dm denote the state

dm = (am)−1D = {w ∈ {a, b}∗| amw ∈ D} of AD and we set d−1 = ∅, so that

the set of states of AD is QD = {dm |m ∈ N} ∪ {d−1}; see Definition 1.3.6.

Note that, in Figure 5.5, the states dm are simply denoted by m.

0 1 2 3-1

a
b

b

a

b

a

b

a, b

a

b

Figure 5.5. The minimal automaton of D.

It was proved in [LG08] that, for all m,n ∈ N, we have

udm
(n) =

{
0, if n < m or m 6≡ n (mod 2);
m+1
n+1

( n+1
n−m

2

)
, if n ≥ m and m ≡ n (mod 2).

From Stirling’s formula we obtain that, for all m ∈ N, we have

ud2m
(2n) ∼ 2m + 1√

π
n− 3

2 4n (n→ +∞); (44)

ud2m+1(2n + 1) ∼ 2(2m + 2)√
π

n− 3
2 4n (n→ +∞). (45)
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The Dyck language is not prefix-closed. Hence we consider the general-

ized abstract numeration system S = (Pref(D), {a, b}, a < b) built on the

language

Pref(D) = {w ∈ {a, b}∗| ∀u ∈ Pref(w), |u|a ≥ |u|b}
of the prefixes of Dyck words. The minimal automaton APref(D) of Pref(D) is

depicted in Figure 5.6. Since the graphs of the minimal automaton APref(D)

of Pref(D) and the minimal automaton AD of D are nearly the same, we

rename the states of APref(D) by pm so that the set of states of APref(D)

is QPref(D) = {pm |m ∈ N} ∪ {p−1}. Formally, for all m ∈ N, we have

pm = (am)−1 Pref(D) = {w ∈ {a, b}∗| amw ∈ Pref(D)} and we set p−1 = ∅.
Hence the udm

’s denote the complexity functions of AD and the upm’s denote

the complexity functions of APref(D). Once again, in Figure 5.6, the states pm

are simply denoted by m. From Proposition 5.3.12 the set Adh(Pref(D)) =

Adh(D) is uncountable and Hypothesis (H1) is satisfied.

0 1 2 3-1

a
b

b

a

b

a

b

a, b

a

b

Figure 5.6. The minimal automaton of Pref(D).

Observe that, for all m,n ∈ N, we have

upm(n) =

{
2n, if n ≤ m;

2upm(n− 1)− udm
(n− 1), if n > m.

Hence we obtain

∀m,n ∈ N, upm(n) = 2n −
n−1∑

i=m

udm
(i) 2n−i−1.

We claim that, for all m ∈ N, we have

upm(2n) ∼ m + 1√
π

n− 1
2 4n (n→ +∞); (46)

upm(2n + 1) ∼ vpm(2n) ∼ 2(m + 1)√
π

n− 1
2 4n (n→ +∞); (47)

vpm(2n + 1) ∼ 4(m + 1)√
π

n− 1
2 4n (n→ +∞). (48)

We will only prove (46), since the same techniques can be applied to obtain

(47) and (48). First, let us show that, for all m ∈ N, we have

+∞∑

i=m

ud2m
(2i) 4−i = 2 and

+∞∑

i=m

ud2m+1(2i + 1) 4−i = 4. (49)
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We will only compute the first sum; the second one can be treated in a similar

way. In view of (36) and (44), for all m ∈ N, we have

+∞∑

i=n

ud2m
(2i)4−i ∼ 2m + 1√

π

+∞∑

i=n

i−
3
2 (n→ +∞).

This shows that the series

+∞∑

i=m

ud2m
(2i)4−i

is convergent. Consequently, for all m ∈ N, the series

+∞∑

i=m

ud2m
(2i) zi

is uniformly convergent over {z ∈ C | |z| ≤ 1
4} because, for all integers p and q

satisfying q ≥ p ≥ m, we have

sup
|z|≤ 1

4

∣∣∣∣∣∣

q∑

i=p

ud2m
(2i) zi

∣∣∣∣∣∣
≤

q∑

i=p

ud2m
(2i)4−i.

Then, observe that, for all m ∈ N and all integers i ≥ m satisfying i ≡ m

(mod 2), udm
(i) is given by

Card{w(0)bw(1)b · · · bw(m) | ∀j ∈ [[0,m]], w(j) ∈ D,
m∑

j=0

|w(j)| = i−m}

=
∑

ℓ0+···+ℓm= i−m
2




m∏

j=0

Cℓj


 =

[
z

i−m
2

](+∞∑

n=0

Cn zn

)m+1

,

where Cn := ud0(2n) = 1
2n+1

(2n+1
n

)
is the nth Catalan number and [zn]f

denotes the coefficient of zn in the power series f . It is well known (for

instance, see [GKP94, Lan03]) that we have

+∞∑

n=0

Cn zn =
1−
√

1− 4z

2z
, for|z| < 1

4
.

Hence, for all m ∈ N and for all z ∈ C satisfying |z| < 1
4 , we obtain

+∞∑

i=m

ud2m
(2i) zi = zm

(
+∞∑

n=0

Cn zn

)2m+1

=
(1−

√
1− 4z)

2m+1

2 · 4m zm+1
.

Therefore we obtain the desired first sum of (49) by letting z tend to 1
4

in the latter formula. Now, let us come back to (46). For all m,n ∈ N
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satisfying m < n, we have

up2m
(2n) = 4n − 1

2

n−1∑

i=m

ud2m
(2i) 4n−i =

1

2
4n

+∞∑

i=n

ud2m
(2i) 4−i

and

up2m+1(2n) = 4n − 1

4

n−1∑

i=m

ud2m+1(2i + 1) 4n−i =
1

4
4n

+∞∑

i=n

ud2m+1(2i + 1) 4−i.

Then, using
∑+∞

i=n i−
3
2 ∼ 2n− 1

2 (n → +∞), we obtain that, for all m ∈ N,

we have

up2m
(2n) ∼ 2m + 1√

π
n− 1

2 4n and up2m+1(2n) ∼ 2m + 2√
π

n− 1
2 4n (n→ +∞),

proving (46).

Now, let us verify that the language Pref(D) satisfies our three hypothe-

ses. From the previous reasoning we obtain

∀m, ℓ ∈ N, lim
n→+∞

upm(n− ℓ)

vp0(n)
= (m + 1) 2−ℓ−1.

In this example we have Center(D) = Center(Pref(D)) = Pref(D). For all

w ∈ Pref(D), we have rw = (m(w) + 1) 2−|w|−1 where m(w) ∈ N is defined

by p0 ·w = pm(w) and, for all w 6∈ Pref(D), we have rw = 0. Hence Hypothe-

sis (H2) is satisfied. Now, take an infinite word w in Adh(D). Observe that

we have m(w[0, ℓ − 1]) ≤ ℓ for all ℓ ∈ N. Therefore we have

rw[0,ℓ−1] ≤ (ℓ + 1)2−ℓ−1 → 0 as ℓ→ +∞.

Hence Hypothesis (H3) is also satisfied.

Since we have

lim
n→+∞

vp0(n− 1)

vp0(n)
=

1

2
,

we represent the interval [12 , 1]. Any word in Pref(D) begins with a. So we

have Ia = [12 , 1]. We have Center(D)∩{a, b}2 = {aa, ab} and Ia is partitioned

into two subintervals:

Iaa =

[
1

2
,
7

8

]
and Iab =

[
7

8
, 1

]
.

Then, we have Center(D) ∩ {a, b}3 = {aaa, aab, aba}. Therefore we obtain

Iab = Iaba and Iaa is partitioned into two new subintervals:

Iaaa =

[
1

2
,
3

4

]
, Iaab =

[
3

4
,
7

8

]
, Iaba =

[
7

8
, 1

]
.
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Then, we have Center(D) ∩ {a, b}4 = {aaaa, aaab, aaba, aabb, , abaa, abab}
and we obtain

Iaaaa =

[
1

2
,
21

32

]
, Iaaab =

[
21

32
,
3

4

]
, Iaaba =

[
3

4
,
27

32

]
,

Iaabb =

[
27

32
,
7

8

]
, Iabaa =

[
7

8
,
31

32

]
, Iabab =

[
31

32
, 1

]
.

As stated in Corollary 5.6.2, since the language D is context-free, the

representations of the endpoints of the intervals Iy are ultimately periodic.

For all x ∈ [12 , 1], let Qx denote the set of the representations of x. We have

Q1/2 = {aω} and Q1 = {(ab)ω}. Now, let x ∈ (1/2, 1) be an endpoint of

some interval. This means that we have x = inf Iw = sup Iz for some w, z in

Center(D) ∩ {a, b}ℓ with ℓ ∈ N. We obtain Qx = {w̄(ab)ω, zaω}, where w̄ is

defined to be the smallest Dyck word having w as a prefix. Also, note that

we have Pref(mε) = a∗ = Min<(Pref(D)) and Pref(Mε) = (ab)∗ ∪ (ab)∗a =

Max<(Pref(D)), which are both regular languages. The latter observation

is relevant to Corollary 5.6.2 and Proposition 5.6.3.

The third example illustrates the case of a generalized abstract numer-

ation system generating endpoints of the intervals Iy which never have ulti-

mately periodic S-representations. It also shows that our methods for repre-

senting real numbers generalize those involved in the 3
2 -number system and,

by extension, in the rational base number systems as well.

Example 5.7.3. Consider the language L3/2 recognized by the deterministic

automaton A = (N ∪ {−1}, {0, 1, 2}, δ, 0, N) where the transition function δ

is defined as follows: δ(n, a) = 1
2(3n + a) if n ∈ N and a ∈ {0, 1, 2} satisfy

1
2(3n+a) ∈ N\{0} and δ(n, a) = −1 otherwise. This language was introduced

and extensively studied in [AFS08]. In particular, it has been shown that the

automaton A is the minimal automaton of L3/2, that L3/2 is a non-context-

free prefix-closed language and that Adh(L3/2) is uncountable. Furthermore,

no element in Adh(L3/2) is ultimately periodic. The corresponding trim

minimal automaton is depicted in Figure 5.7, where all states are final.

Let (Gn)n≥0 be the sequence of integers defined by

G0 = 1 and ∀n ∈ N, Gn+1 =

⌈
3

2
Gn

⌉
.

It was shown in [AFS08] that we have Gn = ⌊K
(

3
2

)n⌋, where K := K(3) =

1.6222705 · · · is the constant discussed in [OW91, HH97, Ste03]. From

[AFS08] again, we find

u0(0) = 1 and ∀n ∈ N, u0(n + 1) = Gn+1 −Gn.
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0 2 1 0 2 1 0 2 1

Figure 5.7. The first few levels of the trim minimal automa-

ton of L 3
2
.

Hence we obtain

∀n ∈ N, v0(n) = Gn =

⌊
K

(
3

2

)n⌋
.

Consider the generalized abstract numeration system

S = (L 3
2
, {0, 1, 2}, 0 < 1 < 2)

built on this language. Clearly, we have δ(0, w) = valS(w) for all w in L3/2.

Furthermore, from [AFS08], we know that, for all w ∈ L3/2, we have

valS(w) =
1

2

|w|−1∑

i=0

w[i]

(
3

2

)|w|−i−1

.

Consequently, for all w ∈ Adh(L3/2), we obtain

valS(w) = lim
n→+∞

valS(w[0, n − 1])

v0(n)
=

1

3K

+∞∑

i=0

w[i]

(
3

2

)−i

.

Now, let us verify whether L3/2 satisfies Hypothesis (H2) and (H3). For

all y in Center(L3/2), remember that My (resp. my) denotes the maximal

(resp. minimal) word in Adh(L3/2) with respect to the lexicographical order
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having y as a prefix. Clearly, in this example, we have L3/2 = Center(L3/2).

For all y ∈ L3/2 and for all integers n ≥ |y|, we have

u0·y(n − |y|) = valS(My[0, n − 1])− valS(my[0, n − 1]) + 1.

Therefore we obtain

∀y ∈ L3/2,
u0·y(n− |y|)

v0(n)
∼

1
2

∑n−1
i=0 (My[i]−my[i])(

3
2 )n−i−1

K
(

3
2

)n (n→ +∞).

It follows

∀y ∈ L3/2, ry = lim
n→+∞

u0·y(n− |y|)
v0(n)

= lim
n→+∞

1

3K

n−1∑

i=|y|

(My[i]−my[i])

(
3

2

)−i

=
1

3K

(
3

2

)−|y| +∞∑

i=0

(My[i + |y|]−my[i + |y|])
(

3

2

)−i

≥ 0.

Note that this is consistent with Lemma 5.4.16. Furthermore, we have ry = 0

for all y 6∈ L3/2. Hence Hypothesis (H2) is satisfied. For all y ∈ L3/2, since

we have My[i]−my[i] ≤ 2 for all i ∈ N, we obtain

ry ≤
2

K

(
3

2

)−|y|

→ 0 as |y| → +∞.

Therefore we have limℓ→+∞ w[0, ℓ − 1] = 0 for all infinite words w in the

adherence Adh(L3/2). Consequently, Hypothesis (H3) is also satisfied.

In this case, since the language L3/2 is not context-free, we cannot use

Corollary 5.6.2 to deduce any syntactical properties about the representa-

tions of the endpoints of the intervals. Actually, effectively computing the

intervals Iy seems difficult to undertake. Nevertheless, for any given y ∈ L3/2,

it is possible to approximate the corresponding interval Iy as close as desired.



Perspectives

In this dissertation we studied a few questions related to abstract numer-

ation systems, which were introduced by M. Rigo and P. Lecomte in [LR01].

We are happy to have slightly furthered the knowledge in this fascinating re-

search topic. Still, a great deal of work remains to be achieved in this field,

which is good news for future research.

In the context of the chapters developed in this dissertation, some natural

questions arise. We will point out some of them below.

Multiplication by a Constant for Polynomial Languages

1. If S is an abstract numeration system built on any polynomial language L

such that its counting function uL(n) is Θ(n), then can we prove or refute

that multiplication by a constant λ preserves S-recognizability if and only

if λ is an odd square. Otherwise stated, does Theorem 2.2.10 on page 29

extend to any polynomial language L such that its counting function

uL(n) is Θ(n).

2. If S is an abstract numeration system built on any polynomial language L

such that its counting function uL(n) is Θ(nk), with k ≥ 2, and if λ is any

fixed integer, can we always find an S-recognizable set X of non-negative

integers such that λX is not S-recognizable? In other words, provided that

the previous problem is solved, does Theorem 2.6.1 on page 43 extend to

any polynomial language?

Other Decision Problems

3. Consider the linear numeration system U = (Ui)i≥0 defined by

U0 = 1, U1 = 2, and ∀i ∈ N, Ui+2 = 2Ui+1 + 2Ui.

Since it is a “Pisot” numeration system, the numeration language must

be regular [FS96]. Hence, Problem 2 on page 47 is valid in this case. It

is easily shown that we have NU (2k) = 1 for all non-negative integers k,

so that we obtain NU (m) 6→ +∞. Therefore our decision procedure given

in Theorem 3.2.15 cannot be applied. However, J. Honkala’s decision

produre for the integer base numeration systems [Hon86] does not require

147



148 Perspectives

the hypothesis NU (m)→ +∞. So can we adapt J. Honkala’s method for

such a sequence U?

4. More generally, if progress is achieved for the previous problem, can we

extend Theorem 3.2.15 on page 56 to positional numeration systems U

such that N is U -recognizable but no longer satisfying the condition

limm→+∞ NU (m) = +∞? Otherwise stated, can we give a decision pro-

cedure for Problem 2 in general?

5. Even more generally, can we give a decision procedure for Problem 3 on

page 78 in general, i.e. for any abstract numeration system? Recall that

answering this question would solve the HD0L periodicity problem!

About Multidimensional S-automatic words

For the sake of clarity, we have written statements in the bidimensional

case but each of them can be more generally stated in the d-dimensional case

for any integer d ≥ 2.

6. If S and T are two abstract numeration systems, one can easily adapt

Definition 4.2.1 on page 94 to define the notion of (S, T )-automatic word,

i.e., we define

∀m,n ∈ N, xm,n = τ(δ(q0, (repS(m), repT (n))#)).

Can these (S, T )-automatic words be characterized by using morphisms?

7. Peano enumeration of N2 is defined by

P : N2 → N : (m,n) 7→ 1

2
(m + n)(m + n + 1) + n.

Hence, to any bidimensional word (am,n)m,n≥0 corresponds a unidimen-

sional word (bℓ)ℓ≥0 defined by bℓ = am,n for ℓ = P (m,n). In their

book [AS03, Chapter 14] the authors proposed, as an exercise, to show

that if (am,n)m,n≥0 is b-automatic, then (bℓ)ℓ≥0 need not necessarily to

be b-automatic too. Now, suppose that (am,n)m,n≥0 is S-automatic for

some abstract numeration system S. Does this imply that (bℓ)ℓ≥0 is T -

automatic for some abstract numeration system T , and conversely? For

example, if we consider the S-automatic bidimensional infinite word de-

picted in Figure 4.8 on page 95, then we obtain the unidimensional word

pqpqpqpsppqsspqpqqspp · · · .
Can we deduce that this word is T -automatic for some T ? One could also

consider other primitive recursive enumerations of N2.

8. For any integer b ≥ 2, the b-kernel of an infinite word w is the set

{(wben+r)n≥0 | e ∈ N, r ∈ [[0, ke − 1]]}.
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It is well known that an infinite word is b-automatic if and only if its

b-kernel is finite [Cob72]. The notion of kernel has been extended to

the framework of abstract numeration systems by A. Maes and M. Rigo

[RM02]. In this case, one refers to S-kernels. They proved that an

infinite word is S-automatic if and only if its S-kernel is finite. Does this

characterization hold in the multidimensional setting?

9. Multidimensional b-automatic words were characterized in logical terms;

for instance, see [BHMV94]. Furthermore, the (multidimensional) rec-

ognizable sets within a “Pisot” numeration system U = (Ui)i≥0 were

characterized in terms of sets definable in the structure 〈N,+, VU 〉, where

we set VU (0) = U0 = 1 and, for any positive integer n, VU (n) is de-

fined to be the smallest term Ui appearing in the greedy decomposition

n =
∑ℓ

i=0 ciUi with a non-zero coefficient [BH97]. Can such character-

izations be extended to the framework of abstract numeration systems?

What would be the correct logical structure to consider in this extended

case? Even in the unidimensional case, this question is still open.

10. Any bidimensional word a = (am,n)m,n≥0 over an alphabet Σ which is

embedded into a finite field Fq can be associated with a formal power

series:

F (a) =
∑

m,n≥0

am,nxmyn ∈ Fq[[x, y]].

In [Sal87a, Sal87b], generalizing Christol’s theorem [CKMFR80] to the

multidimensional setting, O. Salon proved that, if p is a prime number,

then a bidimensional infinite word a over [[0, p − 1]] is p-automatic if and

only if the associated formal power series F (a) is algebraic over the field

of rational functions Fp (x, y), i.e., if and only if there exist ℓ ∈ N \ {0}
and P0, P1, . . . , Pℓ ∈ Fp[x, y], not all zero, such that we have

Pℓ(F (a))ℓ + · · ·+ P2(F (a))2 + P1F (a) + P0 = 0.

If a is an S-automatic bidimensional infinite word, can we derive some

algebraic properties of F (a), and conversely? Again, even in the unidi-

mensional case, this question is still open.

11. The following result of P. Deligne [Del84] is widely known; also, see

[DL87, Sal87a, Sal87b] for other proofs: if the double series
∑

m,n≥0

am,nxmyn ∈ Fq[[x, y]]

is algebraic over Fq (x, y), then its diagonal
∑

m≥0

am,mxm ∈ Fq[[x]]
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is algebraic over Fq (x). So, as a particular case of the previous question,

if a is an S-automatic bidimensional infinite word over an alphabet Σ

which is embedded into a finite field Fq, can something be said about the

diagonal D(a) =
∑

m≥0 am,mxm ∈ Fq[[x]]?
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Bordeaux, 10(1):65–84, 1998.

[Dur02a] F. Durand. Combinatorial and dynamical study of substitutions around the

theorem of Cobham. In Dynamics and randomness (Santiago, 2000), vol-

ume 7 of Nonlinear Phenom. Complex Systems, pages 53–94. Kluwer Acad.

Publ., Dordrecht, 2002.

[Dur02b] F. Durand. A theorem of Cobham for non-primitive substitutions. Acta

Arith., 104(3):225–241, 2002.

[Dur08] F. Durand. Cobham-Semenov theorem and Nd-subshifts. Theoret. Comput.

Sci., 391(1-2):20–38, 2008.

[Ehr89] A. Ehrlich. On the periods of the Fibonacci sequence modulo m. Fibonacci

Quart., 27(1):11–13, 1989.

[Eil74] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic

Press, New York, 1974. Pure and Applied Mathematics, Vol. 58.

[Eng31] H. T. Engstrom. On sequences defined by linear recurrence relations. Trans.

Amer. Math. Soc., 33(1):210–218, 1931.

[EvdPSW03] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence

Sequences, volume 104 of Mathematical Surveys and Monographs. American

Mathematical Society, Providence, RI, 2003.
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[Lan04] S. Lang. Algèbre : cours et exercices. Dunod, Paris, third edition, 2004.



155

[Leh64] D. H. Lehmer. The machine tools of combinatorics. In E. F. Beckenbach,

editor, Applied Combinatorial Mathematics, University of California Engi-

neering and Physical Sciences Extension Series, pages 5–31. John Wiley and

Sons, Inc., New York-London-Sydney, 1964.

[Ler05] J. Leroux. A polynomial time Presburger criterion and synthesis for number

decision diagrams. In 20th IEEE Symposium on Logic in Computer Science,

pages 147–156. IEEE Computer Society, Chicago, IL, USA, 2005.

[LG08] M. Le Gonidec. On complexity of infinite words associated with generalized

Dyck languages. Theoret. Comput. Sci., 407(1-3):117–133, 2008.

[LMSF96] J. S. Lew, L. B. Morales, and A. Sánchez-Flores. Diagonal polynomials for

small dimensions. Math. Systems Theory, 29(3):305–310, 1996.
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