
Algorithmique et calculabilité

Émilie Charlier

Année académique 2025-2026

Informations générales

— Code cours : INFO0212

— Titulaire : Émilie Charlier

— Assistant : Bastian Espinoza

— Contact : Campus du Sart-Tilman - zone Polytech 1
Institut de Mathématique B37, bureau 1/28

— Horaire du cours : Q1, lundi de 10h15 à 12h45 et jeudi de 13h à 15h.

— Locaux : Voir sur Celcat

— Évaluation : Examen oral portant sur la théorie et applications directes de celle-ci.
Un exercice sera également posé sur feuille.

— Modulation : 8 crédits

1

Chapitre 1

Introduction

Lors du 2e congrès international des mathématiques en 1900 à Paris, David Hilbert pré-
sente sa célèbre liste de 23 problèmes qu’il considère comme un programme de recherche
à destination des mathématiciens du 20e siècle. Ces problèmes sont de difficultés et de
natures différentes. Certains ont été résolus rapidement, certains ont demandé un travail
plus conséquent, d’autres ont été jugés mal posés, et d’autres encore sont toujours ouverts !
Parmi ces 23 problèmes, le dixième d’entre eux concerne, avant l’heure, une question de
décidabilité. Il s’énonce comme suit : Étant donné un polynôme multivarié P à coeffi-
cients entiers, c’est-à-dire P P ZrX1, . . . ,Xns pour un certain n, déterminer si l’équation
P px1, . . . , xnq “ 0 possède une solution entière. Une telle équation s’appelle une équation
diophantienne et les ensembles de la forme

tpa1, . . . , amq P N
m : Dpb1, . . . , bnq P Z

n, P pa1, . . . , am, b1, . . . , bnq “ 0u

pour un certain polynôme P P ZrX1, . . . ,Xm`ns sont appelés les ensembles diophantiens.

Le mot « déterminer » de la formulation de Hilbert renvoie à une notion intuitive de
« procédure de décision » ou d’« algorithme », notion qui faisait défaut en 1900. C’est
grâce aux travaux d’Alonzo Church et d’Alan Turing des années 1930, initiateurs de la
théorie de la calculabilité, que le dixième problème de Hilbert a pu être reformulé de façon
rigoureuse. Et ce n’est qu’en 1970 que Youri Matiiassevitch, à 23 ans à peine, a répondu au
dixième problème de Hilbert par la négative en démontrant qu’il s’agissait là d’un problème
indécidable, un concept inconnu des mathématiciens de 1900. La preuve de Matiiassevitch
s’appuie sur les travaux précédents de Julia Robinson, c’est pourquoi on parle en général
du théorème de Matiiassevitch-Robinson. Celui-ci s’énonce comme suit : Les ensembles
diophantiens coïncident avec les ensembles d’entiers récursivement énumérables. Il est alors
une conséquence immédiate des travaux de Turing que le dixième problème de Hilbert est
indécidable.

Dans ce cours, nous allons formaliser les concepts de procédure effective et de fonc-
tions calculables, et nous comprendrons ce que signifient les termes « ensembles d’entiers
récursivement énumérables » et « problème indécidable » évoqués précédemment.

Dans un deuxième temps, nous étudierons la théorie de la complexité des algorithmes.
Parmi les problèmes décidables, nous distinguerons les problèmes dits « faciles » des pro-
blèmes dits « difficiles ». Nous serons alors à même de comprendre un autre célèbre pro-
blème des mathématiques, à savoir le problème « P vs NP ». Il s’agit cette fois d’un des 7
problèmes du prix du millénaire posés en 2000, soit 100 ans après Hilbert, et pour chacun
desquels l’Institut de mathématiques de Clay à Boston offre un prix d’un million de dollars
à quiconque y apportera une solution !

2

Chapitre 2

Calculabilité

La thèse de Church-Turing affirme que les fonctions calculables par une procédure
effective, quelle que soit la définition qu’on puisse donner de ce concept, sont calculables
par une machine de Turing. Cette thèse ne peut être un théorème puisque, précisément,
une définition de la notion de procédure effective nous fait défaut. Il faut donc plutôt la
voir comme la proposition de définir une procédure effective, ou un algorithme, par une
machine de Turing. Cette thèse sera étayée de plusieurs manières au fur et à mesure de
l’avancement de ce chapitre.

2.1 Rappels de théorie des langages

Un alphabet est un ensemble fini non vide. Les éléments d’un alphabet sont appelés
les lettres de cet alphabet. Un mot fini (resp. infini) sur un alphabet est une suite finie
(resp. infinie) de lettres de cet alphabet. On note |w| la longueur d’un mot fini w. On note
la ke lettre d’un mot w par wrks et on note wrk, ℓs le facteur wrkswrk ` 1s . . . wrℓs (avec
la convention que wrk, ℓs “ ε lorsque ℓ ă k). Pour un mot fini w et n P N, on note wn

la concaténation de n fois le mot w et on note wω le mot infini formé d’une infinité de
répétition de w. L’ensemble des mots fini écrits sur un alphabet A est noté A˚. Le mot
vide est noté ε. L’opération de concaténation des mots finis munit A˚ d’une structure de
monoïde avec ε pour neutre.

2.2 Machines de Turing

Tout au long du cours, nous considérerons # comme un symbole particulier, appelé le
symbole blanc. De même, les symboles L et R, utilisés pour « left » et « right », joueront
également un rôle spécifique.

Définition 2.2.1. Une machine de Turing est la donnée d’un quintuple M “ pQ, q0, h,A, δq
où

— Q est un ensemble fini non vide, appelé ensemble des états ;
— q0 et h sont des éléments privilégiés de Q, appelé état initial et état final respective-

ment ;
— A est un alphabet contenant le symbole blanc # mais ne contenant pas les symboles

L et R ;
— δ : Qzthu ˆ A Ñ Q ˆ pA Y tL, Ruq est une fonction partielle, appelée fonction de

transition.

Une machine de Turing M “ pQ, q0, h,A, δq peut être représentée par un graphe orienté
dont les sommets sont les états et où pour tous p, q P Q, a P A et x P A Y tL, Ru tels que

3

CHAPITRE 2. CALCULABILITÉ 4

δpp, aq “ pq, xq, on dessine un arc de p vers q étiqueté par a, x. De plus, l’état initial est
désigné par une flèche entrante et l’état final par un double cercle.

Exemple 2.2.2. Le graphe de la Figure 2.1 représente la machine de Turing

pt0, 1, 2, 3, 4, 5, 6, 7, 8u, 0, 8, t#, uu, δq

dont la fonction de transition δ est donnée par la Table 2.1.

0 1 5 6 7 8

2

34

u, L

#, L

u,#

#, R

#, u
u, R

#, u

#, R #, u

u, R

#, L u,#

Figure 2.1 – Machine de Turing calculant la multiplication par deux en représentation
unaire

u

0 p1, Lq p0, Lq
1 p5, Rq p2,#q
2 p3, Rq {
3 p4, uq {
4 p0, uq p4, Rq
5 p6, uq {
6 p7, Lq p6, Rq
7 { p8,#q

Table 2.1 – Table de transition de δ.

Définition 2.2.3. Une configuration mémoire est un couple pw, kq P AN0 ˆN0, où le mot
infini w ne contient qu’un nombre fini de fois le symbole blanc #. Le mot infini w est
appelé le ruban mémoire et l’entier k est un pointeur qui pointe sur la ke lettre de w. On
dit aussi que k désigne une cellule référencée qui contient le symbole wrks. Pour simplifier
les écritures, on renseigne souvent uniquement la partie significative d’une configuration
mémoire. La partie significative r d’une configuration mémoire pw, kq telle que wrℓs ‰ #

et wrns “ # pour tout n ą ℓ est définie par

r “

#

wr1, k ´ 1swrkswrk ` 1, ℓs si ℓ ě k

wr1, ℓs#k´ℓ´1# si ℓ ă k.

Une configuration machine est un triplet pp,w, kq où p est un état et pw, kq est une
configuration mémoire. Une configuration machine pp,w, kq est souvent notée p.r où r est
la partie significative de la configuration mémoire pw, kq.

Par la suite, lorsque le contexte permet de lever toute ambigüité, on s’autorisera à
parler simplement de configuration machine et de configuration mémoire plutôt que de
partie significative de celles-ci.

Une machine de Turing M agit sur les configurations machine de la manière suivante.

CHAPITRE 2. CALCULABILITÉ 5

— Si on se trouve dans la configuration machine pp,w, kq et que δpp,wrksq “ pq, aq avec
a P A, alors on bascule dans la configuration machine pq, w1, kq où

w1rns “

#

wrns si n ‰ k

a si n “ k.

— Si on se trouve dans la configuration machine pp,w, kq et que δpp,wrksq “ pq, Rq,
alors on bascule dans la configuration machine pq, w, k ` 1q.

— Si on se trouve dans la configuration machine pp,w, kq avec k ě 2 et que δpp,wrksq “
pq, Lq, alors on bascule dans la configuration machine pq, w, k ´ 1q.

La notation C $ C 1 signifie que C 1 est une configuration machine atteignable depuis C.
On note C $˚ C 1 s’il existe j ě 0, des configurations machine C0, . . . , Cj telles que l’on ait

— C “ C0 ;
— C 1 “ Cj ;
— Ci $ Ci`1 for all i P t0, . . . , j ´ 1u.

Une configuration pendante est une configuration machine pp,w, kq, avec p ‰ h, depuis
laquelle aucune configuration machine n’est atteignable. Cela peut se produire soit lorsque
la fonction de transition δ n’est pas définie en pp,wrksq 1, soit lorsque k “ 1 et δpp,wr1sq “
pq, Lq. Enfin, si d “ h, on parle de configuration d’arrêt.

Trois situations peuvent se produire lorsqu’on lance une machine de Turing à partir
d’une configuration machine donnée.

1. La machine de Turing aboutit dans une configuration d’arrêt en un nombre fini de
transitions, auquel cas on dit que la machine de Turing s’arrête.

2. La machine de Turing atteint une configuration pendante.
3. Une infinité de transitions successives sont possibles, auquel cas on dit que la machine

de Turing ne s’arrête pas.

2.3 Fonctions calculables par machines de Turing

Dans ce chapitre, d sera toujours un naturel.

Définition 2.3.1. Soient A1, . . . , Ad`1 des alphabets ne contenant pas le symbole blanc #.
Une fonction f : A˚

1ˆ¨ ¨ ¨ˆA˚
d Ñ A˚

d`1 est calculable s’il existe une machine de Turing M “

pQ, q0, h,B, δq telle que
Ťd`1

i“1 Ai Ď B et telle que pour tout pw1, . . . , wdq P A
˚
1 ˆ ¨ ¨ ¨ ˆA˚

d ,
on ait

q0.#w1# ¨ ¨ ¨#wd# $˚ h.#fpw1, . . . , wdq#.

Dans la suite, nous allons principalement considérer des fonctions numériques, c’est-à-
dire, à arguments et valeurs naturels. On note Fd l’ensemble des fonctions de N

d dans N

et on note F “
Ť

dPN Fd. Afin d’introduire la notion d’une fonction numérique calculable
comme un cas particulier de la définition précédente, nous devons choisir un codage des
entiers par des mots finis. Dans ce cours, nous travaillerons principalement avec le codage
unaire des naturels : on considère un symbole spécial u, et on code tout naturel n par le
mot un.

Définition 2.3.2. Une fonction f de Fd est calculable s’il existe une machine de Turing
M “ pQ, q0, h,A, δq telle que u P A et pour tout pn1, . . . , ndq P N

d, on ait

q0.# u
n1 # ¨ ¨ ¨# u

nd # $˚ h.# u
fpn1,...,ndq #.

On note C l’ensemble des fonctions de F qui sont calculables.

1. N’oubliez pas que δ est une fonction partielle.

CHAPITRE 2. CALCULABILITÉ 6

Exemple 2.3.3. Montrons que la machine de Turing de la figure 2.1 calcule la fonction
f : NÑ N, m ÞÑ 2m. En effet, pour tout m,n P N avec m ě 1, on a

0.# u
m# u

n $ 1.# u
m´1

u# u
n

$ 2.# u
m´1## u

n

$ 3.# u
m´1## u

n

$ 4.# u
m´1#u u

n

$˚ 4.# u
m´1# u

n`1#

$ 0.# u
m´1# u

n`1
u

$˚ 0.# u
m´1# u

n`2 .

En itérant cet argument, on obtient que pour tout m P N, on a

0.# u
m# $ 0.## u

2m .

De plus, on a

0.## u
2m $ 1.## u

2m

$ 5.## u
2m

$ 6.#u u
2m

$˚ 6.# u
2m`1 #

$˚ 7.# u
2m

u

$˚ 8.# u
2m#.

D’où la conclusion.

2.4 Composition de machines de Turing

Écrire une machine de Turing réalisant une tâche donnée, même simple, peut rapi-
dement s’avérer fastidieux. C’est la raison pour laquelle on introduit les organigrammes,
c’est-à-dire des graphes représentant des compositions conditionnées de machines de Tu-
ring.

Définition 2.4.1. Soient M “ pQ, q0, h,A, δq et M1 “ pQ1, q1
0, h

1, A, δ1q deux machines de
Turing ayant le même alphabet mais des ensembles d’états disjoints, et soit C un sous-
ensemble de A. On définit la composition de M et M1 conditionnellement à C la machine
de Turing

M
C
ÝÑM1 “ pQYQ1, q0, h

1, A, δ2q

où la fonction de transition δ2 est définie par

— δ2
|QzthuˆA “ δ

— δ2
|Q1zth1uˆA “ δ1

— δ2ph, aq “ pq1
0, aq pour tout a P C

— δ2ph, aq “ ph1, aq pour tout a P AzC.

Si le sous-ensemble C est ta1, . . . , anu, on note
a1,...,an
ÝÝÝÝÝÑ, et si le sous-ensemble C est

Azta1, . . . , anu, on écrit
a1,...,an
ÝÝÝÝÝÑ. Lorsque C “ A, on écrit M Ñ M1, voire même sim-

plement MM1.

CHAPITRE 2. CALCULABILITÉ 7

Dit de façon informelle, l’idée est de lancer d’abord la machine de Turing M, et si
celle-ci atteint une configuration d’arrêt ph,w, kq (où h est l’état terminal de M) et que
wrks P C, alors on lance la machine M1 sur la configuration initiale pq1

0, w, kq (où q1
0 est

l’état initial de M1). Dans le cas où M atteint une configuration d’arrêt avec pw, kq comme

configuration mémoire mais que wrks R C, la machine de Turing M
C
ÝÑ M1 s’arrête avec

la même configuration mémoire pw, kq.

Si l’on souhaite composer une machine de Turing avec elle-même un certain nombre
n de fois, on utilisera la définition précédente avec n copies de la machine. En effet, dans
cette définition, il est demandé que les ensembles d’états soient disjoints. On peut aussi
vouloir composer une machine de Turing avec elle-même aussi longtemps qu’une condition
est satisfaite. Dans ce cas, il nous faut agir différemment.

Définition 2.4.2. Soit M “ pQ, q0, h,A, δq une machine de Turing et soit C un sous-
ensemble de A. On définit la composition répétée de M conditionnellement à C la machine
de Turing

M “ pQY th1u, q0, h
1, A, δ1qC

où h1 R Q et la fonction de transition δ1 est définie par

— δ1
|QzthuˆA “ δ

— δ1ph, aq “ pq0, aq pour tout a P C

— δ2ph, aq “ ph1, aq pour tout a P AzC.

Si le sous-ensemble C est ta1, . . . , anu, on note

M a1, . . . , an

et si le sous-ensemble C est Azta1, . . . , anu, on écrit

M a1, . . . , an

Définition 2.4.3. Un organigramme est un graphe orienté avec une racine dont les som-
mets sont des machines de Turing et les arcs représentent les compositions conditionnées
entre ces machines, avec la contrainte que les conditions des arcs sortant d’un même som-
met soient mutuellement exclusives. La racine de l’organigramme est représentée par une
flèche entrante.

Étant donné un organigramme, on obtient en combinant les définitions 2.4.1 et 2.4.2 une
machine de Turing exécutant les enchaînements de machines de Turing prescrits par l’or-
ganigramme. Par exemple, considérons l’organigramme de la figure 2.2, dont les sommets
M1,M2,M3,M4 sont des machines de Turing d’alphabet t#, a, bu.

M1 M2

M3 M4

a, b

#

a

#

b

a, b

Figure 2.2 – Un organigramme.

CHAPITRE 2. CALCULABILITÉ 8

Un schéma de la construction de la machine de Turing décrite par cet organigramme
est représenté aux figures 2.3 et 2.4, où on a ajouté un état final unique tenant compte de
toutes les possibilités de mener à une configuration d’arrêt.

M1 M2

M3 M4

Figure 2.3 – Machines correspondant aux sommets de l’organigramme. Pour chacune
d’elle, uniquement leurs états initial et final sont dessinés.

M1 M2

M3 M4

a, a

b, b

#,#

#,#

a, a

b, b

a, a

b, b

#,#

#,#

a, a

b, b

Figure 2.4 – Modification de la fonction de transition en accord avec les instructions
prescrites par l’organigramme. L’état initial est celui de M1 et l’état final est un état
nouvellement créé.

CHAPITRE 2. CALCULABILITÉ 9

Toujours dans le but de faciliter la construction de machines de Turing, nous distinguons
quelques machines de Turing de base.

1. L est une machine de Turing qui va une fois à gauche, inconditionnellement.

Une machine de Turing L est représentée à la figure 2.5, où il y a autant d’arcs de
label σ, L que de lettres σ dans l’alphabet.

σ, L

Figure 2.5 – Machine de Turing L.

2. R est une machine de Turing qui va une fois à droite, inconditionnellement.

Une machine de Turing R est représentée à la figure 2.6, où il y a autant d’arcs de
label σ, R que de lettres σ dans l’alphabet.

σ, R

Figure 2.6 – Machine de Turing R.

3. Pour une lettre a, a est une machine de Turing qui remplace le contenu de la cellule
référence par a, inconditionnellement.

Une machine de Turing a est représentée à la figure 2.7, où il y a autant d’arcs de
label σ, a que de lettres σ dans l’alphabet.

σ, a

Figure 2.7 – Machine de Turing a.

4. Pour une lettre a, La est une machine de Turing qui déplace la tête de lecture sur la
première cellule à gauche contenant a.

Un organigramme pour La est représenté à la figure 2.8.

L a

Figure 2.8 – Machine de Turing La.

5. Pour une lettre a, Ra est une machine de Turing qui déplace la tête de lecture sur la
première cellule à droite contenant a.

Un organigramme pour Ra est représenté à la figure 2.9.

R a

Figure 2.9 – Machine de Turing Ra.

6. Pour une lettre a, La est une machine de Turing qui va à gauche tant que la cellule
référence contient a.

Un organigramme pour La est représenté à la figure 2.10.

CHAPITRE 2. CALCULABILITÉ 10

L a

Figure 2.10 – Machine de Turing La.

7. Pour une lettre a, Ra est une machine de Turing qui va à droite tant que la cellule
référence contient a.

Un organigramme pour Ra est représenté à la figure 2.11.

R a

Figure 2.11 – Machine de Turing Ra.

8. Pour d ě 1, SL,d est une machine de Turing qui réalise l’action suivante :

q0.x#w1#w2# ¨ ¨ ¨#wd# $˚ h.xw1#w2# ¨ ¨ ¨#wd#

où w1, . . . , wd sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

Détaillons une construction de SL,d. On procède par récurrence sur d. L’organi-
gramme de la figure 2.12 convient pour SL,1.

L# R #LσR

L

σ ‰ #

#

Figure 2.12 – SL,1.

Supposons maintenant disposer d’une machine de Turing SL,d´1 pour d ě 2. Alors
l’organigramme de la figure 2.13 convient pour SL,d.

Ld
R #LσR

Rd´1
SL,d´1

σ ‰ #

#

Figure 2.13 – SL,d à partir de SL,d´1.

9. Pour d ě 1, SR,d est une machine de Turing qui réalise l’action suivante :

q0.x#w1#w2# ¨ ¨ ¨#wd# $˚ h.x##w1#w2# ¨ ¨ ¨#wd#

où w1, . . . , wk sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

10. Pour d ě 1, Cd est une machine de Turing qui réalise l’action suivante :

q0.x#w1#w2# ¨ ¨ ¨#wd# $˚ h.x#w1#w2# ¨ ¨ ¨#wd#w1#

CHAPITRE 2. CALCULABILITÉ 11

où w1, . . . , wd sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

11. Pour d ě 1, Ed est une machine de Turing qui réalise l’action suivante :

q0.x#w1#w2# ¨ ¨ ¨#wd# $˚ h.x#w2# ¨ ¨ ¨#wd#

où w1, . . . , wd sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

Les constructions des machines SR,d, Cd, Ed sont laissées en exercices.

2.5 Fonctions récursives

Nous allons maintenant présenter une deuxième famille de fonctions, celle des fonctions
récursives. Nous verrons ensuite que cette famille de fonctions se révèle en fait être identique
à celle des fonctions calculables par machine de Turing. Ce premier résultat constitue notre
premier argument en faveur de la thèse de Church-Turing.

2.5.1 Fonctions récursives primitives

Nous commençons par définir la sous-famille des fonctions récursives primitives.

Appelons fonctions initiales les fonctions suivantes.

— La fonction 0 de F0. Cette fonction ne prend pas d’argument et rend la valeur 0. On
peut l’identifier au naturel 0.

— La fonction σ : NÑ N, n ÞÑ n`1. Cette fonction est appelée la fonction successeur.
— Pour tout entier d ě 1 et tout i P t1, . . . , du, la fonction Pd,i : N

d Ñ N, pn1, . . . , ndq ÞÑ
ni. Ces fonctions sont appelées les projections.

Ensuite, nous considérons deux règles de formation de nouvelles fonctions à partir
d’autres fonctions.

— Composition.
Soient k P N0, h1, . . . , hk P Fd et g P Fk. La fonction composée gph1, . . . , hkq P Fd

est la fonction gph1, . . . , hkq : N
d Ñ N, m ÞÑ gph1pmq, . . . , hkpmqq. Si k “ 1, on note

g ˝ h au lieu de gphq.
— Récursion primitive.

Soient g P Fd et h P Fd`2. La fonction f P Fd`1 définie par récursion primitive à
partir de g et h est définie comme suit : pour tous m P Nd et n P N, fpm, 0q “ gpmq
et fpm, n` 1q “ hpm, n, fpm, nqq.

Définition 2.5.1. Une fonction f P F est récursive primitive si elle peut être obtenue
à partir des fonctions initiales en appliquant un nombre fini de fois la composition et la
récursion primitive. On note PR l’ensemble des fonctions récursives primitives.

Exemple 2.5.2. Les fonctions suivantes sont récursives primitives :

— les fonctions constantes de Fd

— l’addition N
d Ñ N, pn1, . . . , ndq ÞÑ

řd
i“1 ni

— la multiplication N
d Ñ N, pn1, . . . , ndq ÞÑ

śd
i“1 ni

— la puissance N
2 Ñ N, pm,nq ÞÑ mn

— la fonction prédécesseur

NÑ N, m ÞÑ

#

m´ 1 si m ě 1

0 si m “ 0

CHAPITRE 2. CALCULABILITÉ 12

— la fonction monus

´ : N
2 Ñ N, pm,nq ÞÑ

#

m´ n si m ě n

0 si m ă n

— la fonction signe

sign : NÑ N, m ÞÑ

#

1 si m ě 1

0 si m “ 0.

Pour tous k P N, on note kd la fonction constante de Fd correspondant à k. Lorsque
d “ 0, on s’autorise à écrire simplement k au lieu de k0.

2.5.2 Fonctions récursives

Pour définir les fonctions récursives, on a besoin d’une troisième règle de formation de
nouvelles fonctions à partir d’anciennes. Il s’agit de la minimisation.

Définition 2.5.3. Un ensemble A Ď N
d`1 est dit sûr si pour tout m P N

d, il existe
n P N tel que pm, nq P A. Si A Ď N

d`1 est un ensemble sûr, alors la fonction obtenue par
minimisation de A est la fonction

N
d Ñ N, m ÞÑ inftn P N : pm, nq P Au.

On écrit µnppm, nq P Aq pour désigner la valeur inftn P N : pm, nq P Au.

Définition 2.5.4. Une fonction f P F est récursive si elle peut être obtenue à partir des
fonctions initiales en appliquant un nombre fini de fois la composition, la récursion primitive
et la minimisation d’ensembles sûrs. On note R l’ensemble des fonctions récursives.

Remarque 2.5.5. Une fonction g P Fd`1 est dite sûre si pour tout m P N
d, il existe

n P N tel que gpm, nq “ 0. Si g P Fd`1 est une fonction sûre, alors la fonction obtenue par
minimisation de g est la fonction

N
d Ñ N, m ÞÑ inftn P N : gpm, nq “ 0u.

On écrit µnpgpm, nq “ 0q pour désigner la valeur inftn P N : gpm, nq “ 0u. Il est laissé
en exercice de montrer que la classe des fonctions obtenues par minimisation de fonctions
sûres coïncide avec la classe des fonctions obtenues par minimisation d’ensembles sûrs.

2.5.3 Les fonctions calculables et récursives coïncident

Dans cette section, notre but est de montrer que R “ C, résultat attribué au mathé-
maticien américain Stephen Kleene.

Proposition 2.5.6. Les fonctions récursives sont calculables.

Preuve. Les fonctions initiales sont calculables. En effet, la machine de Turing R calcule
la fonction zéro, la machine de Turing uR calcule la fonction σ et pour tout i P t1, . . . , du,
la machine de Turing Ed´i

1 E i´1
2 calcule la projection Pd,i.

Montrons maintenant que l’ensemble C est stable par composition, par récursion pri-
mitive et par minimisation de fonctions sûres. Par définition de l’ensemble R, nous aurons
alors obtenu l’inclusion R Ď C comme souhaité.

Soient k P N0, h1, . . . , hk P Fd des fonctions calculées par des machines de Turing
H1, . . . ,Hk respectivement et soit g P Fk une fonction calculée par une machine de Turing

CHAPITRE 2. CALCULABILITÉ 13

G. Alors la machine de Turing Cd
dH1C

d
d`1H2C

d
d`2H3 ¨ ¨ ¨ C

d
d`k´1HkGE

d
2 calcule la fonction

composée gph1, . . . , hkq. Ceci prouve la stabilité de C par composition.

Soient g P Fd une fonction calculée par une machine de Turing G et h P Fd`2 fonction
calculée par une machine de Turing H. L’algorithme 1 donné ci-après calcule la fonction f P
Fd`1 définie par récursion primitive à partir de g et h. Montrons qu’après k passages dans

Algorithm 1 Calcul de la récursion primitive.

Require: pm, nq P Nd`1

Ensure: À la sortie, r vaut fpm, nq.
pÐ n, q Ð 0, rÐ gpmq
while p ą 0 do

pÐ p´ 1

r Ð hpm, q, rq
q Ð q ` 1

end while
return r

la boucle, la variable q vaut k et la variable r vaut fpm, kq. On procède par récurrence sur
k. Si k “ 0, on ne passe pas dans la boucle. Les variables k et r sont initialisées à 0 et gpmq
respectivement. Puisque gpmq “ fpm, 0q, le cas de base est réglé. Supposons qu’après k

passages dans la boucle, la variable q vaut k et la variable r vaut fpm, kq. Après un passage
supplémentaire, la variable r est actualisée à hpm, q, rq “ hpm, k, fpm, kqq “ fpm, k ` 1q
et la variable q est actualisée à q ` 1 “ k ` 1. Ensuite, nous construisons une machine de
Turing qui calcule la fonction f en suivant les étapes de cet algorithme. Une telle machine
est décrite par l’organigramme de la figure 2.14. Nous laissons au lecteur le soin de vérifier
les détails. Ceci prouve la stabilité de C par récursion primitive.

Cd
d`1E

d
d`2RCd

d`1G

Ld`2
L Rd`3

Ed`2
2

#Rd`3
SL,d`2 Cd`2

d`2HE2 SR,1L
2
uR2

#

#

u

Figure 2.14 – Organigramme pour la récursion primitive.

Passons enfin à la stabilité de C par minimisation d’ensembles sûrs. Soit A Ă Fd`1 un
ensemble sûr et soit A une machine de Turing calculant χA. L’algorithme 2 donné ci-après
calcule la fonction obtenue par minimisation de A et la figure 2.15 est un organigramme de
machines de Turing basé sur cet algorithme. Les détails sont laissés aux soins du lecteur.

Afin de montrer la réciproque du résultat précédent, nous avons besoin d’une série de
notions et résultats préparatoires.

Définition 2.5.7. Un prédicat d’arité d ě 1 est une partie de N
d. Un prédicat P d’arité d

CHAPITRE 2. CALCULABILITÉ 14

Algorithm 2 Calcul de la minimisation.

Require: m P Nd

Ensure: À la sortie, q vaut µnppm, nq P Aq.
q Ð 0, r Ð χApm, 0q
while r “ 0 do

q Ð q ` 1

r Ð χApm, qq
end while
return q

RCd`1
d`1A

L #LEd
2

uRCd`1
d`1 A

u

#

Figure 2.15 – Organigramme pour la minimisation.

est dit récursif primitif si sa fonction caractéristique

χP : N
d Ñ N, m ÞÑ

#

1 si m P P

0 si m R P

est récursive primitive.

L’ensemble des prédicats récursifs primitifs est stable pour les opérations booléennes.

Proposition 2.5.8. Soient P et Q des prédicats récursifs primitifs de même arité d. Alors
les prédicats P XQ, P YQ, Nd zP sont récursifs primitifs.

Preuve. On a χPXQ “ χP ¨ χQ, χPYQ “ sign ˝ pχP ` χQq et χ
N
d zP “ 11 ´ χP . D’où la

conclusion.

La proposition suivante nous fournit quelques premiers prédicats récursifs primitifs.

Proposition 2.5.9. Pour tout „ P tď,ă,“,ě,ąu, le prédicat binaire P„ “ tpm,nq P
N
2 : m „ nu est récursif primitif.

Preuve. On a χPą
“ sign ˝ pP2,1 ´ P2,2q et χPă

“ sign ˝ pP2,2 ´ P2,1q. D’où Pą et Pă sont
récursifs primitifs. Ensuite, on a Pď “ N

2 zPą, Pě “ N
2 zPă et P“ “ PďXPě. Grâce à la

proposition 2.5.8, on obtient que Pď, Pě et P“ sont récursifs primitifs également.

Proposition 2.5.10. Soit P un prédicat récursif primitif d’arité k et soient f1, . . . , fk des
fonctions récursives primitives de Fd. Alors le prédicat

tm P Nd : pf1pmq, . . . , fkpmqq P P u

est récursif primitif.

CHAPITRE 2. CALCULABILITÉ 15

Preuve. Il suffit de noter que la fonction caractéristique de ce prédicat est égale à la fonction
composée χP pf1, . . . , fkq.

Corollaire 2.5.11. Soient f, g P FdXPR. Pour tout „ P tă,ď,“,ě,ąu, le prédicat tm P
N
d : fpmq „ gpmqu est récursif primitif. En particulier, les prédicats tm P Nd : fpmq ą 0u

et tm P Nd : fpmq “ 0u sont aussi récursifs primitifs.

Preuve. C’est une conséquence des propositions 2.5.9 et 2.5.10.

Proposition 2.5.12 (Définition par cas). Soient P1, . . . , Pk des prédicats récursifs primitifs
d’arité d deux à deux disjoints et soient f1, . . . , fk`1 des fonctions récursives primitives de
Fd. Alors la fonction

N
d Ñ N, m ÞÑ

$

’

’

’

’

&

’

’

’

’

%

f1pmq si m P P1

...

fkpmq si m P Pk

fk`1pmq sinon.

est récursive primitive.

Preuve. Cette fonction définie par cas est égale à

f1 ¨ χP1
` ¨ ¨ ¨ ` fk ¨ χPk

` fk`1 ¨ χN
d zpP1Y¨¨¨YPkq.

On conclut en utilisant la proposition 2.5.8.

Corollaire 2.5.13.

— Si on modifie un nombre fini de valeurs d’une fonction récursive primitive, on obtient
encore une fonction récursive primitive.

— Tout sous-ensemble fini de N
d est un prédicat récursif primitif.

Proposition 2.5.14. Le produit cartésien de prédicats récursifs primitifs est récursif pri-
mitif.

Preuve. Soient P Ď N
p et Q Ď N

q deux prédicats récursifs primitifs. On a χPˆQ “
χP pPp`q,1, . . . , Pp`q,pq ¨ χQpPp`q,p`1, . . . , Pp`q,p`qq.

Proposition 2.5.15 (Quantification bornée). Si P est un prédicat récursif primitif d’arité
d` 1, alors les prédicats

tpm, nq P Nd`1 : @i ď n, pm, iq P P u

et
tpm, nq P Nd`1 : Di ď n, pm, iq P P u

sont récursifs primitifs.

Preuve. Notons A le premier prédicat et B le second. Les fonctions caractéristiques χA et
χB s’obtiennent par récursion primitive de fonctions récursives primitives. En effet, pour
tous m P Nd et n P N, on a

χApm, 0q “ χBpm, 0q “ χP pPd,1, . . . , Pd,d, 0dqpmq,

χApm, n` 1q “ χApm, nq ¨ χP pm, n ` 1q

CHAPITRE 2. CALCULABILITÉ 16

“ pPd`2,d`2 ¨ χP pPd`2,1, . . . , Pd`2,d, σ ˝ Pd`2,d`1qqpm, n, χApm, nqq

et

χBpm, n` 1q “ signpχBpm, nq ` χP pm, n` 1qq

“ signpPd`2,d`2 ` χP pPd`2,1, . . . , Pd`2,d, σ ˝ Pd`2,d`1qqpm, n, χBpm, nqq.

Définition 2.5.16. La fonction obtenue par minimisation bornée d’un ensemble A Ď N
d`1

est la fonction

N
d`1 Ñ N, pm, nq ÞÑ

#

inftt ď n : pm, tq P Au si Dt ď n, pm, tq P A

0 sinon.

On écrit µtďnppm, tq P Aq pour désigner la valeur de cette fonction en pm, nq.

Remarque. La fonction obtenue par minimisation bornée d’une fonction g P Fd`1 est la
fonction

N
d`1 Ñ N, pm, nq ÞÑ

#

inftt ď n : gpm, tq “ 0u si Dt ď n, gpm, tq “ 0

0 sinon.

On note µtďnpgpm, tq “ 0q la valeur de cette fonction en pm, nq. Il est laissé en exercice de
montrer que la classe des fonctions obtenues par minimisation bornée de fonctions coïncide
avec la classe des fonctions obtenues par minimisation bornée d’ensembles.

Proposition 2.5.17 (Minimisation bornée).

— Une fonction obtenue par minimisation bornée d’une fonction récursive primitive est
récursive primitive.

— Une fonction obtenue par minimisation bornée d’un prédicat récursif primitif est ré-
cursive primitive.

Preuve. Nous montrons le deuxième item, le premier se montrant de façon similaire. Soit
A un prédicat récursif primitif d’arité d` 1. Pour tous m P Nd et n P N, on a

µtď0ppm, tq P Aq “ 0dpmq

et

µtďn`1ppm, tq P Aq “

$

’

&

’

%

µtďnppm, tq P Aq si Dt ď n, pm, tq P A

0 si @t ď n` 1, pm, tq R A

n` 1 sinon

“

$

’

&

’

%

Pd`2,d`2pm, n, µtďnppm, tq P Aqq si pm, n, µtďnppm, tq P Aqq P B1

0d`2pm, n, µtďnppm, tq P Aqq si pm, n, µtďnppm, tq P Aqq P B2

σ ˝ Pd`2,d`1pm, n, µtďnppm, tq P Aqq sinon

où
B1 “ tpm, n, sq P Nd`2 : Dt ď n, pm, tq P Au

et
B2 “ tpm, n, sq P Nd`2 : @t ď n` 1, pm, tq P Nd`1 zAu.

Par les propositions 2.5.8 et 2.5.14, les prédicats

C1 “ tpm, nq P Nd`1 : Dt ď n, pm, tq P Au

CHAPITRE 2. CALCULABILITÉ 17

et
C2 “ tpm, nq P Nd`1 : @t ď n, pm, tq P Nd`1 zAu

sont récursifs primitifs. Comme

χB1
“ χC1

pPd`2,1, . . . , Pd`2,d`1q

et
χB2

“ χC2
pPd`2,1, . . . , Pd`2,d, σ ˝ Pd`2,d`1q,

on obtient que B1 et B2 sont récursifs primitifs. Les fonctions Pd`2,d`2, 0d`2 et σ˝Pd`2,d`1

étant également récursives primitives, on conclut en utilisant la proposition 2.5.12.

Nous donnons à présent quelques nouveaux exemples de fonctions récursives primitives
qui seront utiles dans la preuve du théorème 2.5.22.

Lemme 2.5.18.

— La fonction

DIV: N
2 Ñ N, pm,nq ÞÑ

#

tm
n

u si n ě 1

0 si n “ 0

est récursive primitive.

— La fonction

MOD: N
2 Ñ N, pm,nq ÞÑ

#

m mod n si n ě 1

m si n “ 0

est récursive primitive.

— La fonction

LOGD: N
2 Ñ N, pm,nq ÞÑ

#

tlogmpnqu si m ě 2 et n ě 1

0 sinon

est récursive primitive.

— Le prédicat D “ tpm,nq P N2 : n divise mu est récursif primitif.

Preuve. Le prédicat P “ tpm,n, sq P N
3 : ps ` 1qn ą mu est récursif primitif par les

propositions 2.5.9 et 2.5.10. Ainsi, au vu de la proposition 2.5.17, la fonction f : N
3 ÞÑ

N, pm,n, sq ÞÑ µtďsppm,n, tq P P q est récursive primitive. Puisque

DIV: N
2 Ñ N, pm,nq ÞÑ

#

fpm,n,mq si n ě 1

0 si n “ 0,

la fonction DIV est récursive primitive par la proposition 2.5.12. La fonction MOD est
alors elle aussi récursive primitive puisque pour tout pm,nq P N, on a MODpm,nq “
m ´ n ¨DIVpm,nq.

Montrons maintenant que la fonction LOGD est récursive primitive. Le prédicat Q “
tpm,n, sq P N3 : ms`1 ą nu est récursif primitif par les propositions 2.5.9 et 2.5.10. Ainsi,
au vu de la proposition 2.5.17, la fonction g : N

3 ÞÑ N, pm,n, sq ÞÑ µtďsppm,n, tq P Qq est
récursive primitive. Puisque

LOGD: N
2 Ñ N, pm,nq ÞÑ

#

gpm,n, nq si m ě 2 et n ě 1

0 sinon,

la fonction LOGD est récursive primitive par la proposition 2.5.12.

CHAPITRE 2. CALCULABILITÉ 18

Enfin, D est récursif primitif car

χD : N
2 Ñ N, pm,nq ÞÑ

#

1 si MODpm,nq “ 0 et n ‰ 0

0 sinon.

Voici le dernier résultat préparatoire à la preuve de C Ď R. Il s’agit de donner une
nouvelle règle de construction de fonctions généralisant la récursion primitive. Nous avons
d’abord besoin de deux lemmes. Leur but est de montrer qu’on peut énumérer les éléments
de N

d de manière récursive primitive. Nous commençons par le cas de N
2.

Lemme 2.5.19. La fonction E2 : N
2 Ñ N, pm,nq ÞÑ 2mp2n ` 1q ´ 1 est une bijection

récursive primitive. De plus, il existe des fonctions β1, β2 P F1XPR telles que β1˝E2 “ P2,1

et β2 ˝ E2 “ P2,2.

Preuve. Il est facile de vérifier que E2 est une bijection récursive primitive. La fonction

β1 : NÑ N, k ÞÑ inftt P N : 2t`1 ne divise pas k ` 1u

est telle que β1 ˝ E2 “ P2,1. Par le lemme 2.5.18, le prédicat D est récursif primitif et
donc N

2 zD aussi. Ainsi, la fonction f : N
2 Ñ N, pk, sq ÞÑ µtďsppk ` 1, 2t`1q P N

2 zDq est
récursive primitive. Puisque β1pkq “ fpk, kq, on obtient que la fonction β1 est récursive
primitive. La fonction

β2 : NÑ N, k ÞÑ
1

2

ˆ

k ` 1

2β1pkq
´ 1

˙

est telle que β2 ˝ E2 “ P2,2. Puisque la fonction β1 est récursive primitive, la fonction β2
est elle aussi récursive primitive.

Lemme 2.5.20. Pour tout d ě 1, il existe une bijection Ed P FdXPR et des fonctions
récursives primitives βd,1, . . . , βd,d P F1XPR telles que pour tout i P t1, . . . , du, on ait
βd,i ˝ Ed “ Pd,i.

Preuve. Nous procédons par récurrence sur d. Le résultat est trivialement vrai pour d “ 1

et le cas d “ 2 est réglé par le lemme 2.5.19. Soit à présent d ě 2 et supposons que de
telles fonctions Ed, βd,1, . . . , βd,2 existent. Alors les fonctions

Ed`1 “ E2pEdpPd`1,1, . . . , Pd`1,dq, Pd`1,d`1q

βd`1,i “ βd,i ˝ β2,1 pour 1 ď i ď d

βd`1,d`1 “ β2,2

conviennent pour la thèse.

Remarquons que les fonctions obtenues dans les lemmes 2.5.19 et 2.5.20 ne sont pas
uniques. Par exemple, la fonction de Peano N

2 Ñ N, pm,nq ÞÑ pm`nqpm`n`1q
2

`n est aussi
une bijection récursive primitive. 2

Proposition 2.5.21 (Récursion primitive généralisée). Soient g1, . . . , gk P Fd et h1, . . . , hk P
Fd`k`1 des fonctions récursives primitives. Alors les fonctions f1, . . . , fk P Fd`1 définie
comme suit sont récursives primitives : pour tous m P Nd, n P N et i P t1, . . . , ku, on a

fipm, 0q “ gipmq et fipm, n ` 1q “ hipm, n, f1pm, nq, . . . , fkpm, nqq.

2. Que deviennent les fonctions β1 et β2 dans ce cas ?

CHAPITRE 2. CALCULABILITÉ 19

Preuve. Soient Ek, βk,1, . . . , βk,k des fonctions comme dans le lemme 2.5.20. Posons F “
Ekpf1, . . . , fkq. Puisque fi “ βk,i ˝ F pour tout i P t1, . . . , ku, il suffit de montrer que
la fonction F est récursive primitive. Pour tous m P N

d et n P N, on a F pm, 0q “
Ekpg1, . . . , gkqpmq et F pm, n` 1q “ hpm, n, F pm, nqq avec

h “ Ekp. . . , hipPd`2,1, . . . , Pd`2,d`1, βk,1 ˝ Pd`2,d`2, . . . , βk,k ˝ Pd`2,d`2q, . . .q.

D’où la conclusion.

Exercice. Montrer que les nombres de Fibonacci sont récursifs primitifs en utilisant la
proposition 2.5.21. Autrement dit, montrer que la fonction F : NÑ N définie récursivement
par F p0q “ 0, F p1q “ 1 et F pn`2q “ F pn`1q`F pnq pour tout entier n ě 0 est récursive
primitive.

Nous sommes enfin prêts pour démontrer que toute fonction calculable par machine
de Turing est récursive. Nous montrons même un résultat plus précis : toute fonction
calculable par machine de Turing peut s’obtenir en appliquant aux fonctions initiales la
composition, la récursion primitive et une unique fois la minimisation d’une fonction sûre.

Théorème 2.5.22. Pour toute fonction f P FdX C, il existe une fonction g P Fd`1 PR

et une fonction sûre h P Fd`1 PR telles que fpmq “ gpm, µnphpm, nq “ 0qq pour tout
m P Nd. En particulier, les fonctions calculables sont récursives.

Preuve. Soit f P FdX C. Comme F0 Ď R, on peut supposer que d ě 1. Soit M “
pQ, q0, h,A, δq une machine de Turing calculant f .

L’idée générale de la preuve est d’encoder le comportement de la machine de Turing
M à l’aide de fonctions récursives. En fait, nous n’utiliserons partout que des fonctions
récursives primitives, à l’exception de la toute dernière étape où une minimisation (non
bornée) interviendra.

Nous encodons successivement les configurations machines, les transitions et enfin la
fonction f elle-même.

1. Codage de M.

(a) Codage des mots de A˚.

Notons A “ ta1, . . . , aku avec k ě 2. Sans perte de généralité, on peut supposer
que a1 “ # et a2 “ u. On définit un codage

c : A˚ Ñ N, ain´1
¨ ¨ ¨ ai0 ÞÑ

n´1
ÿ

j“0

ijpk ` 1qj .

Il s’agit de la fonction valeur en base k` 1. Puisque le chiffre 0 n’est pas utilisé,
la fonction c est injective. En particulier, on a cpεq “ 0 et cpaiq “ i pour tout
i P t1, . . . , ku.

(b) Codage des états.

Notons Q “ tp0, . . . , pℓu avec ℓ ě 1. Sans perte de généralité, on peut supposer
que p0 “ h et p1 “ q0. On définit un codage

c : QÑ N, pi ÞÑ i.

(c) Codage de la fonction de transition.

On pose ak`1 “ L et ak`2 “ R. Considérons des fonctions D1,D2 P F2 X PR

telles que pour tous i P t1, . . . , ℓu et j P t1, . . . , ku tels que δppi, ajq est défini,
on ait

δppi, ajq “ ppD1pi,jq, aD2pi,jqq.

CHAPITRE 2. CALCULABILITÉ 20

Remarquons que seulement un nombre fini de valeurs de D1 et D2 sont fixées
par ces conditions.

(d) Codage des configurations machine.

Une configuration machine p.xay est codée par le quadruplet de N
4

pcpqq, cpxq, cpaq, cpyRqq.

2. Codage des transitions opérant sur les configurations machines.

(a) On cherche une fonction F : N
4 Ñ N

4 telle que si c “ pc1, c2, c3, c4q est le
code d’une configuration machine à partir de laquelle une nouvelle configura-
tion machine est atteignable en une transition, alors F pcq est le code de cette
nouvelle configuration machine. Pour ce faire, nous allons définir des fonctions
F1, F2, F3, F4 P F4 X PR telles que pour tout c P N4, on ait

F pcq “ pF1pcq, F2pcq, F3pcq, F4pcqq.

La table 2.2 indique les cas où les définitions de F1, F2, F3, F4 sont précisées. On

1 ď D2pc1, c3q ď k D2pc1, c3q “ k`1 D2pc1, c3q “ k`2

F1pcq D1pc1, c3q D1pc1, c3q D1pc1, c3q
F2pcq c2 DIVpc2, k`1q pk`1qc2`c3

F3pcq D2pc1, c3q MODpc2, k`1q

#

MODpc4, k`1q si c4 ‰ 0

1 si c4 “ 0

F4pcq c4

$

’

&

’

%

pk`1qc4`c3 si c3 ‰ 1

ou c4 ‰ 0

0 sinon

DIVpc4, k`1q

Table 2.2 – Définition des fonctions F1, F2, F3, F4.

prolonge ensuite les définitions de ces fonctions à N
4 par des fonctions récursives

primitives quelconques (par exemple, la fonction constante 04). En utilisant la
proposition 2.5.12, on obtient que F1, F2, F3, F4 P PR.

(b) On cherche une fonction F ˚ : N
5 Ñ N

4 telle que si c est le code d’une confi-
guration machine à partir de laquelle une nouvelle configuration machine est
atteignable en n transitions, alors F ˚pc, nq est le code de cette nouvelle configu-
ration machine. Pour i P t1, 2, 3, 4u, on définit F ˚

i P F5 comme suit : pour tout
c “ pc1, c2, c3, c4q P N

4 et tout n P N, on a

F ˚
i pc, 0q “ ci

et
F ˚
i pc, n` 1q “ FipF

˚
1 pc, nq, F

˚
2 pc, nq, F

˚
3 pc, nq, F

˚
4 pc, nqq.

Les fonctions F ˚
1 , F

˚
2 , F

˚
3 , F

˚
4 sont récursives primitives par la proposition 2.5.21.

La fonction

F ˚ : N
5 Ñ N

4, pc, nq ÞÑ pF ˚
1 pc, nq, F

˚
2 pc, nq, F

˚
3 pc, nq, F

˚
4 pc, nqq

convient.

3. Codage des données et décodage du résultat.

Soit
cod: N

d Ñ N, pm1, . . . ,mdq ÞÑ cp# u
m1 # ¨ ¨ ¨# u

mdq

et soit
decod: NÑ N, n ÞÑ LOGDpk ` 1, nq.

CHAPITRE 2. CALCULABILITÉ 21

La fonction decod est récursive primitive et pour tout n P N, on a decodpcp# u
mqq “

m. Montrons que la fonctions cod est aussi récursive primitive. Nous montrons ceci
par récurrence sur d et nous notons cod “ codd pour cette preuve. Pour d “ 1, on a

cod1pmq “ cp# u
mq

“ pk ` 1qm ` 2ppk ` 1qm´1 ` ¨ ¨ ¨ ` pk ` 1q ` 1q

“ pk ` 1qm ` 2
ppk ` 1qm ´ 1q

k

“ pk ` 1qm ` 2DIVppk ` 1qm ´ 1q, kq.

Il s’agit d’une composition de fonctions récursives primitives, donc cod1 P PR. Sup-
posons maintenant que d ě 1 et que codd P PR. On a

codd`1pm1, . . . ,md`1q “ cp# u
m1 # ¨ ¨ ¨# u

md # u
md`1q

“ cp# u
m1 # ¨ ¨ ¨# u

mdqpk ` 1qmd`1`1 ` cp# u
md`1q

“ coddpm1, . . . ,mdqpk ` 1qmd`1`1 ` cod1pmd`1q.

Puisque codd P PR par hypothèse de récurrence et que cod1 P PR, on obtient que
codd`1 P PR.

4. Expression de f à l’aide des codages de M et des transitions.

La configuration machine initiale est codée par p1, codpmq, 1, 0q et la configuration
d’arrêt est codée par p0, cp# u

fpmqq, 1, 0q. Par hypothèse, il existe n P N tel que
fpmq “ decodpcp# u

fpmqqq “ decodpF ˚
2 p1, codpmq, 1, 0, nqq. Cet entier n est donné

par µtpF
˚
1 p1, codpmq, 1, 0, tq “ 0q. D’où les fonctions récursives primitives

g : N
d`1 Ñ N, pm, nq ÞÑ decodpF ˚

2 p1, codpmq, 1, 0, nqq

et
h : N

d`1 Ñ N, pm, nq ÞÑ F ˚
1 p1, codpmq, 1, 0, nqq

conviennent pour la thèse.

2.6 La fonction d’Ackermann

Le but de cette section est de montrer qu’on a PR Ĺ R. Clairement, on a PR Ď R

par définition de ces deux familles de fonctions. Puisque nous savons déjà que R “ C,
la question revient donc à montrer qu’il existe une fonction calculable mais non récursive
primitive. Nous procédons de la manière la plus directe qui soit en exhibant explicitement
une telle fonction.

Définition 2.6.1. La fonction d’Ackermann 3 est la fonction A : N
2 Ñ N définie par les

conditions suivantes : pour tous m,n P N,

1. Ap0, nq “ n` 1

2. Apm` 1, 0q “ Apm, 1q

3. Apm` 1, n` 1q “ Apm,Apm` 1, nqq.

Exercice. Calculer Ap2, 3q.

3. Ackermann avait d’abord défini une fonction plus complexe. Cette forme simplifiée à deux arguments

a été proposée par Rózsa Péter, une mathématicienne hongroise. C’est pourquoi on parle aussi de la fonction

d’Ackermann-Péter

CHAPITRE 2. CALCULABILITÉ 22

Définition 2.6.2. Pour tout m P N, posons Am : NÑ N, n ÞÑ Apm,nq.

Proposition 2.6.3. Pour tout n P N, on a

1. A0pnq “ n` 1

2. A1pnq “ n` 2

3. A2pnq “ 2n ` 3

4. A3pnq “ 2n`3 ´ 3.

Preuve. Il suffit de procéder par récurrence sur n.

Exercice. Trouver une expression de la fonction A4. Essayer de vous imaginer la vitesse
à laquelle croît A5.

Au vu de la proposition précédente, on remarque que les fonctions A0,A1,A2 et A3

sont récursives primitives. C’est en fait le cas de toutes les fonctions Am.

Proposition 2.6.4. Pour tout m P N, la fonction Am est récursive primitive.

Preuve. On procède par récurrence sur m. Pour m “ 0, on a A0 “ σ, qui est une fonction
initiale. Soit à présent m P N tel que Am P PR. On a Am`1p0q “ Amp1q et pour tout
n P N, on a Am`1pn ` 1q “ AmpAm`1pnqq par définition de la fonction d’Ackermann.
Ainsi, la fonction Am`1 est définie par récursion primitive à partir de g “ Am ˝ 10 P F0

et h “ Am ˝P2,2 P F2, qui sont des fonctions récursives primitives par hypothèse de
récurrence. Ceci montre que Am`1 P PR.

Proposition 2.6.5. La fonction d’Ackermann est calculable.

Preuve. Nous allons montrer que la fonction d’Ackermann est calculable en décrivant un
algorithme de calcul de celle-ci. Il est laissé en exercice de construire une machine de Turing
calculant la fonction d’Ackermann à partir de cet algorithme.

On souhaite calculer des expressions de la forme

Apm1,Apm2, . . . ,Apmk´1,mkq . . .qq

où k ě 1. On code une telle expression par le k-uple

S “ pm1, . . . ,mkq.

Montrons que l’algorithme 3 calcule Apm,nq. La notation |S| désigne le nombre k d’élé-
ments de la liste S. On écrit Sris pour désigner le ie élément de S depuis la gauche et
Sr´is pour désigner le ie élément de S depuis la droite. La notation DroprS,´is signifie
qu’on supprime les i derniers éléments de la liste S et la notation JoinrS, T s indique qu’on
crée une liste composée des éléments de la liste S suivis des éléments de la liste T .

On procède par récurrence sur m. Pour une entrée de la forme p0, nq, on passe une
unique fois dans la boucle et on sort n`1, qui est bien égal à Ap0, nq. Supposons à présent
que m ě 0 et que pour toute entrée de la forme pm,nq, l’algorithme s’arrête et sort la
valeur Apm,nq. À partir d’une entrée de la forme pm`1, nq, on a successivement les mises
à jour suivantes de la liste S :

pm` 1, nq Ñ pm,m` 1, n ´ 1q

Ñ pm,m,m` 1, n ´ 2q

...

CHAPITRE 2. CALCULABILITÉ 23

Algorithm 3 Calcul de la fonction d’Ackermann.

Require: pm,nq P N2

Ensure: Sr1s is Apm,nq
S Ð pm,nq, T, p, q

while |S| ě 2 do
T Ð DroprS,´2s, pÐ Sr´2s, q Ð Sr´1s
if p “ 0 then
S Ð JoinrT, pq ` 1qs
else if p ą 0 and q “ 0 then
S Ð JoinrT, pp´ 1, 1qs
else
S Ð JoinrT, pp´ 1, p, q ´ 1qs
end if

end while
return Sr1s

Ñ pm, . . . ,m
loooomoooon

n fois

,m` 1, 0q

Ñ pm, . . . ,m
loooomoooon

n fois

,m, 1q

Ñ˚ pm, . . . ,m
loooomoooon

n fois

,Apm, 1q
looomooon

Apm`1,0q

q

Ñ˚ pm, . . . ,m
loooomoooon

n´1 fois

,Apm,Apm` 1, 0q
loooooooooomoooooooooon

Apm`1,1q

q

Ñ˚ pm, . . . ,m
loooomoooon

n´2 fois

,Apm,Apm` 1, 1q
loooooooooomoooooooooon

Apm`1,2q

q

...

Ñ˚ pApm,Apm` 1, n ´ 1q
looooooooooooomooooooooooooon

Apm`1,nq

q

où Ñ représente un passage dans la boucle et Ñ˚ désigne la clôture réflexive et transitive
de Ñ, et où on a utilisé l’hypothèse de récurrence aux étapes impliquant Ñ˚. L’algorithme
se termine donc bien sur toutes les entrées pm,nq de N

2, et ce, avec la bonne valeur,
c’est-à-dire Apm,nq.

Lemme 2.6.6. Pour tout m,n P N, on a

1. n ă Apm,nq

2. Apm,nq ă Apm,n` 1q

3. Apm,n` 1q ď Apm` 1, nq

4. Apm,nq ă Apm` 1, nq.

Preuve. Montrons le point 1 par une double récurrence, sur m d’abord et ensuite sur n.
Pour m “ 0 et pour tout n P N, on a Ap0, nq “ n ` 1 ą n. Considérons à présent un
naturel m fixé et supposons que pour tout n P N, on a n ă Apm,nq. Nous devons montrer
que pour tout n P N, on a n ă Apm`1, nq également. On procède à présent par récurrence
sur n. Pour n “ 0, on a Apm ` 1, 0q “ Apm, 1q ą 1 ą 0 où on a utilisé l’hypothèse de
récurrence sur m. Supposons maintenant que n est un naturel tel que n ă Apm`1, nq. Nous
devons montrer que n ` 1 ă Apm ` 1, n ` 1q. En appliquant successivement l’hypothèse

CHAPITRE 2. CALCULABILITÉ 24

de récurrence sur m et l’hypothèse de récurrence sur n, on obtient Apm ` 1, n ` 1q “
Apm,Apm` 1, nqq ą Apm` 1, nq ě n` 1, comme souhaité.

Au vu du point 1, si m P N0 et n P N, on a Apm,n`1q “ Apm´1,Apm,nqq ą Apm,nq.
De plus, pour tout n P N, on a Ap0, nq “ n` 1 et Ap0, n` 1q “ n` 2. Le point 2 est donc
démontré.

Nous montrons le point 3. Considérons un naturel m fixé et procédons par récurrence
sur n. Pour n “ 0, on a Apm` 1, 0q “ Apm, 1q par définition de la fonction d’Ackermann.
Supposons maintenant que n est un naturel tel que Apm,n`1q ď Apm`1, nq. Nous devons
montrer que Apm,n` 2q ď Apm` 1, n` 1q. En appliquant successivement l’hypothèses de
récurrence et le point 1, on obtient Apm`1, nq ą n`1. On en déduit que Apm`1, nq ě n`2.
En appliquant la définition, l’inégalité obtenue précédemment et le point 2, on obtient que

Apm` 1, n ` 1q “ Apm,Apm` 1, nq
loooooomoooooon

ěn`2

q ě Apm,n ` 2q

comme souhaité.

Enfin, en combinant les points 2 et 3, on obtient que pour tout m,n P N, on a Apm,nq ă
Apm,n ` 1q ď Apm` 1, nq. Le point 4 est donc démontré également.

Proposition 2.6.7. Pour toute fonction f P FdXPR, il existe M P N tel que pour tout
m P Nd, on a fpmq ă ApM, suppmqq.

Preuve. Pour montrons que toute fonction récursive primitive a la propriété souhaitée,
nous montrons que cette propriété est vraie pour les fonctions initiales et que l’ensemble des
fonctions satisfaisant cette propriété est stable par composition et par récursion primitive.

Intéressons-nous d’abord au cas des fonctions initiales. On cherche un naturel M tel
que 0 ă ApM, suppqq “ ApM, 0q. Remarquons que la borne supérieure de l’ensemble vide
dans N vaut 0 puisque le plus petit élément de N est 0. Le choix de M “ 0 convient puisque
Ap0, 0q “ 1. Ensuite, on cherche M tel que pour tout m P N, on a σpmq ă ApM,mq. Le
choix de M “ 1 convient puisque Ap1,mq “ m ` 2. Enfin, pour tout d P N0 et tout
i P t1, . . . , du, on cherche M tel que pour tout m P N, on a Pd,ipmq ă ApM, suppmqq. Le
choix de M “ 0 convient pour tous d, i car on a mi ă suppmq ` 1.

Montrons la stabilité par composition. Soient h1, . . . , hn P Fd et g P Fn, et supposons
qu’il existe H1, . . . ,Hn, G P N tels que

— pour tout m P Nd, on a hipmq ă ApHi, suppmqq, et
— pour tout m P Nn, on a gpmq ă ApG, suppmqq.

On cherche M P N tel que pour tout m P Nd, on a

gph1pmq, . . . , hnpmqq ă ApM, suppmqq.

En posant H “ suppH1, . . . ,Hnq, par le point 4 du lemme, pour tout i P t1, . . . , nu et pour
tout m P Nd, on a

hipmq ă ApH, suppmqq,

et donc
supph1pmq, . . . , hnpmqq ă ApH, suppmqq.

En posant P “ suppG,Hq, par les points 2, 3 et 4 du lemme, on obtient que pour tout
m P Nd, on a

gph1pmq, . . . , hnpmqq ă ApG, supph1pmq, . . . , hnpmqqq

ă ApG,ApH, suppmqqq

ă ApP,ApP ` 1, suppmqqq

CHAPITRE 2. CALCULABILITÉ 25

“ ApP ` 1, suppmq ` 1q

ď ApP ` 2, suppmqq.

Ainsi, M “ P ` 2 convient.

Enfin, montrons la stabilité par récursion primitive. Soient g P Fd et h P Fd`2, et
supposons qu’il existe G,H P N tels que

— pour tout m P Nd, on a gpmq ă ApG, suppmqq, et
— pour tout m P Nd`2, on a hpmq ă ApH, suppmqq.

Soit f P Fd`1 la fonction définie par récursion primitive à partir de g et h. On cherche
M P N tel que pour tout m P Nd`1, on a

fpmq ă ApM, suppmqq.

D’abord, remarquons que par hypothèse sur h et par le point 1 du lemme, pour tout m P Nd

et tout n P N0, on a

suppm, n, fpm, nqq ď ApH, suppm, n´ 1, fpm, n´ 1qqq. (2.1)

Soient m P N
d et n P N fixés. En itérant n fois l’inégalité (2.1) et en utilisant point 2 du

lemme, on obtient que

fpm, nq ď ApH, suppm, n´ 1, fpm, n´ 1qqq

ď ApH,ApH, suppm, n´ 2, fpm, n´ 2qqqq

...

ď ApH,ApH, . . . , ApH,
loooooooooooomoooooooooooon

n fois

suppm, 0, fpm, 0qqq . . .qq

“ ApH,ApH, . . . ,ApH,
loooooooooooomoooooooooooon

n fois

suppm, gpmqqq . . .qq.

Par hypothèse sur g et par le point 1 du lemme, on a

suppm, gpmqq ă ApG, suppmqq.

En posant P “ suppG,Hq et en utilisant les points 2 et 4 du lemme, on obtient que

fpm, nq ă ApP,ApP, . . . ,ApP,
looooooooooomooooooooooon

n fois

ApP ` 1, suppmqqq . . .qq

“ ApP,ApP, . . . ,ApP,
looooooooooomooooooooooon

n´1 fois

ApP ` 1, suppmq ` 1qq . . .qq

...

“ ApP ` 1, suppmq ` nq.

Par la proposition 2.6.3, pour tout k, ℓ P N, on a k` ℓ ă Ap2, suppk, ℓqq. En particulier, on
a suppmq ` n ă Ap2, suppm, nqq. En combinant ces inégalités et en utilisant les points 2,
3 et 4 du lemme, on obtient que

fpm, nq ă ApP ` 1,Ap2, suppm, nqqq

ď ApP ` 1,ApP ` 2, suppm, nqqq

“ ApP ` 2, suppm, nq ` 1q

ď ApP ` 3, suppm, nqq.

Ainsi, le choix de M “ P ` 3 convient.

CHAPITRE 2. CALCULABILITÉ 26

Corollaire 2.6.8. La fonction d’Ackermann n’est pas récursive primitive.

Preuve. Procédons par l’absurde en supposant que la fonction d’Ackermann soit récursive
primitive. Par la proposition précédente, on peut alors trouver un naturel M tel que pour
tout pm,nq P N

2, on ait Apm,nq ă ApM, suppm,nqq. Cette inégalité évaluée en pm,nq “
pM,Mq donne lieu à une contradiction.

2.7 Fonctions non calculables

Tout d’abord, nous montrons que l’ensemble F1 z C est non vide. En particulier, il existe
des fonctions non calculables.

Proposition 2.7.1. Il existe des fonctions de N dans N non calculables.

Preuve. L’ensemble F1 des fonctions de N dans N est non dénombrable 4. L’ensemble C des
fonctions calculables, lui, est dénombrable. En effet, il suffit de remarquer que les machines
de Turing elles-mêmes sont dénombrables. L’ensemble F1X C des fonctions de N dans N

calculables est donc dénombrable lui aussi. D’où la conclusion.

Remarquons qu’on a en fait montré bien plus qu’annoncé puisque nous avons montré
que l’ensemble F1 z C était non dénombrable !

Nous allons à présent exhiber une fonction non calculable. Puisque l’ensemble des
F1X C est dénombrable, il existe une énumération de ses éléments (c’est-à-dire une bijection
de N dans F1X C). Nous notons f0, f1, f2, . . . la liste des fonctions de F1X C. Si une
telle énumération existe, elle n’est pas calculable, au sens suivant : la fonction u : N

2 Ñ
N, pm,nq ÞÑ fmpnq n’est pas calculable.

Proposition 2.7.2. La fonction u n’est pas calculable.

Preuve. Supposons au contraire qu’il existe une machine de Turing M calculant u. Alors
la machine de Turing C1MuR calcule la fonction v : N Ñ N, n ÞÑ upn, nq ` 1. Comme
v P F1X C, il existe k P N tel que v “ fk. C’est impossible car ces fonctions prennent des
valeurs différentes en k.

Une autre fonction non calculable est donnée par la fonction β définie comme suit.
Cette fonction nous sera utile dans la suite lorsque nous parlerons du problème de l’arrêt.

Définition 2.7.3. On dit qu’un naturel m est produit par une machine de Turing lorsque
q0.## $˚ h.# u

m#. Pour tout m P N, on note Mm la machine de Turing dessinée à la
Figure 2.16. Il s’agit d’une machine de Turing d’alphabet t#, uu, possédant m ` 1 états
et produisant l’entier m. Pour tout m P N, on note βpmq le plus grand entier produit par
une machine de Turing d’alphabet t#, uu et possédant m ` 1 états. La fonction β est la
fonction NÑ N, m ÞÑ βpmq.

0 1 2 m´1 m

#, u

u, R

#, u

u, R

#, u

u, R

#, u

u, R

Figure 2.16 – La machine de Turing Mm produit l’entier m.

4. Pourquoi ?

CHAPITRE 2. CALCULABILITÉ 27

Proposition 2.7.4. Toute fonction numérique calculable est calculable par une machine
de Turing sur l’alphabet t#, uu.

Idée de la preuve. Puisque les fonctions calculables et récursives coïncident, il suffit de
montrer que les fonctions initiales sont calculables par une machine de Turing sur l’alphabet
t#, uu, et que l’ensemble des fonctions calculables par une machine de Turing sur l’alphabet
t#, uu est stable par composition, récursion primitive et minimisation de fonctions sûres.
Il s’agit donc d’un raffinement de la preuve de la proposition 2.5.6 : à chaque étape, il
faut vérifier que les machines de Turing construites sont d’alphabet t#, uu. Les détails
sont laissés en exercices. Il faudra en particulier justifier que les machines SL,d,SR,d, Cd, Ed

utilisées sont également d’alphabet t#, uu.

Proposition 2.7.5. La fonction β n’est pas calculable.

Preuve. Montrons d’abord que β est une fonction strictement croissante. Soit m P N.
Soit Bm une machine de Turing d’alphabet t#, uu ayant m ` 1 états et produisant βpmq
(une telle machine existe par définition de βpmq). Alors la machine de Turing BmM1 est
d’alphabet t#, uu, a m`2 états et produit βpmq`1. On en déduit que βpm`1q ě βpmq`1.
Procédons maintenant par l’absurde et supposons que β est calculable. Alors la fonction
N Ñ N, m ÞÑ βp2mq est calculable aussi. Soit une machine de Turing N la calculant et
soit k le nombre d’états de N . Au vu de la proposition précédente, on peut supposer que
N est d’alphabet t#, uu. Pour tout m P N, la machine de Turing MmN produit βp2mq, a
m` k états et est d’alphabet t#, uu. D’où, pour tout m P N, on a βpm` k ´ 1q ě βp2mq.
Puisque β est une fonction strictement croissante, on obtient que pour tout m P N, on a
m` k ´ 1 ě 2m, c’est-à-dire m ď k ´ 1, une contradiction.

2.8 Langages décidables

Définition 2.8.1. Un langage L sur un alphabet A ne contenant pas le symbole blanc #

est dit décidable si sa fonction caractéristique χL : A
˚ Ñ N est calculable.

Autrement dit, un langage L Ď A˚ (avec # R A) est calculable s’il existe une machine
de Turing M “ pQ, q0, h,B, δq avec A Ď B telle que, pour tout w P A˚, lorsqu’elle
est exécutée à partir de la configuration initiale q0.#w#, atteint la configuration d’arrêt
h.# u# si w appartient au langage L et atteint la configuration d’arrêt h.## sinon. De
manière informelle, dans le premier cas, on dira que la machine répond « oui » et dans le
deuxième cas, on dira que la machine répond « non ».

Puisque les fonctions calculables et récursives coïncident, les langages décidables sont
également appelés les langages récursifs et la famille des langages décidables est notée R.

Si A est un alphabet totalement ordonné, l’ordre radiciel sur A˚ est l’ordre défini
comme suit : les mots de A˚ sont ordonnés longueur par longueur, et pour les mots de
même longueur, ils sont ordonnés en suivant l’ordre lexicographique 5. Par exemple, si
A “ ta, b, cu avec a ă b ă c, les premiers mots de A˚ dans l’ordre radiciel sont donné à la
table 2.3.

Lemme 2.8.2. Soit A un alphabet totalement ordonné. La fonction de A˚ dans A˚ qui à
un mot de A˚ associe le mot suivant de A˚ dans l’ordre radiciel est calculable.

Preuve. Supposons que A “ ta1, . . . , aku avec a1 ă ¨ ¨ ¨ ak. On vérifie aisément que l’orga-
nigramme de la figure 2.17 calcule la fonction souhaitée.

5. C’est-à-dire, l’ordre du dictionnaire.

CHAPITRE 2. CALCULABILITÉ 28

0 ε 6 ac 12 cc 18 abc

1 a 7 ba 13 aaa 19 aca

2 b 8 bb 14 aab 20 acb

3 c 9 bc 15 aac 21 acc

4 aa 10 ca 16 aba 22 baa

5 ab 11 cb 17 abb 23 bab

Table 2.3 – Ordre radiciel sur ta, b, cu˚.

L R a1 R a1 R

ai`1R #

a1 R

ak

ak

ak

#

#

ai, i ă k

#

ak

ak

#

Figure 2.17 – Organigramme pour la fonction successeur dans l’ordre radiciel.

Proposition 2.8.3. Soient A1, . . . , Ad`1 des alphabets ne contenant pas le symbole blanc
et soit µ un symbole n’appartenant pas à

Ťd`1
i“1 Ai Y t#u. Une fonction

f : A˚
1 ˆ ¨ ¨ ¨ ˆA˚

d Ñ A˚
d`1

est calculable si et seulement si le langage

Lf “ tw1µw2µ . . . µwdµfpw1, . . . , wdq : w1 P A
˚
1 , . . . , wd P A

˚
du

est décidable.

Preuve. Soit f : A˚
1 ˆ ¨ ¨ ¨ ˆ A˚

d Ñ A˚
d`1. Supposons d’abord que Lf est décidable. Soit

MLf
une machine de Turing calculant la fonction caractéristique de Lf . Notons S la

machine de Turing décrite par l’organigramme de la figure 2.17. Alors l’organigramme
de la figure 2.18 calcule la fonction f . En effet, si on démarre avec la configuration
q0.#w1#w2# . . .#wd#, cette machine de Turing énumère les mots de A˚

d`1 dans l’ordre
radiciel en utilisant la machine S, et pour chaque i P N, si xi est le ie mot énuméré, elle
vérifie que w1µw2µ . . . µwdµxi P Lf . Si c’est le cas, alors xi “ fpw1, . . . , wdq et la machine
de Turing sort la valeur obtenue. Sinon, on passe au mot xi`1 suivant. Comme f est une
fonction totale, cette procédure va nécessairement s’arrêter, et ce, avec la bonne image.

Inversement, supposons que f est fonction calculable. Soit Mf une machine de Turing
calculant f . On va expliquer les étapes de construction d’une machine de Turing calculant la
fonction caractéristique de Lf . On démarre avec la configuration q0.#w# où w P

Ťd`1
i“1 AiY

tµu. On commence par vérifier que w est de la forme w1µw2µ . . . µwdµwd`1 avec w1 P
A˚

1 , . . . , wd`1 P A˚
d`1. Si ce n’est pas le cas, la machine de Turing répond « non ». Sinon,

on calcule fpw1, . . . , wdq au moyen de Mf . Ensuite, on vérifie que wd`1 “ fpw1, . . . , wdq.
Si ce n’est pas le cas, la machine de Turing répond « non » et sinon, elle répond « oui ».
Les détails de construction sont laissés au lecteur.

CHAPITRE 2. CALCULABILITÉ 29

R Cd`1
d`1pL#µq

d R#MLf
L S

#LEd
2

#

u

Figure 2.18 – Organigramme pour le calcul de f en utilisant MLf
.

Proposition 2.8.4. La famille des langages décidables est stable pour l’union, l’intersec-
tion, la complémentation, la concaténation, et l’étoile de Kleene.

Preuve. Soient K,L des langages sur un alphabet A. On a

— χKXL “ χK ¨ χL

— χKYL “ χK ` χL ´ χK ¨ χL

— χA˚zK “ 1´ χK .

Ceci montre la stabilité pour les opérations booléennes.

Montrons à présent la stabilité par concaténation. Supposons que K et L soient déci-
dables. Soient MK et ML des machines de Turing calculant χK et χL respectivement. On
décrit une machine de Turing calculant χKL. On démarre avec une configuration q0.#w#

où w P A˚. Il y a |w| ` 1 factorisations de w de la forme w “ w1w2. La machine de Turing
crée ces factorisations l’une après l’autre, et pour chacune d’elles, teste si w1 P K et w2 P L
au moyen de MK et ML. Si on trouve une factorisation telle que les deux réponses sont
positives, alors la machine de Turing répond « oui » ; sinon, elle répond « non ».

Enfin, montrons à présent la stabilité par étoile de Kleene. Supposons que K est déci-
dable. Soit MK une machine de Turing calculant χK . On décrit une machine de Turing
calculant χK˚. On démarre avec une configuration q0.#w# où w P A˚. Il y a un nombre
fini de factorisations de w de la forme w “ w1 ¨ ¨ ¨wn avec n ě 0 et wi ‰ ε pour tout
i P t1, . . . , nu. La machine de Turing crée ces factorisations l’une après l’autre, et pour
chacune d’elle, teste si wi P K pour tout i P t1, . . . , nu grâce à MK . Si on trouve une fac-
torisation telle que tous les facteurs appartiennent à K, alors la machine de Turing répond
« oui » et elle répond « non » sinon.

2.9 Langages acceptables, machines de Turing universelles et

élimination des configurations pendantes

Une machine de Turing ne s’arrête pas toujours à partir d’une configuration initiale
donnée. D’où la définition suivante.

Définition 2.9.1. Soit une machine de Turing M “ pQ, q0, h,A, δq. Un mot w sur Azt#u
est accepté par M si, en partant de la configuration q0.#w#, on atteint une configuration
d’arrêt en suivant les transitions de M. Le langage accepté par une machine de Turing
M, noté LpMq, est l’ensemble des mots qu’elle accepte. Un langage est dit acceptable s’il
existe une machine de Turing qui l’accepte.

Afin d’étudier les propriétés des langages acceptables, nous allons montrer comment
construire une machine de Turing, dite universelle, capable de simuler le comportement
de n’importe quelle machine de Turing. Cette idée fondamentale est déjà présente dans
l’article original de Turing [5], même si le codage présenté ici diffère de l’original.

CHAPITRE 2. CALCULABILITÉ 30

Nous commençons par encoder les machines de Turing et les configurations machine
par des mots finis sur un alphabet de deux symboles u et ‹. Sans perte de généralité, nous
supposerons toujours qu’une machine de Turing possède un ensemble d’états Q inclus
dans Q8 “ tp0, p1, p2, . . .q avec p0 “ h, p1 “ q0, et un alphabet A inclus dans A8 “
ta1, a2, a3, . . .u avec a1 “ # et ‹ R A8. On considère le codage ρ donné à la table 2.4.

x ρpxq

pi u
i`1

L u

R u
2

ai u
i`2

Table 2.4 – Codage des états et des instructions de la machine de Turing universelle.

Pour chaque i, j tels que la transition δppi, ajq est définie, on définit

ρij “ ‹ρppiq ‹ ρpajq ‹ ρppq ‹ ρpxq‹

où pp, xq “ δppi, ajq. Si la transition δppi, ajq n’est pas définie, on pose ρij “ ε. Si Q “
tp0, . . . , pku et A “ ta1, . . . , aℓu, on note

cpMq “ ρ11 ¨ ¨ ¨ ρ1ℓ ¨ ¨ ¨ ρk1 ¨ ¨ ¨ ρkℓ.

Montrons maintenant comment coder les configurations machine. Pour un mot w P A˚

de longueur k, on définit

ρ1pwq “ ‹ρpwr1sq ‹ ρpwr2sq ‹ ¨ ¨ ¨ ‹ ρpwrksq ‹ .

Remarquons que pour une lettre a P A, on a ρ1paq “ ‹ρpaq‹ ‰ ρpaq. Remarquons aussi que
ρ1pεq “ ‹. Ensuite, on définit le code de la partie significative d’une configuration machine
q.uav par

ρpq.uavq “ ‹ρpqq ‹ ρ1puqρ1paqρ1pvq.

Enfin, on définit
cpwq “ ρpq0.#w#q

pour un mot fini w ne contenant pas les symboles # et ‹.

La configuration mémoire initiale de la machine de Turing universelle est de la forme

#cpMqcpwq#.

L’idée est que la machine de Turing universelle simule le comportement de M sur w, c’est à
dire qu’elle est programmée de telle sorte que si M passe de la configuration machine q.r à
q1.r1, la machine de Turing universelle met à jour sa mémoire en passant de #cpMqρpq.rq#
à #cpMqρpq.r1q#. Pour effectuer une telle mise à jour, la partie à droite de la cellule
référencée pourra être utilisée comme zone de travail par la machine de Turing universelle.
Cette partie ne contient jamais le symbole ‹.

Exemple 2.9.2. Considérons la machine de Turing de la figure 2.19. Comme convenu, on
note a1 “ # et a2 “ a, l’état initial est noté p1 et l’état final p0. On obtient

ρ11 “ ‹ρpp1q ‹ ρpa1q ‹ ρpp1q ‹ ρpRq‹ “ ‹ u
2 ‹ u3 ‹ u2 ‹ u2 ‹

ρ12 “ ‹ρpp1q ‹ ρpa2q ‹ ρpp0q ‹ ρp#q‹ “ ‹ u
2 ‹ u4 ‹ u ‹ u3 ‹.

En considérant la configuration machine p1.#aaa#a, la partie significative de la mémoire
de la machine de Turing universelle sera donnée par #cpMqρpp1.#aaa#aq#, c’est-à-dire

‹ u2 ‹ u3 ‹ u2 ‹ u2 ‹ ‹ u2 ‹ u4 ‹ u ‹ u3 ‹
loooooooooooooooooooooomoooooooooooooooooooooon

cpMq

‹ u
2

loomoon

ρpp1q

‹ ‹ u3 ‹ u4 ‹
loooomoooon

ρ1p#aq

‹ u4 ‹
loomoon

ρ1paq

‹ u4 ‹ u3 ‹ u4 ‹
looooooomooooooon

ρ1pa#aq

#.

CHAPITRE 2. CALCULABILITÉ 31

#, R

a,#

Figure 2.19 – Une machine de Turing à deux états.

Nous synthétisons la discussion qui précède dans le résultat suivant.

Le codage présenté permet d’obtenir les résultat suivants 6. En effet, il ne s’agit que de
vérifications et constructions syntaxiques.

Proposition 2.9.3.

— Les langages suivants sont décidables.

— tcpwq : w un mot finiu

— tcpMq : M une machine de Turingu

— tcpMqcpwq : M une machine de Turing, w un mot finiu.

— Pour toute machine de Turing M, on peut construire des machines de Turing réali-
sant les actions suivantes, quels que soient la configuration mémoire r et l’état q :

— q0.r $
˚ h.#cpMqρpq0.rq#

— q0.#cpMqρpq.rq# $˚ h.r.

En fait, le choix du codage importe peu pour la théorie. Ce qui compte est d’avoir
un codage c satisfaisant les propositions précédentes. De nombreux auteurs ont construit
des machines de Turing universelles. Les nombres s d’états et t de lettres des plus petites
d’entre elles sont donnés par les couples ps, tq suivants : p15, 2q, p9, 3q, p6, 4q, p5, 5q, p4, 6q,
p3, 9q, p2, 18q. En comparaison, notre codage est construit sur 3 lettres, mais le nombre
d’états d’une machine universelle correspondant à ce codage est probablement plus grand
que 9. Nous ne détaillerons pas ici la construction d’une telle machine de Turing, mais
nous espérons que le lecteur sera convaincu qu’il pourrait, avec de la patience, mener à
bien cette construction s’il le souhaitait. Des constructions impressionnantes de machines
de Turing universelles sont celles réalisées entièrement en LEGO®! Le lecteur est invité à
regarder plusieurs des nombreuses vidéos en ligne à ce sujet. Il existe même des parodies
de certaines d’entre elles !

Une machine de Turing universelle peut être vue comme un super-programme capable
d’exécuter d’autres programmes. L’intérêt de cette approche est immense. Nous avons
maintenant prise sur les programmes eux-mêmes ! Nous sommes par exemple capables de
détecter certaines situations problématiques lors de l’exécution de ceux-ci, et aussi d’en
modifier l’action si de tels problèmes sont rencontrés. Un deuxième atout de taille est que
nous pouvons également simuler plusieurs programmes en parallèle. Nous verrons que ces
deux idées nous seront utiles. Tout d’abord, nous tirons profit de la première afin d’éliminer
le problème des configurations pendantes.

Théorème 2.9.4. Il existe une machine de Turing U telle que pour toute machine de
Turing M et toute configuration mémoire r de M,

— U atteint la configuration d’arrêt h.#cpMqρph.sq# à partir de q0.#cpMqρpq0.rq# si
M atteint la configuration d’arrêt h.s à partir de q0.r ;

— U ne s’arrête pas à partir de q0.#cpMqρpq0.rq# si M ne s’arrête pas ou atteint une
configuration pendante à partir de q0.r.

6. Avec la convention que les mots sont écrits sur l’alphabet A8 et que les états des machines de Turing

appartiennent à Q8

CHAPITRE 2. CALCULABILITÉ 32

Dans le théorème précédent, chacune des machines de Turing sont lancées à partir de
leurs états initiaux respectifs (appelés tous deux q0) et s’arrêtent sur leurs états finaux
respectifs (appelés tous deux h). Cela ne cause aucune ambiguïté puisqu’il n’y a jamais
d’interférence entre ces états.

Corollaire 2.9.5. Pour toute machine de Turing M, on peut construire une machine de
Turing M1 qui à partir d’une configuration initiale donnée, atteint la même configuration
d’arrêt que M lorsque M en en atteint une et ne s’arrête pas lorsque M ne s’arrête pas
ou que M atteint une configuration pendante.

Preuve. Supposons que M soit une machine de Turing. Notons A une machine de Tu-
ring qui réalise l’action q0.r $

˚ h.#cpMqρpq0.rq#. Soit U une machine de Turing univer-
selle comme dans le théorème 2.9.4. Notons B une machine de Turing qui réalise l’action
q0.#cpMqρpq.rq# $˚ h.r. La machine de Turing AU B convient pour la thèse.

Passons à présent aux propriétés des langages acceptables. Nous allons exploiter l’idée
d’une machine de Turing universelle capable de simuler plusieurs machines de Turing en
parallèle.

Proposition 2.9.6. Un langage est décidable si et seulement si lui et son complémentaire
sont acceptables.

Preuve. Si L est un langage décidable et si M est une machine de Turing calculant χL, alors
la machine de Turing MP accepte L, où P est la machine de Turing de la figure 2.20.
Ainsi, tout langage décidable est acceptable. Le complémentaire d’un langage décidable
étant encore décidable, on obtient la condition nécessaire.

#, L

#, R

u, R

Figure 2.20 – Machine de Turing P.

Montrons à présent la condition suffisante. Soit L un langage sur un alphabet A et
supposons que M et M1 sont des machines de Turing acceptant L et A˚zL respectivement.
On va décrire une machine de Turing N décidant L. En partant de q0.#w# avec w P A˚,
on va, au moyen d’une machine de Turing universelle, simuler une transition de M sur
q0.#w# et tester si M a atteint une configuration d’arrêt. Si oui, on sait que w P L et
la machine de Turing N répond « oui ». Si non, on va simuler une transition de M1 sur
q0.#w# et tester si M1 a atteint une configuration d’arrêt. Si oui, on sait que w R L et la
machine de Turing N répond « non ». Si non, on recommence avec une nouvelle transition
de M. La machine N va donc alterner les simulations de M et M1, à chaque étape en
considérant une transition supplémentaire. Cette procédure va s’arrêter puisque le mot w

appartient forcément à L ou à A˚zL.

Définition 2.9.7. On dit qu’un langage infini L est récursivement énumérable s’il existe
une bijection de N dans L calculable.

Proposition 2.9.8. Un langage infini est acceptable si et seulement s’il est récursivement
énumérable.

Preuve. Soit M une machine de Turing acceptant un langage infini L. Sans perte de
généralité, on peut supposer que M n’atteint jamais de configuration pendante. On va

CHAPITRE 2. CALCULABILITÉ 33

montrer comment obtenir une machine de Turing qui calcule une bijection de N dans L.
On énumère les mots de A˚ dans l’ordre radiciel : w0, w1, w2, On travaille avec deux
listes : une liste L1 qui contiendra les éléments énumérés de L et une liste L2 qui contiendra
les éléments de A˚ dont on n’a pas encore prouvé l’appartenance à L. Pour commencer,
L1 est la liste vide et la liste L2 contient uniquement le mot w0. À l’étape k, pour chaque
mot wi de L2, au moyen d’une machine de Turing universelle, on applique un maximum
de k transitions de M à la configuration initiale q0.#wi#. Si M atteint une configuration
d’arrêt en moins de k transitions, on déplace le mot wi de la liste L2 vers la liste L1.
Sinon, le mot wi est conservé dans la liste L2 pour l’étape k ` 1. Si on continuait cette
procédure indéfiniment, la liste L1 contiendrait exactement les mots de L (puisque nous
avons pris soin de d’abord éliminer les configurations pendantes). Pour chaque entrée n P N,
la machine de Turing s’arrête dès que la liste L1 possède n` 1 éléments et sort le pn` 1qe

mot de cette liste.

Supposons à présent que L est un langage infini récursivement énumérable. Soit une
machine de Turing M calculant une bijection NÑ L, n ÞÑ wn. Décrivons une machine de
Turing qui accepte L. Si w est un mot en entrée, la machine réalise une boucle parcourant
successivement les naturels n, pour chacun d’entre eux produit le mot wn au moyen de
M et ensuite teste si w “ wn. Dès que la condition est vérifiée, la machine s’arrête. Cette
machine s’arrête donc exactement sur les mots de L.

Au vu de la proposition précédente, les langages acceptables sont également appelés les
langages récursivement énumérables et la famille des langages acceptables est notée RE.

2.10 Le problème de l’arrêt

Théorème 2.10.1. Le langage

A “ tcpMqcpwq : w est accepté par la machine de Turing Mu

est indécidable.

Preuve. On procède par l’absurde. Supposons que A est décidé par une machine de Turing
MA. Nous allons en déduire que la fonction β est calculable, une contradiction. Soit m P N.
Il existe un nombre fini k de machines de Turing d’alphabet t#, uu ayant m ` 1 états,
numérotés 0, . . . ,m. On choisit une énumération de ces machines de Turing : M1, . . . ,Mk.
Pour chaque i P t1, . . . , ku, on peut décider à l’aide de MA si cpMiqcpεq P A. On fait une
boucle sur i. À l’étape i, si cpMiqcpεq R A, on passe à i`1. Sinon, c’est-à-dire si Mi s’arrête
à partir de q0.##, alors on simule l’exécution de Mi sur ε au moyen d’une machine de
Turing universelle et on teste si la configuration d’arrêt est de la forme h.#ut# avec t P N.
Si ce n’est pas le cas, on passe à i ` 1. Sinon, on compare t au plus grand entier produit
jusqu’à présent. On conserve la plus grande des deux valeurs et on passe à i ` 1. Comme
la boucle est finie, la dernière valeur conservée est βpmq.

Le langage A du théorème précédent est appelé le langage du problème de l’arrêt. Ceci
est justifié par le fait, simple mais important, que le codage c choisi n’influence pas le résul-
tat obtenu. On s’autorise donc à dire que le problème de l’arrêt lui-même est indécidable.

Remarquons qu’on a en fait montré le résultat suivant.

Théorème 2.10.2. Le langage

Aε “ tcpMqcpεq : ε est accepté par la machine de Turing Mu

est indécidable.

CHAPITRE 2. CALCULABILITÉ 34

Exercice. Montrer que les langages suivants sont indécidables.

1. tcpMqcpwq : M ne s’arrête pas à partir de #w#u

2. tcpMq : M ne s’arrête pas à partir de ##u

3. tcpMq : M ne s’arrête pas à partir de #u

4. tcpMq : LpMq ‰ Hu

5. tcpMq : LpMq “ alphpLpMqq˚u, où alphpLq est l’alphabet minimal de L

6. tcpMqcpN q : LpMq X LpN q ‰ Hu

7. tcpMqcpN q : LpMq “ LpN qu.

Théorème 2.10.3. Le langage A est acceptable.

Preuve. Montrons comment construire une machine de Turing acceptant A. On démarre
avec une configuration machine q0.#y# où y P t‹, uu˚. On teste d’abord si y “ cpMqcpwq
pour une machine de Turing M et w un mot fini sur l’alphabet de M ne contenant pas le
symbole #. Si c’est le cas, on simule l’exécution de M sur w au moyen d’une machine de
Turing universelle. Sinon, notre machine entre dans une boucle infinie.

Théorème 2.10.4. Le langage t‹, uu˚zA n’est pas acceptable.

Preuve. Sinon, par le théorème 2.10.3, les langages A et t‹, uu˚zA seraient tous les deux
acceptables et par la proposition 2.9.6, le langage A serait décidable, contredisant le théo-
rème 2.10.1.

2.11 Le théorème de Rice

Le théorème suivant nous dit que le problème de l’arrêt est loin d’être un cas isolé : en
effet, n’importe quelle propriété non triviale des langages acceptables est non décidable !
L’idée de la démonstration est de montrer que si une telle propriété était décidable, alors
tout langage acceptable serait décidable, ce qu’on sait ne pas être le cas.

Dans ce qui suit, on qualifie une partie A d’un ensemble B de propre lorsque A n’est
ni vide ni égale à B.

Théorème 2.11.1 (Rice). Pour toute partie propre S de RE, le langage

AS “ tcpMq : M est une machine de Turing telle que LpMq P Su

est indécidable.

Preuve. Par souci de clarté, nous découpons la preuve en plusieurs parties.

1. Tout d’abord, remarquons que quitte à travailler avec RE zS plutôt qu’avec S, on
peut supposer que H R S. En effet, sinon on aurait H R RE zS. Or, d’une part, RE zS est
une partie propre de RE et, d’autre part, ARE zS est décidable si et seulement si AS est
décidable puisque

ARE zS “ tcpMq : M est une machine de Turing telle que LpMq P RE zSu

“ tcpMq : M est une machine de TuringuzAS .

2. Soit L un langage acceptable écrit sur un alphabet A. Il existe une machine de Turing
ML qui, pour tout mot w P A˚, atteint la configuration d’arrêt h.# à partir de q0.#w#

lorsque w P L et boucle indéfiniment sinon.

3. Puisque S est non vide par hypothèse, il existe une machine de Turing M telle que
LpMq P S. Pour tout mot w P A˚, on considère une machine de Turing Bw qui à partir de

CHAPITRE 2. CALCULABILITÉ 35

la configuration q0.# atteint la configuration d’arrêt h.#w#. Soit maintenant une machine
de Turing B qui, pour tout mot w P A˚, atteint la configuration d’arrêt h.#cpBw ML Mq#
à partir de la configuration q0.#w#.

4. On a

LpBw ML Mq “

#

LpMq si w P L

H sinon.

Puisque H R S et LpMq P S, on obtient que LpBw ML Mq P S si et seulement w P L.

5. Montrons à présent que si le langage AS est décidable, alors le langage L aussi. En
effet, au vu des deux points précédents, si AS est décidé par une machine de Turing D,
alors la machine de Turing BD décide le langage L.

6. Nous déduisons du point précédent que AS est indécidable puisque le langage L est
un langage acceptable arbitraire et qu’il existe des langages acceptables non décidables
(par exemple le langage du problème de l’arrêt).

Voici quelques exemples d’applications du théorème de Rice qu’on pourra réaliser en
exercice.

Exercice.

1. Adapter la preuve du théorème de Rice pour montrer que si S est une partie propre
de l’ensemble C des fonctions numériques calculables, le problème de savoir si une
machine de Turing donnée calcule une fonction de S est indécidable. Autrement dit,
le langage

tcpMq : M est une machine de Turing calculant une fonction de Su

est indécidable.
2. Le problème de savoir si le langage accepté par une machine de Turing est non vide

est indécidable. Autrement dit, le langage

tcpMq : M est une machine de Turing telle que LpMq ‰ Hu

est indécidable.

3. Le problème de savoir si deux machines de Turing acceptent le même langage est
indécidable. Autrement dit, le langage

tcpMqcpN q : M et N sont des machines de Turing telles que LpMq “ LpN qu

est indécidable.

2.12 Variantes des machines de Turing

Dans cette section, nous présentons quelques variations de la définition de machine
de Turing. Nous allons voir que ces définitions alternatives apparemment plus générales
ne permettent en fait pas de calculer plus de fonctions que les machines de Turing dites
standards. Il s’agit là d’un nouvel argument en faveur de la thèse de Church-Turing.

2.12.1 Machines de Turing à ruban bi-infini

La définition d’une machine de Turing à ruban bi-infini est identique à celle d’une
machine de Turing standard, à ceci près que le ruban mémoire est maintenant un mot
bi-infini sur l’alphabet de la machine.

CHAPITRE 2. CALCULABILITÉ 36

Formellement, une configuration mémoire est un couple pw, kq P AZ ˆ Z, où le mot
bi-infini w ne contient qu’un nombre fini de fois le symbole blanc #. La partie significative
de la mémoire est de la forme uav où a est la cellule référencée, la première lettre de u

n’est pas # et la dernière lettre de v n’est pas #.

Soient A1, . . . , Ad`1 des alphabets ne contenant pas #. Une fonction f : A˚
1ˆ¨ ¨ ¨ˆA˚

d Ñ
A˚

d`1 est calculable par une machine de Turing à ruban bi-infini M “ pQ, q0, h,B, δq si
Ťd`1

i“1 Ai Ď B et si pour tout pw1, . . . , wdq P A
˚
1 ˆ ¨ ¨ ¨ ˆA˚

d , on a

q0.w1# ¨ ¨ ¨#wd# $˚ h.fpw1, . . . , wdq#.

Les définitions de langages décidables et acceptables sont adaptées de manière évidente.

Théorème 2.12.1. Les machines de Turing à ruban bi-infini calculent les mêmes fonc-
tions que les machines de Turing standards. Les langages décidés/acceptés par machines
de Turing à ruban bi-infini coïncident avec les langages décidés/acceptés par machines de
Turing standards.

Preuve. Tout d’abord, observons qu’une machine de Turing standard est une machine de
Turing à ruban bi-infini particulière : il s’agit d’une machine de Turing à ruban bi-infini
qui n’utilise que la partie droite de sa mémoire.

Intéressons-nous à l’autre direction. Soit une machine de Turing à ruban bi-infini B.
On construira d’abord une machine de Turing standard S réalisant l’action

q0.#w# $˚ h.#cpBqcpwq#.

Ensuite, on construira une machine de Turing universelle U (standard) comme dans le
théorème 2.9.4. On construira finalement une machine de Turing standard S 1 réalisant
l’action

q0.#cpBqρpq.uavq# $˚ h.#uav.

Ainsi, si B calcule une fonction de F1, la machine de Turing standard S U S 1 calcule la
même fonction. (L’encodage devra être adapté pour le calcul des fonctions de Fd où d ě 0

est arbitraire.) En particulier, si B décide un langage L, la machine S U S 1 décide le même
langage. De plus, on a LpS Uq “ LpBq.

Une autre variante est la suivante. On considère cette fois que la fonction de transition
est de la forme δ : Qzthu ˆAÑ QˆAˆ tL, R, Su. Autrement dit, si la machine de Turing
se trouve dans un état q et si la cellule référencée contient la lettre a, la machine de Turing
peut écrire un nouveau symbole dans la cellule référencée et effectuer un déplacement à
gauche (instruction L) ou à droite (instruction S), ou encore ne pas effectuer de déplacement
(instruction S, pour « stationnaire »). Il n’est pas difficile de voir qu’une telle machine ne
calcule pas plus de fonctions qu’une machine de Turing standard (nous ne détaillerons pas).

Exemple 2.12.2 (Castor affairé). La fonction du castor affairé est la fonction BB: NÑ
N, n ÞÑ BBpnq où BBpnq est le nombre maximum de u consécutifs qu’on peut écrire
sur le ruban mémoire d’une machine de Turing à ruban bi-infini, d’alphabet t#, uu et
ayant n ` 1 états en partant de la configuration q0.# et dont la fonction de transition
est du type δ : Qzthu ˆ A Ñ Q ˆ A ˆ tL, Ru. Une telle machine ne peut donc rester sta-
tionnaire. La notation BB vient de l’anglais « Busy Beaver ». On peut montrer que la
fonction BB n’est pas calculable. En fait, il s’agit d’un des premiers exemples de fonc-
tion non calculable. La fonction β que nous avons vue précédemment est une variante
de la fonction BB pour s’adapter au machines de Turing standards. Une machine de
Turing réalisant la valeur BBpnq est appelé un castor affairé. Des castors affairés pour
n “ 2 et n “ 3 sont représentées aux figures 2.21 et 2.22. On sait aujourd’hui que
pBBp1q,BBp2q,BBp3q,BBp4qq “ p1, 4, 6, 13q mais on ne connaît pas les valeurs de BBpnq
pour n ě 5. On peut démontrer que BBp5q ě 4098 et que BBp6q ě 101439.

CHAPITRE 2. CALCULABILITÉ 37

#, u, R

u, u, L

#, u, L

u, u, R

Figure 2.21 – Castor affairé atteignant la valeur BBp2q “ 4.

u, u, L

u, u, R

#, u, R

#, u, L

#, u, L

u, u, R

Figure 2.22 – Castor affairé atteignant la valeur BBp3q “ 6.

2.12.2 Machines de Turing à plusieurs bandes

Une machine de Turing à r bandes est définie comme une machine de Turing standard
à la différence près que la mémoire est constituée de r rubans mémoire. Une configuration
mémoire est un 2r-uple pw1, k1, w2, k2, . . . , wr, krq P pA

˚#ω ˆ Nqr. La partie significative
de la mémoire est de la forme u1a1v1 . u2a2v2 . ¨ ¨ ¨ . urarvr. La fonction de transition
d’une telle machine est de la forme δ : Qzthu ˆAr Ñ Qˆ pAY tL, Ruqr.

Seule la première bande contient les informations nécessaires au calcul d’une fonction à
la configuration initiale et la configuration d’arrêt. Les bandes supplémentaires ne servent
qu’à aider dans la réalisation du calcul. Formellement, une fonction f : A˚

1ˆ¨ ¨ ¨ˆA
˚
d Ñ A˚

d`1

(avec les conventions habituelles sur les alphabets) est calculable par une machine de Turing
à r bandes si pour tout pw1, . . . , wdq P A

˚
1 ˆ ¨ ¨ ¨ ˆA˚

d , on a

q0.#w1# ¨ ¨ ¨#wd# . # . ¨ ¨ ¨ . #
looooomooooon

r´1 fois

$˚ h.#fpw1, . . . , wdq# . # . ¨ ¨ ¨ . #
looooomooooon

r´1 fois

.

À nouveau, les définitions de langages décidables et acceptables s’adaptent de façon natu-
relle.

Le graphe d’une machine de Turing à r bandes est adapté comme suit : pour tous
p, q P Q, a1, . . . , ar P A et x1, . . . , xr P AY tL, Ru tels que δpp, a1, . . . , arq “ pq, x1, . . . , xrq,
on dessine un arc de p vers q étiqueté par pa1, . . . , arq, px1, . . . , xrq.

Exemple 2.12.3. Notre but est de programmer SR,d au moyen d’une machine de Turing
à 2 bandes. On va réaliser l’action

q0.x#w1# ¨ ¨ ¨#wd#.# $˚ h.x##w1# ¨ ¨ ¨#wd#.#.

On commence par construire une machine à 2 bandes A réalisant

q0.#w#.# $˚ h.#.#wR#.

La machine de Turing de la figure 2.23 convient. Soient maintenant Rp1q une machine à 2

CHAPITRE 2. CALCULABILITÉ 38

p#,#q, pL, Rq

p#,#q, p#,#q

pa,#q, p#, aq, @a ‰ #

p#, aq, pL, Rq, @a ‰ #

Figure 2.23 – Machine de Turing à 2 bandes qui au départ d’un mot w placé sur sa
première bande, d’arrêt avec le mot miroir wR sur sa deuxième bande.

bandes qui déplace sa tête de lecture à droite sur sa première bande et B une machine à 2

bandes qui réalise
q0.#.#w#. $˚ h.#wR#.#.

(De telles machines sont faciles à construire.) Alors la machine de Turing à 2 bandes
Ad Rp1q Bd convient.

Exercice.

1. Programmer SL,d, Cd, Ed au moyen de machines de Turing à 2 bandes.
2. Programmer la fonction d’Ackermann au moyen d’une machine de Turing à r bandes,

avec r au choix.

À nouveau, nous montrons que les machines de Turing à plusieurs bandes ne sont pas
plus puissantes que les machines de Turing standard en termes de calculabilité.

Théorème 2.12.4. Les machines de Turing à plusieurs bandes calculent les mêmes fonc-
tions que les machines de Turing standards. Les langages décidés/acceptés par machines
de Turing à plusieurs bandes coïncident avec les langages décidés/acceptés par machines
de Turing standards.

Preuve. Toute machine de Turing standard est une machine de Turing à plusieurs bandes
qui n’utilise que la première bande de sa mémoire.

Intéressons-nous à l’autre direction. Soit une machine de Turing à r bande R. Pour
utiliser les machines universelles dans ce contexte, nous devons d’abord adapter les codages
de ces machines. On peut par exemple coder la fonction de transition d’une machine à r

bandes en concaténant les codes des 2pr ` 1q-uples

pp, a1, a2, . . . , ar, q, x1, x2, . . . , xrq

tels que δpp, a1, a2, . . . , arq “ pq, x1, x2, . . . , xrq. On prendra soin de placer un nombre
adéquat de séparateurs ‹. Une fois que le choix d’un codage cpMq des machines de Turing
à r bandes est posé, on construira une machine de Turing standard S réalisant l’action

q0.#w# $˚ h.#cpRqρpq0.#w#q ‹ ρp#q ‹ ¨ ¨ ¨ ‹ ρp#q
looooooooomooooooooon

r´1 fois

#

et une machine de Turing universelle standard U simulant l’exécution d’une machine de
Turing à r bandes (il faut adapter l’énoncé du théorème 2.9.4 aux machines à plusieurs
bandes). On conclut comme pour le théorème 2.12.1.

CHAPITRE 2. CALCULABILITÉ 39

2.12.3 Machines de Turing non déterministes

Une machine de Turing non déterministe est définie comme une machine de Turing
standard à ceci près que δ est maintenant une relation de transition.

Afin de se représenter les possibles actions d’une machine de Turing non déterministe
au départ d’une configuration mémoire donnée, on construit l’arbre des transitions de la
machine dont le sommet est la configuration d’intérêt.

Exemple 2.12.5 (Générateur aléatoire de nombre). La machine de Turing de la figure 2.24
engendre aléatoirement un naturel n : partant de q0.#, on aboutit à une configuration
d’arrêt h.# u

n# pour un certain n P N.

q0 p

h

u, R#, R

u, R

#, R

#, u

Figure 2.24 – Générateur aléatoire de nombres.

La relation de transition est donnée par l’ensemble de quadruplets

δ “ tpq0, u, p, Rq, pq0,#, p, Rq, pq0, u, h, Rq, pq0,#, h, Rq, pp,#, a0, uqu.

L’arbre des transitions du générateur aléatoire de nombres de la figure 2.24 au départ de
la configuration q0.# est représenté à la figure 2.25.

q0.#

h.## p.##

q0.#u

h.# u# p.# u#

q0.# u u

Figure 2.25 – Premiers niveaux de l’arbre des transitions du générateur aléatoire de
nombres au départ de la configuration q0.#.

Dans l’arbre des transitions, certaines branches sont finies, d’autres pas. Une branche
finie mène soit dans une configuration d’arrêt soit dans une configuration pendante. Un
mot w est accepté par une machine de Turing non déterministe s’il existe une branche dans
l’arbre des transitions de sommet q0.#w# qui se termine dans une configuration d’arrêt.

CHAPITRE 2. CALCULABILITÉ 40

Remarquons qu’on ne peut pas utiliser les machines de Turing non déterministes pour
calculer des fonctions ou pour décider des langages. En effet, au départ d’une configuration
donnée, la machine peut atteindre plusieurs configurations d’arrêt différentes. Les machines
de Turing non déterministes sont utilisées uniquement comme des accepteurs.

Théorème 2.12.6. Les machines de Turing non déterministes acceptent les mêmes lan-
gages que les machines de Turing standards.

Preuve. Les machines de Turing standards sont des machines de Turing non déterministes
particulières : celles dont la relation de transition est en fait une fonction.

Intéressons-nous à l’autre direction. Soit une machine de Turing non déterministe N .
Nous décrivons une procédure qui s’arrête au départ d’une entrée w si et seulement si N
accepte w. L’idée est de passer en revue l’arbre des transitions de N de sommet q0.#w#

niveau par niveau. À chaque étape, on teste si N a atteint une configuration d’arrêt. Si
oui, on s’arrête. Si non, on continue. Dans le cas où toutes les branches sont finies sans
atteindre de configuration d’arrêt (c’est-à-dire mènent à des configurations pendantes), on
boucle indéfiniment. De cette manière, on ne s’arrête pas si et seulement si aucune branche
de l’arbre ne mène à une configuration d’arrêt.

Remarquons que dans la preuve précédente, on aurait pu tout aussi bien commencer
par éliminer les configurations pendantes. Ceci peut se faire de la même manière que pour
les machines de Turing standards, encore une fois en utilisant des codages adéquats.

Exercice. Décrire une machine de Turing universelle standard exécutant l’algorithme de
la preuve.

Chapitre 3

Complexité

3.1 Complexité temporelle des machines de Turing

Définition 3.1.1. Soient M une machine de Turing non déterministe (potentiellement à
plusieurs bandes) d’alphabet A et w un mot sur Azt#u. La durée d’exécution de M sur w,
notée dMpwq, vaut 0 si w R LpMq et vaut le nombre minimum de transitions permettant
d’atteindre une configuration d’arrêt à partir de q0.#w# en respectant les transitions de
M. La fonction de complexité (temporelle) de M est la fonction

TM : NÑ N, n ÞÑ suptdMpwq : w P pAzt#uq
nu

Remarque. Il s’agit de la complexité temporelle dans le pire cas. Il est aussi souvent
pertinent d’étudier d’autres complexités temporelles, par exemple la complexité temporelle
moyenne. Dans ce cas, on a besoin de connaître la distribution des données en fonction
de leur durée d’exécution. Cette question peut s’avérer très difficile en pratique. De façon
générale, les deux approches (pire cas et moyenne) sont complémentaires.

Exemple 3.1.2. La complexité temporelle de la machine de Turing représentée à la Fi-
gure 2.1 est 2n2 ` 8n` 6.

Définition 3.1.3. Une machine de Turing est polynomiale si sa fonction de complexité
est majorée par un polynôme, ou de manière équivalente, si TMpnq P Opnkq pour un
certain k P N. Une fonction est P-calculable s’il existe une machine de Turing déterministe
polynomiale qui la calcule.

Exercice.

1. Montrer que tout polynôme encodé en unaire est P -calculable.

2. Montrer que la fonction n ÞÑ 2n n’est pas P -calculable. Envisager le codage unaire
et le codage binaire.

3. Montrer que l’égalité de deux entiers encodés en unaire est calculable par une machine
de Turing standard en temps Opn2q.

4. Montrer que l’égalité de deux entiers encodés en unaire est calculable par une machine
de Turing à 2 bandes en temps Opnq.

5. Montrer que la composition de fonctions P -calculables est P -calculable.

6. Montrer que toute fonction pA˚qd Ñ B˚ calculable par une machine de Turing à 2

bandes de complexité T pnq ě n est calculable par une machine de Turing standard
de complexité en OppT pnqq2q.

41

CHAPITRE 3. COMPLEXITÉ 42

3.2 Transformations polynomiales

Définition 3.2.1. Soient K Ď A˚ et L Ď B˚. Une application f : A˚ Ñ B˚ est une
transformation polynomiale de K vers L si les deux conditions suivantes sont satisfaites :

1. f est P -calculable
2. @w P A˚, w P K ðñ fpwq P L.

On écrit K ď L pour exprimer qu’il existe une transformation polynomiale de K vers L.

Remarque 3.2.2.

— La deuxième condition de la définition peut se réexprimer par K “ f´1pLq.
— La relation ď est transitive : si K ď L et L ďM , alors K ďM . Elle est aussi réflexive

puisque l’identité est une transformation polynomiale d’un langage vers lui-même.
— Pour toute transformation polynomiale f de K vers L, on a χK “ χL ˝ f .

Proposition 3.2.3. Lorsque K ď L, on a que K est décidable/acceptable si L l’est.

Preuve. Supposons que f est une transformation polynomiale de K vers L. En particulier,
il existe une machine de Turing F qui calcule f . Si M est une machine de Turing qui
calcule χL (resp. accepte L), alors la machine de Turing F M calcule χK (resp. accepte
K).

3.3 Problèmes de décision

Problème du voyageur de commerce

Les instances du problème sont n villes, numérotées 1, . . . , n, une matrice des distances
entre ces villes D “ pDijq1ďi,jďn P N

nˆn avec comme condition que Dij ą 0 si i ‰ j, et
enfin un nombre b représentant la distance maximale autorisée. Une instance du problème
est donc la donnée du couple pD, bq. Le problème est alors le suivant : existe-t-il un circuit
passant exactement une fois par chaque ville dont la longueur totale ne dépasse par b ?
Autrement dit, le problème est de déterminer s’il existe une permutation ν P Sn telle que

Dν1ν2 `Dν2ν3 ` ¨ ¨ ¨ `Dνn´1νn `Dνnν1 ď b.

Ce problème est noté TS (pour travelling saleman).

Afin de se ramener à la définition des langages décidables, nous devons convenir d’un
codage des instances (ou les données) du problème considéré par des mots. Par exemple,
dans le cas du problème du voyageur de commerce, on peut coder les instances du problème
par le mot

rep2pD11q ‹ ¨ ¨ ¨ ‹ rep2pD1nq ‹ ¨ ¨ ¨ ‹ rep2pDn1q ‹ ¨ ¨ ¨ ‹ rep2pDnnq ‹ rep2pbq.

Définition 3.3.1. Une instance positive (resp. négative) est une instance pour laquelle la
réponse au problème est « oui » (resp. « non »).

À chaque codage du problème est associé un langage, qui est le langage des instances
positives. Ce langage est écrit sur l’alphabet utilisé pour le codage des instances. Remar-
quons qu’un mot quelconque sur cet alphabet n’est pas nécessairement le codage d’une
instance du problème. Dans le cas où il l’est, il est soit le codage d’une instance positive,
soit le codage d’une instance négative. Ces trois cas de figure sont à considérer séparément.

Définition 3.3.2. Un problème est décidable si le langage des instances positives associé
l’est.

CHAPITRE 3. COMPLEXITÉ 43

On peut s’étonner d’une telle définition puisqu’elle dépend a priori du codage choisi.
Il convient donc de prendre quelques précautions sur les codages autorisés afin d’assurer
l’indépendance de la définition par rapport au choix du codage. Il suffit de s’assurer que le
codage de notre problème soit effectif (tout comme nous en avions déjà eu le souci dans la
proposition 2.9.3.

Proposition 3.3.3. TS est décidable.

Preuve. Il existe un nombre fini de permutations de n villes. Il suffit donc de les tester toutes
l’une après l’autre, et de vérifier si oui ou non la somme des distances correspondantes vaut
au plus b.

Problème du circuit hamiltonien

Une instance du problème est un graphe non orienté G “ pV,Eq, où on convient que
V “ t1, . . . , nu. Le problème est de déterminer si G possède un circuit hamiltonien. Si on
convient qu’une instance du problème est donnée par la matrice A “ pAijq1ďi,jďn P N

nˆn,
où n est le nombre de sommets du graphe, définie par

Aij “

#

1 si pi, jq P E

0 sinon,

alors le problème revient à déterminer s’il existe une permutation ν P Sn telle que

Aν1ν2 “ Aν2ν3 “ ¨ ¨ ¨ “ Aνn´1νn “ Aνnν1 “ 1.

Ce problème est noté HC (pour Hamitonian circuit).

Proposition 3.3.4. HC est décidable.

Preuve. Il existe un nombre fini de permutations des sommets d’un graphe. Pour chacune
d’entre elle, on peut tester si la permutation définit un circuit du graphe.

Proposition 3.3.5. HC ď TS.

Preuve. Soit f la fonction A ÞÑ pDA, nq où

pDAqij “

#

1 si Aij “ 1

2 si Aij “ 0.

et n est la dimension de la matrice A. Cette fonction est clairement P -calculable. Montrons
que si A est une instance positive de HC, alors fpAq “ pDA, nq est une instance positive
de TS. Soit A une instance positive de HC. Alors il existe une permutation ν P Sn telle
que

Aν1ν2 “ Aν2ν3 “ ¨ ¨ ¨ “ Aνn´1νn “ Aνnν1 “ 1.

Par définition de DA, on a

pDAqν1ν2 ` pD
Aqν2ν3 ` ¨ ¨ ¨ ` pD

Aqνn´1νn ` pD
Aqνnν1 “ n

et pDA, nq est une instance positive de TS.

Il nous reste à montrer que réciproquement, si fpAq est une instance positive de TS,
alors A est une instance positive de HC. Supposons que pDA, nq soit une instance positive
de TS. Alors il existe une permutation ν P Sn telle que

pDAqν1ν2 ` pD
Aqν2ν3 ` ¨ ¨ ¨ ` pD

Aqνn´1νn ` pD
Aqνnν1 ď n.

Par définition de DA, tous les termes de la sommes sont égaux à 1, et donc on a

Aν1ν2 “ Aν2ν3 “ ¨ ¨ ¨ “ Aνn´1νn “ Aνnν1 “ 1.

Ainsi, A est une instance positive de HC.

CHAPITRE 3. COMPLEXITÉ 44

Problème du pavage

Une instance du problème du pavage est la donnée

‚ d’un ensemble fini de tuiles T

‚ d’une tuile initiale i P T

‚ d’un ensemble de règles de juxtaposition horizontales H Ď T ˆ T

‚ et d’un ensemble de règles de juxtaposition verticales V Ď T ˆ T .

La question est de déterminer s’il existe une façon de disposer les tuiles de T partout dans
N
2 en respectant H et V et telle que la tuile posée en p0, 0q soit la tuile initiale i. Autrement

dit, on demande de déterminer s’il existe une fonction f : N
2 Ñ T telle que

‚ fp0, 0q “ i

‚ @m,n P N, pfpm,nq, fpm` 1, nqq P H

‚ @m,n P N, pfpm,nq, fpm,n` 1qq P V .

Théorème 3.3.6. Le problème du pavage est indécidable.

Preuve. L’idée de la preuve est de se ramener à l’indécidabilité du problème de l’arrêt. Pour
ce faire, à toute machine de Turing M, on associe une instance du problème du pavage
pTM, iM,HM, VMq de la façon suivante. Si M “ pQ, q0, h,A, δq est une machine de Turing
sans configuration pendante 1, alors l’ensemble TM est constitué des tuiles suivantes :

‚ en considérant un nouveau symbole spécial α :

iα “

α

α iM “

q0,#

α # et tB “

#

#

‚ pour chaque a P AY tαu :

ta “

a

a

‚ pour chaque p, q P Qzthu et a, b P A tels que δpp, aq “ pq, bq :

tp,a,q,b “

q, b

p, a

‚ pour chaque p, q P Qzthu et a P A tels que δpp, aq “ pq,Rq et pour chaque b P A :

tp,a,q,R “

a

p, a

q et Rq,b “

q, b

b

q

1. Ce n’est pas une vraie restriction au vu de la section 2.9.

CHAPITRE 3. COMPLEXITÉ 45

‚ pour chaque p, q P Qzthu et a P A tel que δpp, aq “ pq, Lq et chaque b P A :

tp,a,q,L “

a

p, a

q et Lq,b “

q, b

b

q

La tuile initiale est la tuile iα. L’ensemble HM Ď TM ˆ TM est formé par les couples
de tuiles pt1, t2q telles que le bord droit de t1 contient la même information que le bord
gauche de t2. L’ensemble VM Ď TM ˆ TM est formé par les couples de tuiles pt1, t2q telles
que le bord supérieur de t1 contient la même information que le bord inférieur de t2.

Supposons qu’on puisse décider du problème du pavage. Alors on pourrait décider s’il
existe une façon de disposer les tuiles de TM en respectant les règles imposées par le choix
de iM, HM et VM. Or, un tel pavage de N

2 existe si et seulement si la machine de Turing
M ne s’arrête pas à partir de q0.#. On pourrait donc décider si une machine de Turing
s’arrête à partir de q0.#, ce que nous savons être impossible.

Exemple 3.3.7. Considérons la machine de Turing M donnée à la figure 3.1. Afin d’illus-

0 1 2

#, u

u, R

#, u

u, R

Figure 3.1 – Une machine de Turing M.

trer la preuve du théorème 3.3.6, nous donnons les tuiles constituant l’ensemble TM cor-
respondant. Il s’agit des onze tuiles suivantes.

iα “

α

α iM “

0,#

α # tB “

#

tα “

α

α

t# “

#

#

tu “

u

u

t0,#,0,u “

0, u

0,#

t1,#,1,u “

1, u

1,#

t0,u,1,R “

u

0, u

1 R1,# “

1,#

#

1 R1,u “

1, u

u

1

On commence à paver le quart de plan en plaçant les tuiles ligne par ligne. Toutes
les tuiles placées sont forcées par les règles de juxtaposition et il n’est possible de placer
aucune tuile en position p1, 4q. Ce pavage partiel est représenté à la figure 3.2

CHAPITRE 3. COMPLEXITÉ 46

α # # # # #

1

α 0,# # # # #

α 0, u # # # #

α u 1,# # # #

α u 1, u # # #

α u

0 1 2 3 4 5

0

1

2

3

4

Figure 3.2 – Pavage partiel correspondant à l’exécution de M au départ de 0.#.

3.4 Les classes P, NP et NPC

Définition 3.4.1. On note P la classe des langages décidés par une machine de Turing
déterministe polynomiale. On note NP la classe des langages acceptés par une machine de
Turing non déterministe polynomiale.

Remarque. Clairement, on a P Ď NP. Le problème de savoir si P “ NP est l’un des sept
problèmes mathématiques du millénaire ! 2 Ce problème a été posé par Stephen Cook.

Proposition 3.4.2. Si L P NP, alors L est décidable.

Preuve. Soit L P NP et soit M une machine de Turing non déterministe polynomiale
qui accepte L. Soit Q un polynôme tel que pour tout n P N, on ait TMpnq ď Qpnq. Si
w P L, alors il existe un chemin d’acceptation de w dans M de longueur au plus Qp|w|q.
Pour décider de l’appartenance d’un mot w à L, une machine de Turing déterministe D va
calculer Qp|w|q et simuler l’exécution de M sur q0.#w# en parcourant les Qp|w|q premiers
niveaux de l’arbre des transitions de M . La machine répond « oui » si elle a trouvé une
configuration d’arrêt parmi ces niveaux et répond « non » sinon.

Remarquez que la machine de Turing D de la preuve précédente n’est pas en général
pas polynomiale !

Proposition 3.4.3. Lorsque K ď L, on a que K P P (resp. NP) si L P P (resp. NP).

Preuve. La preuve est similaire à celle de la proposition 3.2.3. Soit F une machine de
Turing déterministe polynomiale qui calcule une transformation polynomiale de K vers L.
Si M est une machine de Turing déterministe (resp. non déterministe) polynomiale qui
calcule χL (resp. qui accepte L), alors la machine de Turing F M est déterministe (resp.
non déterministe) polynomiale et calcule χK (resp. accepte K).

Définition 3.4.4. Soient K Ď A˚ et L Ď B˚. On note K ” L si K ď L et L ď K. Dans
ce cas, on dit que K et L sont P -équivalents.

2. https://en.wikipedia.org/wiki/Millennium_drize_droblems

CHAPITRE 3. COMPLEXITÉ 47

Exercice. Montrer que la relation ” est une relation d’équivalence.

Proposition 3.4.5. Les ensembles suivants sont des classes d’équivalence pour la rela-
tion ”.

1. tHu
2. tA˚ : A est un alphabetu
3. Pz

`

tA˚ : A est un alphabetu Y tHu
˘

4. tL P NP : @K P NP, K ď Lu.

Preuve.

1. Il suffit de montrer que L ď H ùñ L “ H. Soient A et B des alphabets et soit
L Ď A˚, le langage vide étant vu comme un sous-ensemble de B˚. Supposons que
L ď H, c’est-à-dire qu’il existe une transformation polynomiale f : A˚ Ñ B˚ de L

vers H. Par définition, pour tout w P A˚, on a w P L ðñ fpwq P H. D’où L “ H.
2. Montrons que pour tous alphabets A et B, on a A˚ ď B˚. Soit f : A˚ Ñ B˚, w ÞÑ ε.

Cette fonction est P -calculable et pour tout w P A˚, on a w P A˚ ðñ ε P B˚. Il
s’agit donc d’une transformation polynomiale de A˚ vers B˚.

De plus, si f : A˚ Ñ B˚ est une transformation polynomiale de L vers B˚, alors
L “ A˚. En effet, pour tout w P A˚, on a w P L ðñ fpwq P B˚. On en déduit que
L “ A˚.

3. Soient K,L P Pz
`

tA˚ : A est un alphabetu Y tHu
˘

. Montrons que K ď L. Soient A

et B des alphabets tels que K Ď A˚ et L Ď B˚ et soient u P L et v P B˚zL. Alors la
fonction

f : A˚ Ñ B˚, w ÞÑ

#

u si w P K

v si w R K

est une transformation polynomiale de K dans L.

Soit à présent L P Pz
`

tA˚ : A est un alphabetuYtHu
˘

et soit K ” L. Par les points
1 et 2, nous savons que K R tA˚ : A est un alphabetu Y tHu. De plus, K P P par la
Proposition 3.4.3.

4. Pour tous L,M P NP tels que pour tout K P NP, on a K ď L et K ď M , on a
clairement L ”M .

Soit à présent L P NP tel que K ď L pour tout K P NP et soit M ” L. Comme
L ď M , on obtient par transitivité de ď que K ď M pour tout K P NP. Comme
M ď L, on obtient que M P NP par la Proposition 3.4.3.

Définition 3.4.6. La dernière classe d’équivalence de la proposition 3.4.5 est notée NPC :

NPC “ tL P NP : @K P NP,K ď Lu.

Les langages appartenant à NPC sont appelés les langages NP-complets. Un langage L est
dit NP-difficile si pour tout K P NP on a K ď L.

Ainsi, pour montrer qu’un langage L est NP-complet, on doit montrer que L P NP et
que L est NP-difficile. Ces deux étapes sont indépendantes. En général, la première étape
consiste à trouver un certificat succinct de L (voir définition ci-après) et la deuxième étape
en une réduction d’un problème qu’on sait déjà être NP-difficile vers L.

Définition 3.4.7. Soit L un langage sur un alphabet A. Un certificat succinct de L est
la donnée d’un langage D P P, écrit sur un alphabet B contenant A et un symbole spécial
‹ R A, et d’un polynôme Q tels que

L “ tw P A˚ : Dx P pBzt‹uqďQp|w|q tel que w ‹ x P Du.

CHAPITRE 3. COMPLEXITÉ 48

L’idée du certificat succinct est que pour chaque instance positive, il existe une preuve
« courte » que cette instance est en effet positive. Par exemple, considérons le problème de
déterminer si un nombre naturel donné est composé. Si Pierre se trouve devant l’instance
476677, pour décider que ce nombre est composé, Pierre va passer en revue les diviseurs
possibles, ce qui lui prendra tout de même un peu de temps. Par contre, si Laura affirme
à Pierre que 476677 est un nombre composé, et que pour le lui prouver, elle lui fournit ses
diviseurs premiers 179 et 2663, il suffit à Pierre de vérifier que le produit de ces nombres
vaut effectivement 476677 pour être d’accord avec Laura.

Théorème 3.4.8. La classe NP est la famille des langages pour lesquels il existe un cer-
tificat succinct.

Preuve. Soit un langage L Ď A˚ et supposons que celui-ci possède un certificat succinct
donné par D et Q (nous utilisons les notations de la définition 3.4.7). On construit une
machine de Turing non déterministe N qui à partir d’une entrée w P A˚ se comporte de
la façon suivante : N produit un mot x P pBzt‹uq˚ de façon non déterministe, ensuite elle
vérifie au moyen d’une machine de Turing déterministe polynomiale si la longueur de x est
au plus Qp|w|q et si le mot w ‹x appartient à D. Si c’est le cas, elle s’arrête, et dans le cas
contraire, elle entre dans une boucle infinie. Ainsi, la machine de Turing N est polynomiale
et telle que L “ LpN q.

Inversement, soit L P NPXA˚. Soit une machine de Turing non déterministe polyno-
miale N qui accepte L. Notons k le nombre maximum de transitions possibles à partir d’un
état de N . En supposant que les sommets atteints depuis chaque sommet des arbres des
transitions sont ordonnées de 1 à k, on considère qu’un mot x sur l’alphabet t1, 2, . . . , ku
décrit une branche de l’arbre des transitions de N (on peut supposer que tout sommet a
k fils, quitte à ajouter des transitions inutiles). Soit à présent D le langage des mots de la
forme w‹x, avec w P A˚, x P t1, 2, . . . , ku˚ et ‹ R AYt1, 2, . . . , ku, où la suite de transitions
décrite par x correspond à un chemin d’acceptation de w dans N . Clairement, on a D P P
(détaillez). Comme la machine de Turing N est polynomiale, on peut trouver un polynôme
Q tel que TN ď Q. Ainsi, si w P L, alors il est accepté par N en au plus Qp|w|q transitions.
Un mot w appartient à L si et seulement s’il existe un mot x de longueur au plus Qp|w|q
tel que w ‹ x P D. La donnée de D et de Q constitue donc un certificat succinct de L.

Pour illustrer la preuve précédente, une machine de Turing non déterministe produisant
les mots de t0, 1u˚ en temps linéaire est représentée à la figure 3.3 et les premiers niveaux
de son arbre des transitions à partir de la configuration 0.# sont représentés à la figure 3.4.

0 1 2
#, R

#,0
#,1

0,R
1,R

#,#

Figure 3.3 – Générateur aléatoire de mots sur t0, 1u.

Tout comme nous avons parlé de problèmes décidables, nous souhaiterions également
pouvoir parler de problèmes dans P et problèmes dans NP, sans avoir à se soucier du codage
utilisé. En termes de complexité, nous devons être un peu précautionneux et opter pour
des codages dis raisonnables. On respectera les trois principes suivants :

CHAPITRE 3. COMPLEXITÉ 49

0.#

1.##

1.#0 1.#1 2.##

1.#0# 1.#1#

1.#00 1.#01 2.#0# 1.#10 1.#11 2.#1#

1.#00# 1.#01# 1.#10# 1.#11#

Figure 3.4 – Premiers niveaux de l’arbre des transitions du générateur aléatoire de mots
sur t0, 1u au départ de la configuration 0.#.

1. Le codage choisi ne peut pas contenir de bourrage, c’est-à-dire un grand nombre de
symboles inutiles.

2. Le codage des entiers est fait en base entière b ě 2 (donc, jamais en unaire).
3. Le décodage doit pouvoir s’effectuer en temps polynomial.

On admettra qu’en respectant ces principes, le passage d’un codage à un autre se fait
toujours en temps polynomial, de sorte que le choix du codage n’a pas d’importance pour
définir un problème dans P,NP ou NPC.

3.5 Le théorème de Cook

Définition 3.5.1. Une formule de la logique propositionnelle est dite satisfaisable s’il
existe une distribution des valeurs de vérité des variables qui la composent qui la rend
vraie. Une clause est une disjonction de variables propositionnelles ou de négation de
variables propositionnelles. Une forme normale conjonctive (FNC) est une conjonction de
clauses. La longueur d’une clause est le nombre de variables ou négations de variables
propositionnelles qui la composent. La longueur d’une FNC est la somme des longueurs
des clauses qui la composent.

Exemple 3.5.2. La formule x_ y_ z est une clause de longueur 3. La formule px_ y_
 zq^ px_ z_ t_ uq est une FNC. Sa longueur est la somme des longueur de ses clauses,
c’est-à-dire 7.

Le problème SAT est le suivant : étant donné une FNC, décider si elle est satisfaisable.

Théorème 3.5.3 (Cook). SAT P NPC.

Preuve. Il est facile de voir que SAT possède un certificat succinct. En effet, étant donné
une FNC et une distribution des valeurs de vérités des variables, on peut vérifier en temps
linéaire si la FNC est vraie ou fausse pour cette distribution.

CHAPITRE 3. COMPLEXITÉ 50

Montrons que SAT est NP-difficile. Soit donc L P NPXA˚ et soit une machine de
Turing M “ pQ, q0, h,A

1, δq non déterministe polynomiale qui accepte L, où l’alphabet
A1 de la machine contient l’alphabet A du langage L. Sans perte de généralité, on peut
supposer que M n’atteint pas de configuration pendante. Notre but est de montrer que
L ď SAT. Nous allons donc construire une transformation polynomiale de L vers SAT. À
tout mot w P A˚, nous allons associer une FNC φpwq de longueur majorée par un polynôme
en |w| et telle que w P L si et seulement si φpwq est satisfaisable.

Soit P un polynôme majorant la complexité de M. Si un mot w est accepté par M,
alors il l’est en au plus P p|w|q transitions. Donc pour accepter un mot w, la machine passe
par au plus P p|w|q ` 1 configurations en utilisant au plus P p|w|q ` |w| ` 2 cellules de sa
mémoire. Par commodité, quitte à remplacer P par P pnq ` n` 2, on supposera que pour
accepter un mot w, la machine passe par au plus P p|w|q configurations en utilisant au
plus P p|w|q cellules de sa mémoire. On supposera même que tout chemin d’acceptation
d’un mot w passe par exactement P p|w|q configurations, qu’on convient de numéroter par
i “ 1, . . . , P p|w|q. Il suffit de considérer que si une configuration d’arrêt est rencontrée en
moins de P p|w|q configurations successives, M subit des transitions supplémentaires de la
forme ph, a, h, aq pour un total de P p|w|q configurations.

De même, si r est le nombre maximal de transitions définies dans M à partir de tout
couple pp, aq P Q ˆ A1, on supposera qu’il existe exactement r transitions depuis chaque
couple pp, aq P QˆA1. S’il y a j transitions au départ d’un couple pp, aq avec j ă r, il suffit
de considérer que M possède r ´ j transitions pp, a, p, aq supplémentaires. Cela revient à
compléter l’arbre des transitions de M au départ de q0.#w# avec des branches inutiles
pour avoir un arbre complet de P p|w|q niveaux.

Avec ces conventions, nous pouvons maintenant définir les variables propositionnelles
de notre formule φpwq. Pour chaque couple pp, aq, on convient d’une numérotation des
transitions sortantes de 1 à r. Nous distinguons 4 types de variables :

‚ Ci,j,a pour 1 ď i, j ď P p|w|q et a P A1. La valeur de vérité 1 pour Ci,j,a traduit le fait
que à la configuration i, le contenu de la cellule j est a.

‚ Ri,j pour 1 ď i, j ď P p|w|q. La valeur de vérité 1 pour Ri,j traduit le fait que à la
configuration i, la cellule référencée est la cellule j.

‚ Si,q pour 1 ď i ď P p|w|q et q P Q. La valeur de vérité 1 pour Si,q traduit le fait que
à la configuration i, on se trouve dans l’état q.

‚ Ti,k pour 1 ď i ă P p|w|q et 1 ď k ď r. La valeur de vérité 1 pour Ti,k traduit le
fait que depuis la configuration i, on opte pour la transition k parmi les r transitions
possibles.

Nous définissons plusieurs FNC.

1. La FNC

S1,q0 ^R1,|w|`2^C1,1,# ^C1,2,wr1s ^ ¨ ¨ ¨ ^C1,|w|`1,wr|w|s^C1,|w|`2,# ^ ¨ ¨ ¨ ^C1,P p|w|q,#

traduit le fait que la configuration initiale est q0.#w#. Sa longueur est en O
`

P p|w|q
˘

.
2. La FNC

ľ

1ďiďP p|w|q

¨

˝

¨

˝

ł

1ďjďP p|w|q

Ri,j

˛

‚^

¨

˝

ľ

1ďjăj1ďP p|w|q

p Ri,j _ Ri,j1q

˛

‚

˛

‚

traduit le fait que pour toute configuration i, exactement une cellule j est référencée.
Sa longueur est en O

`

pP p|w|qq3
˘

. En effet, de façon générale, la FNC

px1 _ ¨ ¨ ¨ _ xdq ^

¨

˝

ľ

1ďiăjďd

p xi _ xjq

˛

‚

CHAPITRE 3. COMPLEXITÉ 51

est de longueur d2 et est vraie si et seulement exactement une des variables xi est vraie.
3. En convenant d’un ordre sur l’alphabet A, la FNC

ľ

1ďi,jďP p|w|q

¨

˚

˚

˝

˜

ł

aPA1

Ci,j,a

¸

^

¨

˚

˚

˝

ľ

a,a1PA
aăa1

p Ci,j,a _ Ci,j,a1q

˛

‹

‹

‚

˛

‹

‹

‚

traduit le fait que pour toute configuration i, toute cellule j contient exactement une
lettre de A1. Sa longueur est en O

`

pP p|w|qq2
˘

.

4. En convenant d’un ordre sur l’ensemble des états Q, la FNC

ľ

1ďiďP p|w|q

¨

˚

˚

˝

˜

ł

qPQ

Si,q

¸

^

¨

˚

˚

˝

ľ

q,q1PQ
qăq1

p Si,q _ Si,q1q

˛

‹

‹

‚

˛

‹

‹

‚

traduit le fait que pour toute configuration i, la machine de Turing M se trouve dans
exactement un état de Q. Sa longueur est en O

`

P p|w|q
˘

.
5. La FNC

ľ

1ďiăP p|w|q

˜˜

ł

1ďkďr

Ti,k

¸

^

˜

ľ

1ďkăk1ďr

p Ti,k _ Ti,k1q

¸¸

traduit le fait que pour toute configuration i, la machine de Turing M opte pour exac-
tement une transition parmi les r transitions possibles. Sa longueur est en O

`

P p|w|q
˘

.
6. La FNC

ľ

1ďiăP p|w|q
1ďjďP p|w|q

aPA1

pRi,j _ Ci,j,a _ Ci`1,j,aq

traduit le fait que pour tout i, toute cellule non référencée à la configuration i ne change
pas de contenu à la configuration i` 1. En effet, les propositions

p Ri,j ^ Ci,j,aq ùñ Ci`1,j,a et Ri,j _ Ci,j,a _ Ci`1,j,a

sont logiquement équivalentes. Sa longueur est en O
`

pP p|w|qq2
˘

.
7. Considérons maintenant la formule

ľ

1ďiăP p|w|q
1ďjďP p|w|q

pPQ
aPA1

1ďkďr

´

pSi,p ^Ri,j ^ Ci,j,a ^ Ti,kq ùñ pSi`1,q ^Ri`1,j`d ^ Ci`1,j,bq
¯

où les données p, a, k déterminent les valeurs de q, b, d de la façon suivante : si pp, a, q, xq
est la ke transition possible à partir de pp, aq, alors on pose

b “

#

x si x P A1

a sinon
et d “

$

’

&

’

%

´1 si x “ L

1 si x “ R

0 sinon.

Cette formule traduit que les transitions de la machine de Turing M sont respectées
lors du passage d’une configuration à la suivante. La formule est équivalente à la FNC

CHAPITRE 3. COMPLEXITÉ 52

ľ

1ďiăP p|w|q
1ďjďP p|w|q

1ďkďr
pPQ
aPA1

´

p Si,p_ Ri,j_ Ci,j,a_ Ti,k_Si`1,qq

^ p Si,p_ Ri,j_ Ci,j,a_ Ti,k_Ri`1,j`dq

^ p Si,p_ Ri,j_ Ci,j,a_ Ti,k_Ci`1,j,bq
¯

dont la longueur est en O
`

pP p|w|qq2
˘

.
8. Enfin, la FNC

SP p|w|q,h

traduit que la dernière configuration est une configuration d’arrêt. Sa longueur est en
Op1q.

La FNC φpwq est la conjonction de toutes les FNC précédentes. Sa longueur est en
O

`

pP p|w|qq3
˘

. Par construction, à chaque chemin d’acceptation de w correspond une dis-
tribution des valeurs de vérité de la formule φpwq qui la rend vraie, et réciproquement, à
chaque distribution des valeurs de vérité de la formule φpwq qui la rend vraie correspond un
chemin d’acceptation de w dans M (détaillez). Ainsi, w est accepté par M si et seulement
si la formule φpwq est satisfaisable. Nous pouvons donc conclure que L ď SAT puisque la
fonction w ÞÑ φpwq est une transformation polynomiale de L vers SAT.

Corollaire 3.5.4. P “ NP ðñ NPCXP ‰ H.

Preuve. Supposons d’abord qu’il existe K P NPCXP. Montrons qu’alors NP Ď P. Soit
L P NP. Puisque K P NPC, on a L ď K. Mais puisque K P P, la Proposition 3.4.3 implique
que L P P.

Supposons à présent que P “ NP. Soit L P NPC (un tel L existe vu le théorème de
Cook). En particulier L P NP, donc L P P vu notre hypothèse. D’où NPCXP ‰ H.

3.6 Catalogue de problèmes NP-complets

Définition 3.6.1 (3 SAT). Étant donné une FNC comportant uniquement des clauses de
longueur 3, décider si elle est satisfaisable.

Théorème 3.6.2. 3 SAT P NPC.

Preuve. Il suffit de montrer que 3 SAT ” SAT. On a clairement que 3 SAT ď SAT. Mon-
trons qu’on a aussi SAT ď 3 SAT. À toute FNC φ, nous allons associer une FNC fpφq
comportant uniquement des clauses de longueur 3, dont la longueur est proportionnelle à
celle de φ et telle que φ est satisfaisable si et seulement si fpφq l’est aussi.

Considérons d’abord le cas où φ est une clause. Dans les formules suivantes, les notations
α, β, γ, α1, . . . , αm représentent des variables propositionnelles ou des négations de variables
propositionnelles.

‚ Si φ ” α, alors on définit fpφq ” α_ α_ α.
‚ Si φ ” α_ β, alors on définit fpφq ” α_ β _ α.
‚ Si φ ” α_ β _ γ, alors on définit fpφq ” φ.
‚ Si φ ” α1 _ α2 _ ¨ ¨ ¨ _ αm avec m ě 4, alors on définit

fpφq ” pα1 _ α2 _ y1q ^

˜

m´2
ľ

i“3

p yi´2 _ αi _ yi´1q

¸

^ p ym´3 _ αm´1 _ αmq

où y1, . . . , ym´3 sont des nouvelles variables propositionnelles.

CHAPITRE 3. COMPLEXITÉ 53

Dans les trois premiers cas, il est clair que φ est vrai pour une distribution des valeurs de
vérité de ses variables si et seulement si fpφq est vrai pour la même distribution.

Dans le quatrième cas, montrons que pour toute distribution des valeurs de vérité des
variables de φ, on a que φ est vrai si et seulement s’il existe une distribution des valeurs
de vérité de y1, . . . , ym´3 telle que fpφq est vrai.

Considérons une distribution des valeurs de vérité des variables de φ rendant φ vrai.
Alors il existe i P t1, . . . ,mu tel que αi soit vrai pour cette distribution. Nous distinguons
trois cas. Si i P t1, 2u, alors la distribution y1 “ ¨ ¨ ¨ “ ym´3 “ 0 convient. Si i P tm´1,mu,
alors la distribution y1 “ ¨ ¨ ¨ “ ym´3 “ 1 convient. Si i P t3, . . . ,m´2u, alors la distribution
donnée par y1 “ ¨ ¨ ¨ “ yi´2 “ 1 et yi´1 “ ¨ ¨ ¨ “ ym´3 “ 0 convient.

Inversement, soit une distribution des valeurs de vérité des variables de φ et de y1, . . .,
ym´3 telle que fpφq soit vrai Nous devons montrer que φ est vrai pour cette même dis-
tribution. Supposons le contraire. Dans ce cas, tous les αi sont faux pour la distribution
choisie. En parcourant les clauses de fpφq de gauche à droite jusqu’à l’avant-dernière, on
obtient successivement que y1 “ ¨ ¨ ¨ “ ym´3 “ 1. Mais alors la dernière clause de fpφq est
fausse, et la conjonction fpφq est fausse elle aussi, une contradiction.

Considérons maintenant le cas où φ est une conjonction de clauses.

‚ Si φ ” c1 ^ ¨ ¨ ¨ ^ ck où k ě 1 et c1, . . . , ck sont des clauses, alors on définit fpφq ”
fpc1q ^ ¨ ¨ ¨ ^ fpckq, où les variables potentiellement introduites sont différentes pour
chaque clause.

Montrons que φ est satisfaisable si et seulement si fpφq l’est. Notons x1, . . . , xm les
variables de φ et x1, . . . , xm, y1 . . . , yn les variables de fpφq. Au vu de ce qui précède, nous
obtenons successivement

fpφq est satisfaisable

ðñ D distribution de x1, . . . , xm, y1 . . . , yn telle que fpφq “ 1

ðñ D distribution de x1, . . . , xm, y1 . . . , yn telle que fpc1q “ 1 et . . . et fpckq “ 1

ðñ D distribution de x1, . . . , xm telle que c1 “ 1 et . . . et ck “ 1

ðñ D distribution de x1, . . . , xm telle que φ “ 1

ðñ φ est satisfaisable.

La fonction f que nous avons définie est une transformation polynomiale puisque pour
toute FNC φ, on a |fpφq| ď 3|φ| et φ P SAT ðñ fpφq P 3 SAT.

Définition 3.6.3 (VC). Une couverture d’un graphe G est un ensemble S de sommets de
G tel que toute arête de G a au moins une extrémité dans S. On suppose qu’une couverture
ne contient pas de sommet isolé. Le problème de couverture de sommets, abrévié VC, est
le suivant : étant donné un graphe G et un entier n, existe-t-il une couverture de G de
taille n ?

Exemple 3.6.4. Considérons le graphe représenté figure 3.5. L’ensemble de sommets
t1, 4, 5, 6u en est une couverture de taille 4 et ce graphe ne possède pas de couverture
avec moins de 4 sommets.

Théorème 3.6.5. VC P NPC.

Preuve. Il est facile de voir que VC P NP. En effet, étant donné un ensemble S de sommets
d’un graphe G, on peut vérifier si S est une couverture de G en un temps linéaire par
rapport aux nombres d’arêtes de G.

Au vu du théorème précédent, il suffit de montrer que 3 SAT ď VC pour obtenir que
VC est NP-difficile. À chaque FNC φ dont toutes les clauses sont de longueur 3, nous allons

CHAPITRE 3. COMPLEXITÉ 54

1 2

3 4

5

6 7

Figure 3.5 – Graphe Ai associé à la clause ci.

associer un couple pGφ, nφq tel que φ est satisfaisable si et seulement si le graphe Gφ possède
une couverture à nφ sommets. De plus, les tailles de Gφ et nφ seront proportionnelles à la
longueur de φ.

Soit φ ” c1 ^ ¨ ¨ ¨ ^ ck où chaque ci est une clause de longueur 3. Soit ℓ le nombre de
variables propositionnelles de φ. On définit le graphe Gφ de la façon suivante. À chaque
clause ci ” αi1 _ αi2 _ αi3 (où αi1, αi2, αi3 sont des variables propositionnelles ou des
négations de variables propositionnelles), on associe le graphe Ai représenté à la figure 3.6.
À chaque variable xj de φ, on associe le graphe Bj représenté à la figure 3.7. Pour obtenir le

αi1 αi2

αi3

Figure 3.6 – Graphe associé Ai à la clause ci.

xj xj

Figure 3.7 – Graphe associé Bj à la variable propositionnelle yj.

graphe Gφ, on relie chacun des sommets des graphes Ai au seul sommet lui correspondant
parmi les graphes Bj . Enfin, on pose nφ “ 2k ` ℓ. Remarquons que ℓ ď 3k. On a donc
nφ ď 5k “ 5

3
|φ|. Si la taille d’un graphe G “ pV,Eq est définie comme |G| “ |V | ` |E|, on

a |Gφ| “ p3k ` 2ℓq ` p6k ` ℓq “ 9k ` 3ℓ ď 18k “ 6|φ|.

Supposons d’abord que φ admet une distribution des valeurs de vérité de ses ℓ variables
propositionnelles qui la rend vraie. Dans chaque graphe Bj, on sélectionne le sommet xj
si sa valeur est 1 et le sommet xj sinon. Dans chaque graphe Ai, on sélectionne deux
sommets de telle sorte que le sommet non sélectionné soit vrai. On a ainsi sélectionné 2k`ℓ

de Gφ. Montrons que l’ensemble de ces sommets est une couverture de Gφ. D’une part, les
arêtes des graphes Ai et Bj sont trivialement couvertes. D’autre part, si un sommet d’un
graphe Ai est non sélectionné, alors il est vrai et il est donc relié à un sommet d’un graphe
Bj vrai également, qui doit donc avoir été sélectionné.

Inversement, supposons que S est une couverture de Gφ de taille 2k`ℓ. Toute couverture
de Gφ doit contenir deux sommets de chaque graphe Ai et un sommet de chaque graphe
Bj. Ainsi S possède exactement deux sommets de chaque graphe Ai et un sommet de
chaque graphe Bj. À chaque variable xj de φ, on attribue la valeur de vérité 1 si le sommet
correspondant des graphes Bj appartient à S et 0 sinon. Montrons que cette distribution
des valeurs de vérité de x1, . . . , xℓ rend φ vrai. Il suffit de montrer que chaque clause ci de
φ doit être vraie. Il suffit de montrer que pour chaque i, le sommet de Ai qui n’est pas

CHAPITRE 3. COMPLEXITÉ 55

dans S est vrai. C’est bien le cas car l’arête qui le relie au sommet correspondant parmi
les graphes Bj est couverte par S, donc le sommet correspondant doit être dans S, et donc
être vrai par construction.

Exemple 3.6.6. Nous illustrons la construction de Gφ de la preuve du théorème 3.6.5. Si

φ ” px_ y _ zq ^ p x_ y _ zq (3.1)

alors le graphe Gφ correspondant est le graphe représenté à la figure 3.8. La distribution

x y

 x y

z

x y

 z

y

 z

 x

z

Figure 3.8 – Graphe associé à la FNC (3.1).

p1, 1, 0q pour px, y, zq rend φ vrai et la couverture de sommets donnée par les sommets
entourés correspond à cette distribution. Remarquons que le choix des deux sommets dans
le graphe A2 correspondant à la clause c2 “ p x _ y _ zq est unique mais que tous les
choix de deux sommets parmi les trois sommets du graphe A1 correspondant à la clause
c1 “ p x _ y _ zq étaient possibles. Il n’y a donc pas une unique couverture à 2k ` ℓ

sommets associée à une distribution des valeurs de vérité des variables.

Théorème 3.6.7. HC P NPC.

Preuve. Il est facile de voir que HC P NP. En effet, étant donné une suite finie de sommets
d’un graphe G, on peut vérifier si cette suite définit un circuit hamiltonien de G en un
temps polynomial par rapport aux nombres d’arêtes de G.

Au vu du théorème précédent, il suffit de montrer que VC ď HC pour obtenir que
HC est NP-difficile. À chaque couple pG,nq, nous allons associer un graphe G1 tel que G

possède une couverture à n sommets si et seulement si G1 possède un circuit hamiltonien.
De plus, |G1| sera proportionnel à |G| ` n.

Voici les étapes de construction de G1.

1. À chaque arête tx, yu de G, on associe le sous-graphe Ax,y de G1 à 12 sommets
et 14 arêtes représenté à la figure 3.9. Dans un graphe Ax,y, on considère que 6

sommets d’une ligne correspondent au sommet x et que les 6 sommets de l’autre
ligne correspondent au sommet y.

2. Pour chaque sommet x de G, s’il y a r arêtes adjacentes en x dans G, on convient
d’un ordre tx, y1u, . . . , tx, yru sur ces arêtes et on ajoute r´ 1 arêtes reliant les sous-
graphes Ax,y1 , . . . , Ax,yr dans cet ordre : pour chaque i P t1, . . . , r ´ 1u, on relie une
extrémité des 6 sommets associés à x dans Ax,yi à une extrémité des 6 sommets
associés à x dans Ax,yi`1

. Ceci est illustré à la figure 3.10.
3. Enfin, on ajoute n sommets α1, . . . , αn et pour chacun d’eux et chaque sommet x de

G, on ajoute 2 arêtes reliant les extrémités des 6 sommets associés à x dans Ax,y1 et
Ax,yr .

CHAPITRE 3. COMPLEXITÉ 56

x

y

G G’

Figure 3.9 – Graphe Ax,y.

x

G G’

y z t

(x)

(x)

(x)

(y) (z)

(t)

Figure 3.10 – Ajout de r´1 arêtes correspondant aux r arêtes adjacentes en un sommet.

Le graphe G1 ainsi construit possède 12|E| ` n sommets. Puisque chaque sommet de G

possède au plus |V | ´ 1 arêtes adjacentes, le graphe G1 possède au plus 14|E| ` 2n|V | `
|V |p|V | ´ 1q arêtes. Ainsi, la taille de G1 est polynomiale en la taille |V | ` |E| ` n des
entrées.

Supposons d’abord que G possède une couverture S de n sommets. Décrivons un circuit
hamiltonien de G1. On démarre de α1. On choisit un sommet x de S et on se rend dans Ax,y1

via l’extrémité correspondant à x (celle-ci est reliée à tous les αj par construction). On
parcourt ce graphe en zigzag si y1 R S (premier cas de la figure 3.11) et en ligne droite sinon
(deuxième cas de la figure 3.11). Dans les deux cas, on ressort du graphe Ax,y1 par l’autre
extrémité correspondant au sommet x. On continue notre chemin en entrant dans Ax,y2

et on choisit les mêmes règles de parcours. De cette manière, on parcourt tous les graphes
Ax,y1 , . . . , Ax,yr . On arrive donc à l’extrémité de cette suite de graphes correspondants
aux arêtes adjacentes au sommet x de S et on se rend ensuite dans le sommet α2. On
recommence la même procédure : on choisit un nouveau sommet de la couverture et on
parcourt d’une traite tous les graphes correspondants aux arêtes adjacentes en ce sommet
avant d’entrer dans le sommet α3. Quand tous les sommets de la couverture sont épuisés,
on retourne dans le sommet α1. On a ainsi défini un circuit de G1. Chaque graphe Ax,y

de G1 aura été visité puisque, S étant une couverture de G, x ou y doit appartenir à S et
les n sommets de la couverture ont été utilisés. De plus, vu nos choix de parcours de ces
graphes, un graphe Ax,y est visité exactement une fois si un seul des deux sommets x et y
est dans S et un graphe Ax,y est visité exactement deux fois si les deux sommets x, y sont
dans S. Dans les deux cas, à nouveau grâce à nos choix de parcours, tous les sommets de
Ax,y auront été visités une et une seule fois. Les sommets α1, . . . , αn étant eux aussi visités
une et une seule fois, le circuit décrit est hamiltonien.

Inversement, supposons que G1 possède un circuit hamiltonien. Il passe donc par tous les
sommets α1, . . . , αn une et une seule fois. Quitte à les renuméroter, on peut suppose qu’ils

CHAPITRE 3. COMPLEXITÉ 57

(y)

(x)

(x)

(y)

(x)

(y)

Figure 3.11 – Parcours d’un graphe Ax,y.

sont visités dans cet ordre. Par construction de G1, entre deux sommets αj et αj`1, le circuit
doit passer par au moins un graphe Ax,y. De plus, pour faire partie d’un circuit hamiltonien,
le parcours d’un graphe Ax,y est obligatoirement un de ceux représentés à la figure 3.11. En
particulier, si le circuit entre dans tel graphe par une extrémité correspondant à un sommet,
il doit en ressortir par l’autre extrémité correspondant à ce même sommet. Cela implique
que le circuit doit nécessairement parcourir tous les graphes Ax,y correspondant aux arêtes
adjacentes en un sommet pour ensuite arriver dans le sommet αj`1. Construisons à présent
une couverture de sommets S de G à n sommets. En suivant le circuit hamiltonien, on
place dans S les sommets correspondants aux extrémités des graphes Ax,y connectées aux
sommets α1, . . . , αn. L’ensemble S possède ainsi n sommets. Pour chaque arête tx, yu de
G, le graphe Ax,y de G1 est visité par le circuit hamiltonien, donc au moins un des deux
sommets x ou y a été placé dans S. Ceci montre que S est une couverture de G.

Théorème 3.6.8. TS P NPC.

Preuve. Au vu de la proposition 3.3.5 et du théorème 3.6.7, nous savons déjà que TS est
NP-difficile. On a aussi que TS P NP parce que, étant donné un graphe G, une borne b et
une suite finie de sommets de G, on peut vérifier si cette suite définit un circuit hamiltonien
de G dont la somme des distances est inférieur ou égale b en un temps polynomial par
rapport à |G| ` b.

3.7 Autres classes de complexité

Dans cette dernière section, nous donnons les définitions de nouvelles classes de com-
plexité et nous les comparons entre elles et avec les classes vues jusqu’ici.

Définition 3.7.1. On note

co-NP “ tL : L Ď A˚, A alphabet et A˚zL P NPu

et
co-NPC “ tL : L Ď A˚, A alphabet et A˚zL P NPCu.

Remarquons que les définitions des classes précédentes sont indépendantes de l’alphabet
choisi : si A Ď B et L Ď A˚, alors on a A˚zL P NP ðñ B˚zL P NP (resp. A˚zL P

CHAPITRE 3. COMPLEXITÉ 58

NPC ðñ B˚zL P NPC). Ceci est dû au fait 3 que B˚zL “ pA˚zLq \ pB˚zA˚q et que
B˚zA˚ P P.

Tout comme il est généralement admis que P ‰ NP, il est supposé que NP ‰ co-NP.
Nous avons le résultat suivant, analogue du Corollaire 3.5.4.

Proposition 3.7.2. NP “ co-NP ðñ NPX co-NPC ‰ H.

Preuve. Supposons d’abord que NP “ co-NP. Soit L P co-NPC (un tel L existe, par
exemple le complémentaire de SAT). Pour montrer que NPX co-NPC ‰ H, il suffit de
montrer que L P NP. Soit A un alphabet tel que L Ď A˚. Par définition, A˚zL P NPC. En
particulier, A˚zL P NP. Donc A˚zL P co-NP vu notre hypothèse. On obtient que L P NP.

Montrons à présent la réciproque. Supposons qu’il existe L P NPX co-NPC. Soit A un
alphabet tel que L Ď A˚. Par symétrie, il suffit de montrer que NP Ď co-NP. Soit K P NP
et soit B un alphabet tel que K Ď B˚. Par hypothèse, A˚zL P NPC. On a donc K ď A˚zL.
Soit f : B˚ Ñ A˚ une transformation polynomiale de K vers A˚zL. Il est facile de voir
que f est aussi une transformation polynomiale de B˚zK vers L. Ainsi, on a B˚zK ď L.
Comme L P NP, on obtient que par la Proposition 3.4.3 que B˚zK P NP, c’est-à-dire que
K P co-NP.

Définition 3.7.3. On note EXPTIME la classe des langages décidés par une machine de
Turing (déterministe) dont la complexité est en Op2P pnqq pour un polynôme P , c’est-à-dire
bornée par une fonction exponentielle.

Il est connu que non seulement la classe EXPTIME est non vide, mais on sait même
qu’elle contient des langages non polynomiaux. Nous donnons le résultat suivant sans
démonstration.

Théorème 3.7.4. P Ĺ EXPTIME et NP Ď EXPTIME.

De la même façon que nous avons défini les problèmes NP-complets, on peut définir les
problèmes EXPTIME-complets.

Définition 3.7.5. On note

EXPTIME-complet “ tL P EXPTIME : @K P EXPTIME, K ď Lu.

De ce théorème admis, nous pouvons déduire le résultat suivant.

Corollaire 3.7.6. EXPTIME-completXP “ H.

Preuve. Supposons au contraire qu’il existe un langage L P EXPTIME-completXP. Mon-
trons qu’alors on aurait EXPTIME “ P, ce qu’on sait être faux par le théorème 3.7.4. En
effet, considérons M P EXPTIME. On a donc M ď L. Mais puisque L P P, on obtient que
M P P par la proposition 3.4.3.

La complexité spatiale est définie de manière similaire à la complexité temporelle en
tenant compte du nombre de cases du ruban mémoire utilisées (en plus de celui utilisé pour
stocker le mot en entrée) au cours d’une exécution d’une machine de Turing plutôt que du
nombre de transitions effectuées 4.

Définition 3.7.7. On note PSPACE la classe des langages décidés par une machine de
Turing déterministe dont la complexité spatiale est majorée par un polynôme et NPSPACE
la classe des langages acceptés par une machine de Turing non déterministe dont la com-
plexité spatiale est majorée par un polynôme.

3. Le symbole \ désigne l’union disjointe.

4. Adaptez la définition 3.1.1 à ce contexte.

CHAPITRE 3. COMPLEXITÉ 59

Contrairement à la complexité temporelle, on peut montrer que ces deux classes coïn-
cident. Nous admettons ce résultat.

Théorème 3.7.8. PSPACE “ NPSPACE.

Nous pouvons en déduire le résultat suivant.

Corollaire 3.7.9. NP Ď PSPACE et co-NP Ď PSPACE.

Preuve. Il suffit de remarquer que la complexité spatiale est toujours inférieure à la com-
plexité temporelle.

Nous avons le résultat suivant, admis également.

Théorème 3.7.10. PSPACE Ď EXPTIME.

Comme d’habitude, on peut définir les problèmes PSPACE-complets, mais il n’est pas
connu si ces problèmes sont tous EXPTIME-complets ou non.

Enfin, considérons une dernière classe de complexité.

Définition 3.7.11. On note LOGSPACE la classe des langages décidés par une machine
de Turing déterministe utilisant un espace mémoire logarithmique en plus de celui utilisé
pour stocker le mot en entrée.

Théorème 3.7.12. LOGSPACE Ď P.

On pense que cette inclusion est stricte, mais cette affirmation n’a pas encore été
démontrée à ce jour. Il s’agit d’une conjecture majeure en théorie de la complexité.

3.8 Deux problèmes indécidables célèbres

Nous terminons ce document par mentionner deux importants problèmes en théorie
de la décidabilité. Le premier est le dixième problème de Hilbert. En 1900, au deuxième
congrès international des mathématiciens, David Hilbert expose 23 problèmes qu’il consi-
dère comme les problèmes mathématiques de l’époque. Ces problèmes sont de natures
différentes. Le dixième d’entre eux concerne en fait, avant l’heure, une question de décida-
bilité.

Définition 3.8.1. Le dixième problème de Hilbert est le suivant. Étant donné un poly-
nôme multivarié P à coefficients entiers, c’est-à-dire P P ZrX1, . . . ,Xns pour un certain n,
déterminer si l’équation P “ 0 possède une solution entière.

Une équation du P “ 0, où P est un polynôme multivarié, pour laquelle on recherche
des solutions entières est ce qu’on appelle une équation diophantienne. Grâce aux travaux
de Church et Turing des années 1930, initiateurs de la théorie de la calculabilité, le dixième
problème de Hilbert a pu être formulé de façon rigoureuse (la formulation originale de Hil-
bert reposait sur une notion intuitive de procédure effective). Ce n’est qu’en 1970 que Youri
Matiiassevitch (à 23 ans à peine) a démontré qu’il s’agissait d’un problème indécidable.
La preuve de Matiiassevitch s’appuie sur les travaux précédents de Julia Robinson, c’est
pourquoi on parle en général du théorème de Matiiassevitch-Robinson.

Pour énoncer le théorème de Matiiassevitch-Robinson, nous donnons d’abord les défi-
nitions suivantes.

CHAPITRE 3. COMPLEXITÉ 60

Définition 3.8.2. Un ensemble diophantien est un ensemble de la forme

tpa1, . . . , amq P N
m : Dpb1, . . . , bnq P Z

n, P pa1, . . . , am, b1, . . . , bnq “ 0u

pour un certain polynôme P P ZrX1, . . . ,Xm`ns.

Par exemple, le sous-ensemble de N
2 formés des couples de naturels premiers entre eux

est diophantien puisque, par le théorème de Bézout, cet ensemble est donné par

tpa, bq P N2 : Dpm,nq P Z2, ma` nb´ 1 “ 0u.

Définition 3.8.3. On qualifie un sous-ensemble A de N
m de récursif (resp. récursivement

énumérable) lorsque le langage tua1 µ ua2 ¨ ¨ ¨µ uam : pa1, . . . , amq P Au, où µ est un symbole
différent de u, est décidable (resp. acceptable).

Le théorème de Matiiassevitch-Robinson nous dit que ces deux notions coïncident.

Théorème 3.8.4 (Matiiassevitch-Robinson). La classe des ensembles diophantiens coïn-
cide avec la classe des ensembles d’entiers récursivement énumérables.

Puisqu’il existe des langages acceptables indécidables, le théorème de Matiiassevitch-
Robinson a pour conséquence le résultat suivant.

Corollaire 3.8.5. Il existe un ensemble diophantien non récursif.

En conséquence, on obtient l’indécidabilité du dixième problème de Hilbert.

Corollaire 3.8.6. Le dixième problème de Hilbert est indécidable.

Preuve. Supposons au contraire que le dixième problème de Hilbert soit décidable. Soient
P P ZrX1, . . . ,Xm`ns et pa1, . . . , amq P Nm. Considérons le polynôme

Q “ P pa1, . . . , am,Xm`1, . . . ,Xm`nq

de ZrXm`1, . . . ,Xm`ns. Par hypothèse, nous pouvons décider si l’équation Q “ 0 possède
une solution entière. L’ensemble diophantien correspondant

tpa1, . . . , amq P N
m : Dpb1, . . . , bnq P Z

n, P pa1, . . . , am, b1, . . . , bnq “ 0u

est donc récursif. Puisque m,n, P sont arbitraires, ceci montre que tous les ensembles
diophantiens sont récursifs, ce qui est en contradiction avec le corollaire précédent.

En fait, on peut même montrer ce qu’on appelle la version forte de l’indécidabilité du
dixième problème de Hilbert.

Théorème 3.8.7 (Version forte de l’indécidabilité du dixième problème de Hilbert). Il
existe un polynôme P P ZrX1, . . . ,Xms tel que l’ensemble

ta P N : Db2, . . . , bm P Z, P pa, b2, . . . , bmq “ 0u

est non récursif.

Le deuxième problème indécidable que nous mentionnons est le problème de correspon-
dance de Post.

Définition 3.8.8. Le problème de correspondance de Post (PCP) est le suivant. Étant
donné deux morphismes (de monoïdes) f, g : A˚ Ñ B˚, déterminer s’il existe un mot non
vide w sur l’alphabet A tel que fpwq “ gpwq.

CHAPITRE 3. COMPLEXITÉ 61

Exemple 3.8.9. Soient les alphabets A “ t0, 1u et B “ ta, bu, et les morphismes f, g : A˚ Ñ
B˚ définis par fp0q “ ab, fp1q “ a, gp0q “ a, gp0q “ ba. On a aba “ fp01q “ gp01q. Ceci
montre que le couple pf, gq est une instance positive du problème de correspondance de
Post.

On peut montrer que PCP est indécidable en exhibant une réduction directe du pro-
blème de l’arrêt à PCP. Nous ne montrons pas ce résultat dans ces notes.

Théorème 3.8.10. PCP est indécidable.

Néanmoins, certaines restrictions de PCP sont décidables. Par exemple, si on impose
que A soit un alphabet binaire, le problème devient décidable. Si la taille de l’alphabet A

est fixée et supérieure ou égale à 5, le problème reste indécidable. Le statut du problème
restreint à un alphabet A de taille 3 ou 4 est inconnu.

Table des matières

1 Introduction 2

2 Calculabilité 3

2.1 Rappels de théorie des langages . 3

2.2 Machines de Turing . 3

2.3 Fonctions calculables par machines de Turing 5

2.4 Composition de machines de Turing . 6

2.5 Fonctions récursives . 11

2.5.1 Fonctions récursives primitives . 11

2.5.2 Fonctions récursives . 12

2.5.3 Les fonctions calculables et récursives coïncident 12

2.6 La fonction d’Ackermann . 21

2.7 Fonctions non calculables . 26

2.8 Langages décidables . 27

2.9 Langages acceptables, machines de Turing universelles 29

2.10 Le problème de l’arrêt . 33

2.11 Le théorème de Rice . 34

2.12 Variantes des machines de Turing . 35

2.12.1 Machines de Turing à ruban bi-infini 35

2.12.2 Machines de Turing à plusieurs bandes 37

2.12.3 Machines de Turing non déterministes 39

3 Complexité 41

3.1 Complexité temporelle des machines de Turing 41

3.2 Transformations polynomiales . 42

3.3 Problèmes de décision . 42

3.4 Les classes P, NP et NPC . 46

3.5 Le théorème de Cook . 49

3.6 Catalogue de problèmes NP-complets . 52

3.7 Autres classes de complexité . 57

3.8 Deux problèmes indécidables célèbres . 59

62

Bibliographie

[1] Stephen Cook. The complexity of theorem-proving procedures automata. In Proceedings
of the third annual ACM symposium on Theory of computing, page 151–158, 1971.

[2] Pierre Lecomte. Algorithmique et calculabilité. Notes de cours, Université de Liège,
1994-1995.

[3] Michel Rigo. Algorithmique et calculabilité. Notes de cours, Université de Liège, 2009-
2010.

[4] Michael Sipser. Introduction to the theory of computation. Course Technology, Boston,
MA, Third edition, 2013.

[5] Alan Turing. On Computable Numbers, with an Application to the Entscheidungspro-
blem. Proc. London Math. Soc. (2), 42(3) :230–265, 1936.

[6] Pierre Wolper. Introduction à la calculabilité. Dunod, Troisème édition, 2006.

63

	Introduction
	Calculabilité
	Rappels de théorie des langages
	Machines de Turing
	Fonctions calculables par machines de Turing
	Composition de machines de Turing
	Fonctions récursives
	Fonctions récursives primitives
	Fonctions récursives
	Les fonctions calculables et récursives coïncident

	La fonction d'Ackermann
	Fonctions non calculables
	Langages décidables
	Langages acceptables, machines de Turing universelles
	Le problème de l'arrêt
	Le théorème de Rice
	Variantes des machines de Turing
	Machines de Turing à ruban bi-infini
	Machines de Turing à plusieurs bandes
	Machines de Turing non déterministes

	Complexité
	Complexité temporelle des machines de Turing
	Transformations polynomiales
	Problèmes de décision
	Les classes P, NP et NPC
	Le théorème de Cook
	Catalogue de problèmes NP-complets
	Autres classes de complexité
	Deux problèmes indécidables célèbres

