Algorithmique et calculabilité

Emilie Charlier

Année académique 2025-2026

Informations générales

— Code cours : INFO0212
— Titulaire : Emilie CHARLIER
— Assistant : Bastian ESPINOZA

— Contact : Campus du Sart-Tilman - zone Polytech 1
Institut de Mathématique B37, bureau 1,/28

— Horaire du cours : Q1, lundi de 10h15 & 12h45 et jeudi de 13h & 15h.
— Locaux : Voir sur Celcat

— Evaluation : Examen oral portant sur la théorie et applications directes de celle-ci.
Un exercice sera également posé sur feuille.

— Modulation : 8 crédits

Chapitre 1

Introduction

Lors du 2° congrés international des mathématiques en 1900 & Paris, David Hilbert pré-
sente sa célébre liste de 23 problémes qu’il considére comme un programme de recherche
a destination des mathématiciens du 20¢ siécle. Ces problémes sont de difficultés et de
natures différentes. Certains ont été résolus rapidement, certains ont demandé un travail
plus conséquent, d’autres ont été jugés mal posés, et d’autres encore sont toujours ouverts!
Parmi ces 23 problémes, le dixiéme d’entre eux concerne, avant I’heure, une question de
décidabilité. Il s’énonce comme suit : Etant donné un polynéme multivarié P & coeffi-
cients entiers, c’est-a-dire P € Z[X1, ..., Xy] pour un certain n, déterminer si [’équation
P(x1,...,2,) = 0 posséde une solution entiére. Une telle équation s’appelle une équation
diophantienne et les ensembles de la forme

{(a1,...,am) e N" : 3(by,...,b,) € Z", P(ay,...,am,b1,...,b,) =0}

pour un certain polynoéme P € Z[X1, ..., X n] sont appelés les ensembles diophantiens.

Le mot « déterminer » de la formulation de Hilbert renvoie & une notion intuitive de
« procédure de décision » ou d’« algorithme », notion qui faisait défaut en 1900. C’est
grace aux travaux d’Alonzo Church et d’Alan Turing des années 1930, initiateurs de la
théorie de la calculabilité, que le dixiéme probléme de Hilbert a pu étre reformulé de facon
rigoureuse. Et ce n’est qu’en 1970 que Youri Matiiassevitch, & 23 ans a peine, a répondu au
dixiéme probléme de Hilbert par la négative en démontrant qu’il s’agissait 1a d’un probléme
indécidable, un concept inconnu des mathématiciens de 1900. La preuve de Matiiassevitch
s’appuie sur les travaux précédents de Julia Robinson, c¢’est pourquoi on parle en général
du théoréme de Matiiassevitch-Robinson. Celui-ci s’énonce comme suit : Les ensembles
diophantiens coincident avec les ensembles d’entiers récursivement énumeérables. 1l est alors
une conséquence immédiate des travaux de Turing que le dixiéme probléme de Hilbert est
indécidable.

Dans ce cours, nous allons formaliser les concepts de procédure effective et de fonc-
tions calculables, et nous comprendrons ce que signifient les termes « ensembles d’entiers
récursivement énumeérables » et « probléme indécidable » évoqués précédemment.

Dans un deuxiéme temps, nous étudierons la théorie de la complexité des algorithmes.
Parmi les problémes décidables, nous distinguerons les problémes dits « faciles » des pro-
blémes dits « difficiles ». Nous serons alors & méme de comprendre un autre célébre pro-
bléme des mathématiques, a savoir le probléme « P vs NP ». Il s’agit cette fois d'un des 7
problémes du prix du millénaire posés en 2000, soit 100 ans aprés Hilbert, et pour chacun
desquels I'Institut de mathématiques de Clay a Boston offre un prix d’un million de dollars
a quiconque y apportera une solution !

Chapitre 2

Calculabilité

La theése de Church-Turing affirme que les fonctions calculables par une procédure
effective, quelle que soit la définition qu’on puisse donner de ce concept, sont calculables
par une machine de Turing. Cette thése ne peut étre un théoréme puisque, précisément,
une définition de la notion de procédure effective nous fait défaut. Il faut donc plutot la
voir comme la proposition de définir une procédure effective, ou un algorithme, par une
machine de Turing. Cette thése sera étayée de plusieurs maniéres au fur et & mesure de
I’avancement de ce chapitre.

2.1 Rappels de théorie des langages

Un alphabet est un ensemble fini non vide. Les éléments d’un alphabet sont appelés
les lettres de cet alphabet. Un mot fini (resp. infini) sur un alphabet est une suite finie
(resp. infinie) de lettres de cet alphabet. On note |w| la longueur d’un mot fini w. On note
la k¢ lettre d’'un mot w par w[k] et on note w[k,¢] le facteur w[k|w[k + 1] ... w[{] (avec
la convention que w[k,] = € lorsque ¢ < k). Pour un mot fini w et n € N, on note w"
la concaténation de n fois le mot w et on note w* le mot infini formé d’une infinité de
répétition de w. L’ensemble des mots fini écrits sur un alphabet A est noté A*. Le mot
vide est noté €. L’opération de concaténation des mots finis munit A* d’une structure de
monoide avec € pour neutre.

2.2 Machines de Turing

Tout au long du cours, nous considérerons # comme un symbole particulier, appelé le
symbole blanc. De méme, les symboles L et R, utilisés pour « left » et « right », joueront
également un role spécifique.

Définition 2.2.1. Une machine de Turing est la donnée d’un quintuple M = (Q, qo, h, A,)
ou
— (Q est un ensemble fini non vide, appelé ensemble des états ;
— qo et h sont des éléments privilégiés de @), appelé état initial et état final respective-
ment ;
— A est un alphabet contenant le symbole blanc # mais ne contenant pas les symboles
LetR;
— 0: Q\{h} x A - @ x (A u {L,R}) est une fonction partielle, appelée fonction de
transition.

Une machine de Turing M = (Q, o, h, A, §) peut étre représentée par un graphe orienté
dont les sommets sont les états et ou pour tous p,qg € Q, a € A et x € Au {L,R} tels que

3

CHAPITRE 2. CALCULABILITE 4

d(p,a) = (g,), on dessine un arc de p vers g étiqueté par a,z. De plus, I'état initial est
désigné par une fleche entrante et 1’état final par un double cercle.
Exemple 2.2.2. Le graphe de la Figure 2.1l représente la machine de Turing

({0’ 17 2’ 37 4’ 57 6’ 7’ 8}’ 0’ 8’ {#7 u}’ 6)

dont la fonction de transition ¢ est donnée par la Table 2.1

u,L

u,R
#7L fl\#aR @#711 8#7]-' @U,# @
u, #

#,R

FIGURE 2.1 — Machine de Turing calculant la multiplication par deux en représentation
unaire

+# u
0| (1,L)| (0,L)
1| (5R) | (2,#)
2| (3,R) /
3| (4,u) /
41(0,u) | (4,R)
51 (6,u) /
6|(7,L) | (6,R)
T/ | (8,#)

TABLE 2.1 — Table de transition de 4.

Définition 2.2.3. Une configuration mémoire est un couple (w, k) € ANo x Ny, ot le mot
infini w ne contient qu'un nombre fini de fois le symbole blanc #. Le mot infini w est
appelé le ruban mémoire et 'entier k est un pointeur qui pointe sur la k€ lettre de w. On
dit aussi que k désigne une cellule référencée qui contient le symbole w|k]. Pour simplifier
les écritures, on renseigne souvent uniquement la partie significative d’une configuration
mémoire. La partie significative r d’une configuration mémoire (w, k) telle que w[l] # #
et w[n| = # pour tout n > ¢ est définie par

wll, k — 1 w[k]w[k +1,¢] sil=k
w[1,) #F—14 sil < k.

Une configuration machine est un triplet (p,w,k) ot p est un état et (w,k) est une
configuration mémoire. Une configuration machine (p,w, k) est souvent notée p.r ot r est
la partie significative de la configuration mémoire (w, k).

Par la suite, lorsque le contexte permet de lever toute ambigiiité, on s’autorisera a
parler simplement de configuration machine et de configuration mémoire plutét que de
partie significative de celles-ci.

Une machine de Turing M agit sur les configurations machine de la maniére suivante.

CHAPITRE 2. CALCULABILITE 5

— Si on se trouve dans la configuration machine (p,w, k) et que §(p, w[k]) = (g, a) avec
a € A, alors on bascule dans la configuration machine (g, w’, k) ou

W] = {w[n] s? n#k
a sin=k.

— Si on se trouve dans la configuration machine (p,w,k) et que d(p,w[k]) = (¢,R),
alors on bascule dans la configuration machine (q,w,k + 1).

— Si on se trouve dans la configuration machine (p, w, k) avec k = 2 et que §(p, w[k]) =
(q,L), alors on bascule dans la configuration machine (¢, w,k — 1).

La notation C' + C’ signifie que C’ est une configuration machine atteignable depuis C.

On note C' +* C’ 'l existe j = 0, des configurations machine Cy, ..., C; telles que I'on ait
— C=Cp;
- Cl = Cj 3

— Ci = Ciqq forall i € {0,...,5 —1}.

Une configuration pendante est une configuration machine (p, w, k), avec p # h, depuis
laquelle aucune configuration machine n’est atteignable. Cela peut se produire soit lorsque
la fonction de transition § n’est pas définie en (p, w[kz]), soit lorsque k = 1 et d(p, w[l]) =
(q¢,L). Enfin, si d = h, on parle de configuration d’arrét.

Trois situations peuvent se produire lorsqu’on lance une machine de Turing & partir
d’une configuration machine donnée.
1. La machine de Turing aboutit dans une configuration d’arrét en un nombre fini de
transitions, auquel cas on dit que la machine de Turing s’arréte.
2. La machine de Turing atteint une configuration pendante.
3. Une infinité de transitions successives sont possibles, auquel cas on dit que la machine
de Turing ne s’arréte pas.

2.3 Fonctions calculables par machines de Turing

Dans ce chapitre, d sera toujours un naturel.

Définition 2.3.1. Soient Ay, ..., Agy1 des alphabets ne contenant pas le symbole blanc #.
Une fonction f: Ay x---x A} — Aj_ | est calculable §'il existe une machine de Turing M =
(Q, qo, h, B,J) telle que Uf:ll A; € B et telle que pour tout (wi,...,wq) € A} x -+ x A,
on ait

qo-#HwiF - - HFwagF b f(wr, ..., wa)#.

Dans la suite, nous allons principalement considérer des fonctions numériques, c’est-a-
dire, & arguments et valeurs naturels. On note F4 'ensemble des fonctions de N¢ dans N
et on note F = | Jn Fa- Afin d’introduire la notion d’une fonction numérique calculable
comme un cas particulier de la définition précédente, nous devons choisir un codage des
entiers par des mots finis. Dans ce cours, nous travaillerons principalement avec le codage
unaire des naturels : on considére un symbole spécial u, et on code tout naturel n par le
mot u”.

Définition 2.3.2. Une fonction f de Fy est calculable s’il existe une machine de Turing
M = (Q,qo, h, A,) telle que u € A et pour tout (ni,...,ng) € N, on ait

QQ.# u™t # . #undﬁ F* h.#uf(nl’“"nd) ﬁ

On note C ’ensemble des fonctions de F qui sont calculables.

1. N’oubliez pas que ¢ est une fonction partielle.

CHAPITRE 2. CALCULABILITE 6

Exemple 2.3.3. Montrons que la machine de Turing de la figure 2.1] calcule la fonction
f: N—> N, m— 2m. En effet, pour tout m,n e N avec m > 1, on a

0.7 u™ #u" L#u™ tu#u®
2.4 0™ "
3" AU
4.4 0™ Huu”
F* 4.#117”_1 #un-i-lﬁ
- O.#umfl 3'%1111+1E
|—* O.#umfl #un+2)

-
-
-
-

En itérant cet argument, on obtient que pour tout m € N, on a

0.7 0™ # - 0.#ﬁu2m.

De plus, on a

0.## 0™+ L##u™™

- B##u

- 6.#uu®™
l_* 6.#u2m+1 #
|7>1< 7.7%.[12771E

- * 8.#u2m#

D’ou la conclusion.

2.4 Composition de machines de Turing

Ecrire une machine de Turing réalisant une tache donnée, méme simple, peut rapi-
dement s’avérer fastidieux. C’est la raison pour laquelle on introduit les organigrammes,
c’est-a-dire des graphes représentant des compositions conditionnées de machines de Tu-
ring.

Définition 2.4.1. Soient M = (Q,qo, h, A,0) et M’ = (Q',q}, h', A,8") deux machines de
Turing ayant le méme alphabet mais des ensembles d’états disjoints, et soit C' un sous-
ensemble de A. On définit la composition de M et M’ conditionnellement ¢ C la machine
de Turing

MEM =(QUQ q, A"
ou la fonction de transition ¢” est définie par
— lapyxa =0
" !/
— O\ pxa =0
— ¢"(h,a) = (q},a) pour tout a € C
— 0"(h,a) = (W, a) pour tout a € A\C.

. ai,...,a .
Si le sous-ensemble C' est {aj,...,a,}, on note ——"5 et si le sous-ensemble C' est
, ey O1,50n Lo . N .
A\{ai,...,a,}, on écrit ———. Lorsque C' = A, on écrit M — M’, voire méme sim-

plement M M’.

CHAPITRE 2. CALCULABILITE 7

Dit de facon informelle, I'idée est de lancer d’abord la machine de Turing M, et si
celle-ci atteint une configuration d’arrét (h,w,k) (ou h est 'état terminal de M) et que
w[k] € C, alors on lance la machine M’ sur la configuration initiale (¢f, w,k) (ou g est
I'état initial de M’). Dans le cas o M atteint une configuration d’arrét avec (w, k) comme

configuration mémoire mais que w[k] ¢ C, la machine de Turing M <, M 'arréte avec
la méme configuration mémoire (w, k).

Si 'on souhaite composer une machine de Turing avec elle-méme un certain nombre
n de fois, on utilisera la définition précédente avec n copies de la machine. En effet, dans
cette définition, il est demandé que les ensembles d’états soient disjoints. On peut aussi
vouloir composer une machine de Turing avec elle-méme aussi longtemps qu’une condition
est satisfaite. Dans ce cas, il nous faut agir différemment.

Définition 2.4.2. Soit M = (Q,qo,h, A,d) une machine de Turing et soit C' un sous-
ensemble de A. On définit la composition répétée de M conditionnellement & C la machine
de Turing

— MODC =(Quih} gl A7)

ot i ¢ @Q et la fonction de transition §’ est définie par

— Yo\ yxa =9
— 0'(h,a) = (qo,a) pour tout a € C
— 0"(h,a) = (W, a) pour tout a € A\C.

Si le sous-ensemble C' est {aj,...,a,}, on note
MDD,y

et si le sous-ensemble C' est A\{ay,...,a,}, on écrit
— M DODMU -5 0n

Définition 2.4.3. Un organigramme est un graphe orienté avec une racine dont les som-
mets sont des machines de Turing et les arcs représentent les compositions conditionnées
entre ces machines, avec la contrainte que les conditions des arcs sortant d’un méme som-
met soient mutuellement exclusives. La racine de 'organigramme est représentée par une
fléche entrante.

Etant donné un organigramme, on obtient en combinant les définitions 241l et 242 une
machine de Turing exécutant les enchainements de machines de Turing prescrits par ’or-
ganigramme. Par exemple, considérons l'organigramme de la figure 2.2] dont les sommets

My, Mo, M3, My sont des machines de Turing d’alphabet {#,a,b}.

a,b
Mg M4
b
a,b
— My Moy Da
#

FIGURE 2.2 — Un organigramme.

CHAPITRE 2. CALCULABILITE 8

Un schéma de la construction de la machine de Turing décrite par cet organigramme
est représenté aux figures et 2.4l ot on a ajouté un état final unique tenant compte de
toutes les possibilités de mener & une configuration d’arrét.

~OrO ~(OrO

M3

OO ~OrO

My

FIiGURE 2.3 — Machines correspondant aux sommets de 'organigramme. Pour chacune
d’elle, uniquement leurs états initial et final sont dessinés.

#, #
a,a
#,# b,b
a,a
b,b {
w o “
#, # b,b
a, a a,a
| & |
W .
#.#

FIGURE 2.4 — Modification de la fonction de transition en accord avec les instructions
prescrites par organigramme. L’état initial est celui de Mj et I'état final est un état
nouvellement créé.

CHAPITRE 2. CALCULABILITE 9

Toujours dans le but de faciliter la construction de machines de Turing, nous distinguons
quelques machines de Turing de base.

1. £ est une machine de Turing qui va une fois & gauche, inconditionnellement.

Une machine de Turing £ est représentée a la figure 25l ou il y a autant d’arcs de
label o,L que de lettres o dans ’alphabet.

OO0

FIGURE 2.5 — Machine de Turing L.

2. R est une machine de Turing qui va une fois & droite, inconditionnellement.

Une machine de Turing R est représentée a la figure 26| ot il y a autant d’arcs de
label o,R que de lettres ¢ dans 'alphabet.

OO0

FIGURE 2.6 — Machine de Turing R.

3. Pour une lettre a, a est une machine de Turing qui remplace le contenu de la cellule
référence par a, inconditionnellement.

Une machine de Turing a est représentée a la figure 27 ou il y a autant d’arcs de
label o, a que de lettres o dans ’alphabet.

O—0

FIGURE 2.7 — Machine de Turing a.

4. Pour une lettre a, £, est une machine de Turing qui déplace la téte de lecture sur la
premiére cellule a gauche contenant a.

Un organigramme pour L, est représenté a la figure 2.8
— L Da

FIGURE 2.8 — Machine de Turing L,.

5. Pour une lettre a, R, est une machine de Turing qui déplace la téte de lecture sur la
premiére cellule a droite contenant a.

Un organigramme pour R, est représenté a la figure
—RDa

FIGURE 2.9 — Machine de Turing R,.

6. Pour une lettre a, £, est une machine de Turing qui va & gauche tant que la cellule
référence contient a.

Un organigramme pour £, est représenté a la figure 2.10]

CHAPITRE 2. CALCULABILITE 10

— L Da

FIGURE 2.10 — Machine de Turing L.

7. Pour une lettre a, R, est une machine de Turing qui va a droite tant que la cellule
référence contient a.

Un organigramme pour R, est représenté a la figure 2111

FIGURE 2.11 — Machine de Turing R,.

8. Pour d > 1, §p, 4 est une machine de Turing qui réalise I’action suivante :

qo-xFw1FHwo A - - FHwaH# T hawiFwaH - - - FwaF

ou wiy,...,wy sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

Détaillons une construction de Sr 4. On procéde par récurrence sur d. L’organi-
gramme de la figure convient pour Sy, 1.

FIGURE 2.12 — Sy, 1.

Supposons maintenant disposer d'une machine de Turing Sy, 4—1 pour d > 2. Alors
I'organigramme de la figure 2.13] convient pour Sy, 4.

L rae

— L4, R #LoR

#|

Ri_l Sr.d—1

FIGURE 2.13 — S 4 & partir de Sg, 1.

9. Pour d > 1, Sg 4 est une machine de Turing qui réalise 'action suivante :

qo-xFw1FHwoA - - FHwa# FF hadFwiFwa - - FHwaH#

ou wi,...,w sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

10. Pour d = 1, C4 est une machine de Turing qui réalise I'action suivante :

qo-xFwiFHwo A - - FHwa FF haFwiFweF - - - FwaFtw #

CHAPITRE 2. CALCULABILITE 11

ol wiy,...,wy sont des mots finis ne contenant pas le symbole blanc # et = est un
mot fini quelconque.

11. Pour d = 1, €4 est une machine de Turing qui réalise ’action suivante :

qo-rHw1 FHwaF# - - Fwadt = haFFwe# - - HFwadt

ou wiy,...,wy sont des mots finis ne contenant pas le symbole blanc # et x est un
mot fini quelconque.

Les constructions des machines Sg 4,Cq, 4 sont laissées en exercices.

2.5 Fonctions récursives

Nous allons maintenant présenter une deuxiéme famille de fonctions, celle des fonctions
récursives. Nous verrons ensuite que cette famille de fonctions se révéle en fait étre identique
a celle des fonctions calculables par machine de Turing. Ce premier résultat constitue notre
premier argument en faveur de la thése de Church-Turing.

2.5.1 Fonctions récursives primitives

Nous commencons par définir la sous-famille des fonctions récursives primitives.
Appelons fonctions initiales les fonctions suivantes.
— La fonction 0 de Fy. Cette fonction ne prend pas d’argument et rend la valeur 0. On
peut Iidentifier au naturel 0.
— La fonction o: N — N, n+— n+ 1. Cette fonction est appelée la fonction successeur.
— Pour tout entier d > 1 et touti € {1,...,d}, lafonction Py N? 5 N, (ng,...,n4) —
n;. Ces fonctions sont appelées les projections.
Ensuite, nous considérons deux régles de formation de nouvelles fonctions & partir
d’autres fonctions.
— Composition.
Soient k € Ng, hi,...,hx € Fq et g € Fg. La fonction composée g(hy,...,hi) € Fq
est la fonction g(hi,...,ht): N > N, m — g(hy(m),..., hy(m)). Si k = 1, on note
g o h au lieu de g(h).
— Récursion primitive.
Soient g € F4g et h € Fgyo. La fonction f € Fyy 1 définie par récursion primitive a
partir de g et h est définie comme suit : pour tous m € N? et n e N, f(m,0) = g(m)
et f(m,n+1) = h(m,n, f(m,n)).

Définition 2.5.1. Une fonction f € F est récursive primitive si elle peut étre obtenue
a partir des fonctions initiales en appliquant un nombre fini de fois la composition et la
récursion primitive. On note PR 'ensemble des fonctions récursives primitives.

Exemple 2.5.2. Les fonctions suivantes sont récursives primitives :
— les fonctions constantes de Fy
— Paddition N* > N, (nq,...,nq) — Z?:I n;
— la multiplication N - N, (nq,...,nq) — H?zl n;
— la puissance N> - N, (m,n) — m"

— la fonction prédécesseur

m—1 sim=>=1

0 sim=0

N —- N, mr—>{

CHAPITRE 2. CALCULABILITE 12

— la fonction monus

;:N2—>N’ (m7n)'_){m n s1tm-=2"n

0 sim<n

— la fonction signe
. 1 sim=>=1
sign: N—- N, m —

0 sim=0.

Pour tous k € N, on note k; la fonction constante de F4 correspondant & k. Lorsque
d = 0, on s’autorise a écrire simplement k au lieu de k.

2.5.2 Fonctions récursives

Pour définir les fonctions récursives, on a besoin d’une troisiéme régle de formation de
nouvelles fonctions a partir d’anciennes. Il s’agit de la minimisation.

Définition 2.5.3. Un ensemble A © N1 est dit sdr si pour tout m € N9, il existe
n e N tel que (m,n) € A. Si A < N%*! est un ensemble sir, alors la fonction obtenue par
minimisation de A est la fonction

N? - N, m — inf{n € N: (m,n) € A}.
On écrit py,((m,n) € A) pour désigner la valeur inf{n € N: (m,n) € A}.

Définition 2.5.4. Une fonction f € F est récursive si elle peut étre obtenue & partir des
fonctions initiales en appliquant un nombre fini de fois la composition, la récursion primitive
et la minimisation d’ensembles stirs. On note R ’ensemble des fonctions récursives.

Remarque 2.5.5. Une fonction g € Fg,1 est dite sare si pour tout m € N9, il existe
n € N tel que g(m,n) = 0. Si g € F411 est une fonction sire, alors la fonction obtenue par
minimisation de g est la fonction

N? > N, m — inf{n e N: g(m,n) = 0}.

On écrit p,(g(m,n) = 0) pour désigner la valeur inf{n € N : g(m,n) = 0}. Il est laissé
en exercice de montrer que la classe des fonctions obtenues par minimisation de fonctions
stires coincide avec la classe des fonctions obtenues par minimisation d’ensembles strs.

2.5.3 Les fonctions calculables et récursives coincident

Dans cette section, notre but est de montrer que R = C, résultat attribué au mathé-
maticien américain Stephen Kleene.

Proposition 2.5.6. Les fonctions récursives sont calculables.

Preuve. Les fonctions initiales sont calculables. En effet, la machine de Turing R calcule
la fonction zéro, la machine de Turing uR calcule la fonction o et pour tout i € {1,...,d},
la machine de Turing Ef_igg_l calcule la projection Py ;.

Montrons maintenant que ’ensemble C est stable par composition, par récursion pri-
mitive et par minimisation de fonctions stres. Par définition de I’ensemble R, nous aurons
alors obtenu l'inclusion R € C comme souhaité.

Soient k € Ny, hy,...,hr € Fgq des fonctions calculées par des machines de Turing
Hi, ..., Hi respectivement et soit g € F une fonction calculée par une machine de Turing

CHAPITRE 2. CALCULABILITE 13

G. Alors la machine de Turing Cg?—[lcg +1H2Cfll o Hs- --Cfll +k_17{k95§l calcule la fonction
composée g(hi,...,hx). Ceci prouve la stabilité de C par composition.

Soient g € F4 une fonction calculée par une machine de Turing G et h € F 4,9 fonction
calculée par une machine de Turing H. L’algorithme [[]donné ci-aprés calcule la fonction f €
F4+1 définie par récursion primitive a partir de g et h. Montrons qu’aprés k passages dans

Algorithm 1 Calcul de la récursion primitive.

Require: (m,n) e NI+!
Ensure: A la sortie, 7 vaut f(m,n).
p<n, ¢« 0, 7+ g(m)
while p > 0 do
p—p-—1
r <« h(m,q,r)
g—q+1
end while
return r

la boucle, la variable ¢ vaut k et la variable r vaut f(m, k). On procéde par récurrence sur
k. Si k = 0, on ne passe pas dans la boucle. Les variables k et r sont initialisées a 0 et g(m)
respectivement. Puisque g(m) = f(m,0), le cas de base est réglé. Supposons qu’apres k
passages dans la boucle, la variable g vaut k et la variable r vaut f(m, k). Aprés un passage
supplémentaire, la variable r est actualisée & h(m,q,r) = h(m, k, f(m, k)) = f(m,k + 1)
et la variable g est actualisée a ¢ + 1 = k + 1. Ensuite, nous construisons une machine de
Turing qui calcule la fonction f en suivant les étapes de cet algorithme. Une telle machine
est décrite par I'organigramme de la figure .14l Nous laissons au lecteur le soin de vérifier
les détails. Ceci prouve la stabilité de C par récursion primitive.

— Ci11€d12 RCG,1 G

Ri—i—iﬁ 5514—2

#RYS Spara CIIIME SpaL%uRS,
FIGURE 2.14 — Organigramme pour la récursion primitive.

Passons enfin a la stabilité de C par minimisation d’ensembles sirs. Soit A < F4+! un
ensemble siir et soit A une machine de Turing calculant y 4. L’algorithme 2] donné ci-aprés
calcule la fonction obtenue par minimisation de A et la figure est un organigramme de
machines de Turing basé sur cet algorithme. Les détails sont laissés aux soins du lecteur.

O

Afin de montrer la réciproque du résultat précédent, nous avons besoin d’une série de
notions et résultats préparatoires.

Définition 2.5.7. Un prédicat d’arité d > 1 est une partie de N¢. Un prédicat P d’arité d

CHAPITRE 2. CALCULABILITE 14

Algorithm 2 Calcul de la minimisation.

Require: m € N?
Ensure: A la sortie, ¢ vaut u,((m,n) € A).
q—0, 7 XA(m’O)
while » = 0 do
g—q+1
o xa(m, q)
end while
return q

—— Rl

L

#LES

#

uRCfllill A
FIGURE 2.15 — Organigramme pour la minimisation.

est dit récursif primitif si sa fonction caractéristique

1 simeP

:NdHN, m —
xr {0 simé¢P

est récursive primitive.

L’ensemble des prédicats récursifs primitifs est stable pour les opérations booléennes.

Proposition 2.5.8. Soient P et QQ des prédicats récursifs primitifs de méme arité d. Alors
les prédicats P~ Q, P u Q, N? \P sont récursifs primitifs.

Preuve. On a xp~Q = XP - XQ, XPuQ = signo (xp + xq) et Xnd\p = 1, = xp. Dot la
conclusion. O

La proposition suivante nous fournit quelques premiers prédicats récursifs primitifs.

Proposition 2.5.9. Pour tout ~ € {<,<,=,>,>}, le prédicat binaire P. = {(m,n) €
N2 :m ~ n} est récursif primitif.

Preuve. On a xp. =signo (P~ Py2) et xp. =signo (P~ P1). D'out Ps et P sont
récursifs primitifs. Ensuite, on a P< = N?2\P., P> = N?\P_ et P_ = P< n P-. Gréace 4 la
proposition [2.5.8] on obtient que P<, P> et P— sont récursifs primitifs également. O

Proposition 2.5.10. Soit P un prédicat récursif primitif d’arité k et soient f1,..., fr des
fonctions récursives primitives de Fq. Alors le prédicat

{meN": (fi(m),..., fr(m)) € P}

est récursif primitif.

CHAPITRE 2. CALCULABILITE 15

Preuve. 1l suffit de noter que la fonction caractéristique de ce prédicat est égale a la fonction
composée xp(fi,..., fr)- O

Corollaire 2.5.11. Soient f,g € FqnPR. Pour tout ~ € {<,<,=,>,>}, le prédicat {m €
N : f(m) ~ g(m)} est récursif primitif. En particulier, les prédicats {m € N¢ : f(m) > 0}
et {me N?: f(m) = 0} sont aussi récursifs primitifs.

Preuve. (est une conséquence des propositions 5.9 et [Z.5.10 O

Proposition 2.5.12 (Définition par cas). Soient P, ..., Py des prédicats récursifs primitifs
d’arité d deuz & deux disjoints et soient fi1,..., frr1 des fonctions récursives primitives de
Fq. Alors la fonction

f1(m) si me Py

NYSN meos<{
fr(m) si me Py

fer1(m) sinon.
est récursive primitive.

Preuve. Cette fonction définie par cas est égale a

Jroxpo 4+ fio XPeF Ses1 s Xnay(proeopy)-
On conclut en utilisant la proposition 2.5.8] O

Corollaire 2.5.13.

— 5% on modifie un nombre fini de valeurs d’une fonction récursive primitive, on obtient
encore une fonction récursive primitive.

— Tout sous-ensemble fini de N% est un prédicat récursif primitif.
Proposition 2.5.14. Le produit cartésien de prédicats récursifs primitifs est récursif pri-
mitif.
Preuve. Soient P < NP et Q < NY deux prédicats récursifs primitifs. On a xpxg =
XP(Pptq1s- - Porap) - XQ(Potgp+1s - - - > Porgpra)- O

Proposition 2.5.15 (Quantification bornée). Si P est un prédicat récursif primitif d’arité
d+ 1, alors les prédicats

{(m,n) e N*"1 . Vi <n, (m,i) e P}

et
{(m,n) e N1 : 3i < n, (m,i) e P}

sont récursifs primitifs.

Preuve. Notons A le premier prédicat et B le second. Les fonctions caractéristiques y 4 et
X B s’obtiennent par récursion primitive de fonctions récursives primitives. En effet, pour
tousmeN? et neN, on a

xa(m,0) = xp(m,0) = xp(Py1,...,Pi4,04)(m),

xXa(m,n +1) = xa(m,n) - xp(m,n + 1)

CHAPITRE 2. CALCULABILITE 16

= (Pitr2,d0+2 - XP(Pis+2,1, -, Pit2.d,0 © Pyyo441))(m,n, x 4(m,n))
et

xB(m,n +1) = sign(xp(m,n) + xp(m,n + 1))

= sign(Pyy2,a+2 + XP(Pas2,1- -, Pay2,d,0 0 Pyyogi1))(m,n, xp(m,n)).
]

Définition 2.5.16. La fonction obtenue par minimisation bornée d’un ensemble A < N¢+1

est la fonction

inf{t <n:(m,t)e A} sidt<n, (mt)eA

0 sinon.

N LN, (m,n) — {

On écrit p<p,((m,t) € A) pour désigner la valeur de cette fonction en (m,n).

Remarque. La fonction obtenue par minimisation bornée d’une fonction g € Fgi1 est la
fonction

N+ N (m n)H{inf{tgn:g(m,t)=O} sidt <n, glm,t) =0

sinon.

On note pi<n(g(m,t) = 0) la valeur de cette fonction en (m,n). Il est laissé en exercice de
montrer que la classe des fonctions obtenues par minimisation bornée de fonctions coincide
avec la classe des fonctions obtenues par minimisation bornée d’ensembles.

Proposition 2.5.17 (Minimisation bornée).

— Une fonction obtenue par minimisation bornée d’une fonction récursive primitive est
récursive primitive.

— Une fonction obtenue par minimisation bornée d’un prédicat récursif primitif est ré-
cursive primitive.

Preuve. Nous montrons le deuxiéme item, le premier se montrant de fagon similaire. Soit
A un prédicat récursif primitif d’arité d + 1. Pour tous m e N? et n e N, on a

pe<o((m,t) € A) = 04(m)

et
pi<n((m,t) € A) sidt<n,(m,t)e A
Mt$n+1((mat) € A) =40 sivVi<n+ 17 (mat) ¢ A
n+1 sinon
Piyo,ar2(m,n, pu<n((m, t) € A)) si (m,n, pu<n((m, t) € A)) € By
= 3 Quro(m, n, t<n ((m, t) € A)) st (m, n, pr<n((m, t) € A)) € By
00 Pyiogp1(m,n, pi<n((m,t) € A)) sinon
ou
By = {(m,n,s) e N¥*2: 3t <n, (m,t) € A}
et

By = {(m,n,s) e N2 : vt <n+1,(m,t) e NI\ A}
Par les propositions 2.5.8] et 225.14], les prédicats

Ci = {(m,n) e N**' : 3t <, (m,t) € A}

CHAPITRE 2. CALCULABILITE 17

et
Cy = {(m,n) € N1 .Vt < n, (m,t) e N*F1\ A4}

sont récursifs primitifs. Comme
XB1 = XCq (Pd+2,17 s 7Pd+2,d+1)

et
XBs = XCo(Pat+2.15 -+ Pit2.d,0 © Paya,di1),

on obtient que B et By sont récursifs primitifs. Les fonctions Pyy2 g1+2, 0449 €t 00 P19 q4+1
étant également récursives primitives, on conclut en utilisant la proposition 2.5.12 O

Nous donnons & présent quelques nouveaux exemples de fonctions récursives primitives
qui seront utiles dans la preuve du théoréme [2.5.22]

Lemme 2.5.18.

— La fonction
Bl sinx=1
DIV: N* - N, (m,n) — Ll ,
0 stmn =0
est récursive primitive.

— La fonction
mmodn sin>=1
MOD: N2 - N, (m,n) — ,
m sim=0
est récursive primitive.

— La fonction

sim=2etn>=1

sinon

LOGD: N2 > N, (m,n) — {(l)logm(n)J

est récursive primitive.
— Le prédicat D = {(m,n) € N? : n divise m} est récursif primitif.

Preuve. Le prédicat P = {(m,n,s) € N> : (s + 1)n > m} est récursif primitif par les
propositions 2.5.9] et 25101 Ainsi, au vu de la proposition Z5.17 la fonction f: N3 —

N, (m,n,s) — p<s((m,n,t) € P) est récursive primitive. Puisque

DIV: N’ - N, (m,n) — {f(m’”’m) sl

0 sin=0,
la fonction DIV est récursive primitive par la proposition La fonction MOD est
alors elle aussi récursive primitive puisque pour tout (m,n) € N, on a MOD(m,n) =
m = n-DIV(m,n).

Montrons maintenant que la fonction LOGD est récursive primitive. Le prédicat Q) =
{(m,n,s) e N> : m**1 > n} est récursif primitif par les propositions 5.9 et 2510 Ainsi,
au vu de la proposition 2517 la fonction g: N3 — N, (m,n,s) — pu<s((m,n,t) € Q) est
récursive primitive. Puisque

im>=2etn=>1
LOGD: N? - N, (m,n) — {g(m,n,n) sim et n

sinon,

la fonction LOGD est récursive primitive par la proposition 2.5.17]

CHAPITRE 2. CALCULABILITE 18

Enfin, D est récursif primitif car

1 st MOD(m,n)=0etn #0

0 sinon.

xp: N> > N, (m,n)n—>{

O

Voici le dernier résultat préparatoire a la preuve de C < R. Il s’agit de donner une
nouvelle régle de construction de fonctions généralisant la récursion primitive. Nous avons
d’abord besoin de deux lemmes. Leur but est de montrer qu’on peut énumérer les éléments
de N de maniére récursive primitive. Nous commencons par le cas de N2

Lemme 2.5.19. La fonction Eo: N?> — N, (m,n) — 27(2n + 1) — 1 est une bijection
récursive primitive. De plus, il existe des fonctions 1, B2 € F1n'PR telles que B1oEy = Py
et ,82 O E2 = P272,

Preuve. 1l est facile de vérifier que Es est une bijection récursive primitive. La fonction
Bi: N— N, k— inf{t e N: 2" ne divise pas k + 1}

est telle que By o Fp = P5 1. Par le lemme 2.5.18] le prédicat D est récursif primitif et
donc N?\D aussi. Ainsi, la fonction f: N? - N, (k,s) — p<s((k +1,2871) € N2\D) est
récursive primitive. Puisque [1(k) = f(k,k), on obtient que la fonction (31 est récursive
primitive. La fonction

1/k+1

est telle que 2 0 Fy = P 9. Puisque la fonction 3; est récursive primitive, la fonction 3o
est elle aussi récursive primitive. O

Lemme 2.5.20. Pour tout d > 1, il existe une bijection Eq € Fqn PR et des fonctions
récursives primitives 41, ..., Baqd € F1 PR telles que pour tout i € {1,...,d}, on ait
BaioEqg = Py;.

Preuve. Nous procédons par récurrence sur d. Le résultat est trivialement vrai pour d = 1
et le cas d = 2 est réglé par le lemme 2519 Soit & présent d > 2 et supposons que de
telles fonctions Fg, 84,1, ..., 42 existent. Alors les fonctions

Egi1 = Ey(Eg(Pas11,- - Piv1,4), Pav1,d+1)
Bat+1i = BaioP21 pour 1 <i<d

Ba+1,d+1 = Bo,2
conviennent pour la thése.]

Remarquons que les fonctions obtenues dans les lemmes 2.5.19 et [2.5.20] ne sont pas
uniques. Par exemple, la fonction de Peano N?> — N, (m,n) — w + n est aussi

une bijection récursive primitive.

Proposition 2.5.21 (Récursion primitive généralisée). Soient g1,...,g9x € Fq et hy,... hy €
Farka1 des fonctions récursives primitives. Alors les fonctions fi,..., fr € Far1 définie
comme suit sont récursives primitives : pour tous me N, ne N et i € {1,...,k}, on a

film,0) = g;(m) et fi(m,n+1)="h;(m,n,fi(m,n),...,fr(mn)).

2. Que deviennent les fonctions 1 et B2 dans ce cas?

CHAPITRE 2. CALCULABILITE 19

Preuve. Soient Ej, B 1, .., Bkk des fonctions comme dans le lemme Posons F' =
Ex(fi,.-., fx). Puisque f; = By, o F pour tout i € {1,...,k}, il suffit de montrer que
la fonction F' est récursive primitive. Pour tous m € N% et n € N, on a F(m,0) =
Ex(g1,...,9r)(m) et F(m,n + 1) = h(m,n, F(m,n)) avec

h=Eg(...,hi(Pis2,1,- > Piro,das1s Beg © Pavoadsos - - - Bk © Payo,ds2),)
D’ou la conclusion. O

Exercice. Montrer que les nombres de Fibonacci sont récursifs primitifs en utilisant la
proposition 2521l Autrement dit, montrer que la fonction F': N — N définie récursivement
par F(0) =0, F(1) =1et F(n+2) = F(n+ 1)+ F(n) pour tout entier n = 0 est récursive
primitive.

Nous sommes enfin préts pour démontrer que toute fonction calculable par machine
de Turing est récursive. Nous montrons méme un résultat plus précis : toute fonction
calculable par machine de Turing peut s’obtenir en appliquant aux fonctions initiales la
composition, la récursion primitive et une unique fois la minimisation d’une fonction sfire.

Théoréme 2.5.22. Pour toute fonction f e FynC, il existe une fonction g € Fgi1 PR
et une fonction sire h € Fgi1 PR telles que f(m) = g(m, i, (h(m,n) = 0)) pour tout
m € N%. En particulier, les fonctions calculables sont récursives.

Preuve. Soit f € FgnC. Comme Fy € R, on peut supposer que d > 1. Soit M =
(@, q0, h, A, 0) une machine de Turing calculant f.

L’idée générale de la preuve est d’encoder le comportement de la machine de Turing
M a Tl'aide de fonctions récursives. En fait, nous n’utiliserons partout que des fonctions
récursives primitives, a I'exception de la toute derniére étape ol une minimisation (non
bornée) interviendra.

Nous encodons successivement les configurations machines, les transitions et enfin la
fonction f elle-méme.

1. Codage de M.
(a) Codage des mots de A*.

Notons A = {aq,...,ar} avec k > 2. Sans perte de généralité, on peut supposer
que a1 = # et ao = u. On définit un codage
n—1 .
c: A* — N, i, g Qg —> Z ij(/{? + 1)J.
§=0
Il s’agit de la fonction valeur en base k + 1. Puisque le chiffre 0 n’est pas utilisé,
la fonction ¢ est injective. En particulier, on a c¢(¢) = 0 et ¢(a;) = @ pour tout
ie{l,... k}.
(b) Codage des états.

Notons @ = {po, ...,pe} avec £ = 1. Sans perte de généralité, on peut supposer
que pg = h et p; = qo. On définit un codage

c: Q> N, p;—i.

(c) Codage de la fonction de transition.
On pose a1 = L et apyo = R. Considérons des fonctions Dy, Dy € Fo n PR
telles que pour tous ¢ € {1,...,¢} et j € {1,...,k} tels que 6(p;, a;) est défini,
on ait
3(pi»aj) = (PD, (i) @Da(irg))-

CHAPITRE 2. CALCULABILITE 20

()

Remarquons que seulement un nombre fini de valeurs de D et D5 sont fixées
par ces conditions.

Codage des configurations machine.

Une configuration machine p.zay est codée par le quadruplet de N*

(c(q), c(=), c(a), c(y™)).

2. Codage des transitions opérant sur les configurations machines.

(a)

On cherche une fonction F: N* — N* telle que si ¢ = (c1,c9,c3,¢q) est le
code d’'une configuration machine a partir de laquelle une nouvelle configura-
tion machine est atteignable en une transition, alors F'(c) est le code de cette
nouvelle configuration machine. Pour ce faire, nous allons définir des fonctions
Fy,Fy, Fy, Fy € Fy 0 PR telles que pour tout ¢ € N*, on ait

F(c) = (Fi(c), Fa(c), F3(c), Fu(c)).

La table 2.2lindique les cas ou les définitions de F, Fy, F3, F4 sont précisées. On

1< DQ(Cl,Cg) <k DQ(Cl,Cg) =k+1 DQ(Cl,Cg) =k+2
Fi(c) Di(c1,c3) D1 (c1,c3) Di(c1,¢3)
Fs(c) c2 DIV (c2, k+1) (k+1)ca+cs
MOD k+1 i
Fs(c) Da(e1, c3) MOD ez, k+1) OD(eq, k+1) - sieq #0
1 sicgy =0

Fy(c) ca oucyg #0 DIV (cq, k+1)

0 sinon

{(k+1)04+03 sicg #1

TABLE 2.2 — Définition des fonctions Fi, Fy, F3, Fy.

prolonge ensuite les définitions de ces fonctions & N* par des fonctions récursives
primitives quelconques (par exemple, la fonction constante 04). En utilisant la
proposition 2.5.T2] on obtient que Fy, Fy, F3, Fy € PR.

On cherche une fonction F*: N> — N telle que si ¢ est le code d’une confi-
guration machine & partir de laquelle une nouvelle configuration machine est
atteignable en n transitions, alors F*(c,n) est le code de cette nouvelle configu-
ration machine. Pour i € {1,2, 3,4}, on définit F* € F5 comme suit : pour tout
c = (c1,c2,c3,¢4) € Nt et tout ne N, on a

F'(c,0) = ¢

et
Fi(e,n + 1) = F(FY(c,n), F5 (c,n), F§(c,n), Ff (c,n)).

Les fonctions Fy*, Fy', Fy, Fif sont récursives primitives par la proposition 25211
La fonction

F*: N° - N (c,n) — (Fj(c,n), F5(c,n), F§(c,n), Ff(c,n))

convient.

3. Codage des données et décodage du résultat.

Soit

cod: N® 5 N, (myq,...,mg) — c(F#u™ # - F#u")

et soit

decod: N — N, n+— LOGD(k + 1,n).

CHAPITRE 2. CALCULABILITE 21

La fonction decod est récursive primitive et pour tout n € N, on a decod(c(#u™)) =
m. Montrons que la fonctions cod est aussi récursive primitive. Nous montrons ceci
par récurrence sur d et nous notons cod = cody pour cette preuve. Pour d = 1, on a

cody(m) = c(#u™)

= (k+1)™+2DIV((

Il s’agit d’une composition de fonctions récursives primitives, donc cod; € PR. Sup-
posons maintenant que d = 1 et que codg € PR. On a

codgy1(my,...,mgp1) = c(FFu™ # - Fu"d Fu"d)
= c(#u™ # - Fu") (k1) g e(Humi)
= codg(my,...,mq)(k + 1)1 4 cody (mgyy).

Puisque cody € PR par hypothése de récurrence et que cod; € PR, on obtient que
codgy1 € PR.
4. Expression de f a l’aide des codages de M et des transitions.

La configuration machine initiale est codée par (1,cod(m),1,0) et la configuration
d’arrét est codée par (0,c(#uf(™),1,0). Par hypothése, il existe n € N tel que
f(m) = decod(c(#u/™)) = decod(F;(1,cod(m),1,0,n)). Cet entier n est donné
par p(Fj(1,cod(m),1,0,t) = 0). D’ou les fonctions récursives primitives

g: N1 5 N, (m,n) — decod(Fy (1, cod(m), 1,0,n))

et
h: N 5N, (m,n) — Fj(1,cod(m), 1,0,n))

conviennent pour la thése.

2.6 La fonction d’Ackermann

Le but de cette section est de montrer qu’on a PR < R. Clairement, on a PR € R
par définition de ces deux familles de fonctions. Puisque nous savons déja que R = C,
la question revient donc & montrer qu’il existe une fonction calculable mais non récursive
primitive. Nous procédons de la maniére la plus directe qui soit en exhibant explicitement
une telle fonction.

Définition 2.6.1. La fonction d’AckermannB est 1a fonction A: N2 — N définie par les
conditions suivantes : pour tous m,n € N,

1. A0,n) =n+1

2. Alm +1,0) = A(m,1)

3. Aim+1,n+1)=A(m,A(m+ 1,n)).

Exercice. Calculer A(2,3).

3. Ackermann avait d’abord défini une fonction plus complexe. Cette forme simplifiée & deux arguments
a été proposée par Rozsa Péter, une mathématicienne hongroise. C’est pourquoi on parle aussi de la fonction
d’Ackermann-Péter

CHAPITRE 2. CALCULABILITE 22

Définition 2.6.2. Pour tout m € N, posons A,,: N - N, n— A(m,n).

Proposition 2.6.3. Pour toutne N, on a

1. Ao(n) =n+1
2. Ay (n) =n-+2
3. Aa(n) =2n+3
4. As(n) =273 -3
Preuve. 1l suffit de procéder par récurrence sur n.]

Exercice. Trouver une expression de la fonction A4. Essayer de vous imaginer la vitesse
a laquelle croit As.

Au vu de la proposition précédente, on remarque que les fonctions Ag, A1, Ao et Aj
sont récursives primitives. C’est en fait le cas de toutes les fonctions A,,.

Proposition 2.6.4. Pour tout m € N, la fonction A, est récursive primitive.

Preuve. On procéde par récurrence sur m. Pour m = 0, on a Ag = o, qui est une fonction
initiale. Soit & présent m € N tel que A,,, € PR. On a A,,,+1(0) = A, (1) et pour tout
neN onadyii(n+1) = An(Ans1(n)) par définition de la fonction d’Ackermann.
Ainsi, la fonction A,,4; est définie par récursion primitive & partir de g = A,, 0 1, € Fp
et h = A, oP9 € Fa, qui sont des fonctions récursives primitives par hypothése de
récurrence. Ceci montre que A,,+1 € PR. O

Proposition 2.6.5. La fonction d’Ackermann est calculable.

Preuve. Nous allons montrer que la fonction d’Ackermann est calculable en décrivant un
algorithme de calcul de celle-ci. Il est laissé en exercice de construire une machine de Turing
calculant la fonction d’Ackermann & partir de cet algorithme.

On souhaite calculer des expressions de la forme
A(my, A(ma, ..., A(mg_1,mg)...))
ol k = 1. On code une telle expression par le k-uple
S = (miy,...,mg).

Montrons que l'algorithme [3 calcule A(m,n). La notation |S| désigne le nombre k d’élé-
ments de la liste S. On écrit S[i] pour désigner le i® élément de S depuis la gauche et
S[—1i] pour désigner le i élément de S depuis la droite. La notation Drop[.S, —i] signifie
qu’on supprime les i derniers éléments de la liste S et la notation Join[S,T'] indique qu’on
crée une liste composée des éléments de la liste S suivis des éléments de la liste T

On procéde par récurrence sur m. Pour une entrée de la forme (0,n), on passe une
unique fois dans la boucle et on sort n+ 1, qui est bien égal a .A(0,n). Supposons a présent
que m = 0 et que pour toute entrée de la forme (m,n), 'algorithme s’arréte et sort la
valeur A(m,n). A partir d’une entrée de la forme (m + 1,n), on a successivement les mises
a jour suivantes de la liste .S :

(m+1,n)—> (mm+1n—1)

— (m,m,m+ 1,n — 2)

CHAPITRE 2. CALCULABILITE 23

Algorithm 3 Calcul de la fonction d’Ackermann.

Require: (m,n) e N?
Ensure: S[1]is A(m,n)
S — (myn), T, p, q
while |S| > 2 do
T <« Drop[S,—2], p < S[-2], ¢ < S[-1]
if p =0 then
S «— Join[T, (¢ + 1)]
else if p > 0 and ¢ = 0 then
S «— Join[T, (p —1,1)]
else
S «— Join[T, (p—1,p,q — 1)]
end if
end while
return S[1]

— (my...,m,m+ 1,0)
—_———

n fois

- (m,...,m, A(m,1))
n fois A(m+1,0)
—* (m,...,m, A(m, A(m + 1,0))
——— ~
n—1 fois A(m+1,1)
=" (m,...,m, A(m, A(m + 1,1))
—_——

n—2 fois A(m+1,2)

;* (A(m, A(m + 1,n — 1))

v

.A(m:l,n)
oll — représente un passage dans la boucle et —* désigne la cloture réflexive et transitive
de —, et ol on a utilisé 'hypothése de récurrence aux étapes impliquant —*. L’algorithme
se termine donc bien sur toutes les entrées (m,n) de N2, et ce, avec la bonne valeur,
c’est-a-dire A(m,n). O

Lemme 2.6.6. Pour tout m,neN, on a
1. n < A(m,n)
2. A(m,n) < A(m,n + 1)
3. A(m,n+1) < A(m + 1,n)
4. A(m,n) < A(m+ 1,n).

Preuve. Montrons le point 1 par une double récurrence, sur m d’abord et ensuite sur n.
Pour m = 0 et pour tout n € N, on a A(0,n) = n+ 1 > n. Considérons & présent un
naturel m fixé et supposons que pour tout n € N, on a n < A(m,n). Nous devons montrer
que pour tout n € N, on an < A(m+ 1,n) également. On procéde a présent par récurrence
sur n. Pour n = 0, on a A(m + 1,0) = A(m,1) > 1 > 0 ot on a utilisé 'hypothése de
récurrence sur m. Supposons maintenant que n est un naturel tel que n < A(m+1,n). Nous
devons montrer que n + 1 < A(m + 1,n + 1). En appliquant successivement 1’hypothése

CHAPITRE 2. CALCULABILITE 24

de récurrence sur m et I’hypothése de récurrence sur n, on obtient A(m + 1,n + 1) =
A(m, A(m +1,n)) > A(m + 1,n) = n + 1, comme souhaiteé.

Auvudupoint 1,sime Nget ne N,ona A(m,n+1) = A(m—1, A(m,n)) > A(m,n).
De plus, pour tout n € N, on a A(0,n) =n+1 et A(0,n+1) = n+ 2. Le point 2 est donc
démontré.

Nous montrons le point 3. Considérons un naturel m fixé et procédons par récurrence
sur n. Pour n = 0, on a A(m + 1,0) = A(m, 1) par définition de la fonction d’Ackermann.
Supposons maintenant que n est un naturel tel que A(m,n+1) < A(m+1,n). Nous devons
montrer que A(m,n+2) < A(m+1,n+1). En appliquant successivement I’hypothéses de
récurrence et le point 1, on obtient A(m+1,n) > n+1. On en déduit que A(m+1,n) = n+2.
En appliquant la définition, I'inégalité obtenue précédemment et le point 2, on obtient que

Am+1,n+1) = A(m, A(m + 1,n)) = A(m,n + 2)
>n+2
=n+

comme souhaité.

Enfin, en combinant les points 2 et 3, on obtient que pour tout m,n € N, on a A(m,n) <
A(m,n +1) < A(m + 1,n). Le point 4 est donc démontré également. O

Proposition 2.6.7. Pour toute fonction f € Fqn PR, il existe M € N tel que pour tout
me N¢, on a f(m) < A(M,sup(m)).

Preuve. Pour montrons que toute fonction récursive primitive a la propriété souhaitée,
nous montrons que cette propriété est vraie pour les fonctions initiales et que I’ensemble des
fonctions satisfaisant cette propriété est stable par composition et par récursion primitive.

Intéressons-nous d’abord au cas des fonctions initiales. On cherche un naturel M tel
que 0 < A(M,sup()) = A(M,0). Remarquons que la borne supérieure de 1’ensemble vide
dans N vaut 0 puisque le plus petit élément de N est 0. Le choix de M = 0 convient puisque
A(0,0) = 1. Ensuite, on cherche M tel que pour tout m € N, on a o(m) < A(M,m). Le
choix de M = 1 convient puisque A(1,m) = m + 2. Enfin, pour tout d € Ny et tout
i€ {l,...,d}, on cherche M tel que pour tout m € N, on a Py;(m) < A(M,sup(m)). Le
choix de M = 0 convient pour tous d,¢ car on a m; < sup(m) + 1.

Montrons la stabilité par composition. Soient hi,..., h, € Fq et g € F,, et supposons
qu’il existe Hy,...,H,,G € N tels que

— pour tout m € N¢, on a h;(m) < A(H;,sup(m)), et
— pour tout m € N”, on a g(m) < A(G, sup(m)).
On cherche M € N tel que pour tout m € N, on a

g(hi(m),..., hy(m)) < A(M,sup(m)).

En posant H = sup(Hy,. .., H,), par le point 4 du lemme, pour tout i € {1,...,n} et pour
tout m € Nd, on a

hi(m) < A(H,sup(m)),
et donc

sup(hi(m), ..., h,(m)) < A(H,sup(m)).

En posant P = sup(G, H), par les points 2, 3 et 4 du lemme, on obtient que pour tout
me Nd, on a

g(hi(m),..., hy(m)) < A(G,sup(hi(m),..., h,(m)))

< A(G, A(H,sup(m)))
< A(P, A(P + 1,sup(m)))

CHAPITRE 2. CALCULABILITE 25

= A(P + 1,sup(m) + 1)
< A(P + 2,sup(m)).

Ainsi, M = P + 2 convient.

Enfin, montrons la stabilité par récursion primitive. Soient g € F4 et h € Fgyq, et
supposons qu'il existe G, H € N tels que

— pour tout m € N¢, on a g(m) < A(G,sup(m)), et

N9+2 on a h(m) < A(H,sup(m)).

Soit f € Fgu1 la fonction définie par récursion primitive a partir de g et h. On cherche
M € N tel que pour tout m € N**1 on a

f(m) < A(M,sup(m)).

D’abord, remarquons que par hypothése sur A et par le point 1 du lemme, pour tout m € N?
et tout n € Ny, on a

— pour tout m €

sup(m,n, f(m,n)) < A(H,sup(m,n — 1, f(m,n — 1))). (2.1)

Soient m € N% et n € N fixés. En itérant n fois I'inégalité (ZI) et en utilisant point 2 du
lemme, on obtient que

f(m,n) < A(H,sup(m,n — 1, f(m,n — 1)))
< A(H7~A(H7 Sup(m7n - 27 f(mvn - 2))))
LA<H’ A(H, ..., A(H,sup(m,0, f(m,0)))...))
n fois
= .:4(H, A(H,..., A(H,sup(m, g(m)))...)).
n fois

Par hypothése sur g et par le point 1 du lemme, on a
sup(m, g(m)) < A(G, sup(m)).
En posant P = sup(G, H) et en utilisant les points 2 et 4 du lemme, on obtient que

f(m,n) < .:4(P,A(P, . ,A(PJ, A(P + 1,sup(m)))...))

v~

n fois

= A(P, A(P,... ,A(PJ, A(P + 1,sup(m) + 1))...))

"

n—1 fois

=- A(P + 1,sup(m) + n).

Par la proposition 2.6.3] pour tout k,¢ € N, on a k + ¢ < A(2,sup(k,¢)). En particulier, on
a sup(m) +n < A(2,sup(m,n)). En combinant ces inégalités et en utilisant les points 2,
3 et 4 du lemme, on obtient que

f(m,n) < A(P + 1, A(2,sup(m, n)))

< A(P + 1, A(P + 2,sup(m,n)))
= A(P + 2,sup(m,n) + 1)
< A(

P + 3,sup(m,n)).

Ainsi, le choix de M = P + 3 convient. O

CHAPITRE 2. CALCULABILITE 26

Corollaire 2.6.8. La fonction d’Ackermann n’est pas récursive primitive.

Preuve. Procédons par I’absurde en supposant que la fonction d’Ackermann soit récursive
primitive. Par la proposition précédente, on peut alors trouver un naturel M tel que pour
tout (m,n) € N2, on ait A(m,n) < A(M,sup(m,n)). Cette inégalité évaluée en (m,n) =
(M, M) donne lieu a une contradiction. O

2.7 Fonctions non calculables

Tout d’abord, nous montrons que ’ensemble F7 \ C est non vide. En particulier, il existe
des fonctions non calculables.

Proposition 2.7.1. Il existe des fonctions de N dans N non calculables.

Preuve. L’ensemble F1 des fonctions de N dans N est non dénombrable@. L’ensemble C des
fonctions calculables, lui, est dénombrable. En effet, il suffit de remarquer que les machines
de Turing elles-mémes sont dénombrables. L’ensemble F1 nC des fonctions de N dans N
calculables est donc dénombrable lui aussi. D’ot la conclusion. O

Remarquons qu’on a en fait montré bien plus qu’annoncé puisque nous avons montré
que l'ensemble F; \ C était non dénombrable!

Nous allons & présent exhiber une fonction non calculable. Puisque ’ensemble des
F1 nC est dénombrable, il existe une énumération de ses éléments (c’est-a-dire une bijection
de N dans F; nC). Nous notons fo, f1, f2,... la liste des fonctions de F; nC. Si une
telle énumération existe, elle n’est pas calculable, au sens suivant : la fonction u: N? —
N, (m,n) — fmn(n) n’est pas calculable.

Proposition 2.7.2. La fonction u n’est pas calculable.

Preuve. Supposons au contraire qu’il existe une machine de Turing M calculant u. Alors
la machine de Turing C;MuR calcule la fonction v: N — N, n +— u(n,n) + 1. Comme
ve F1nC, il existe k € N tel que v = fi. C’est impossible car ces fonctions prennent des
valeurs différentes en k. O

Une autre fonction non calculable est donnée par la fonction 8 définie comme suit.
Cette fonction nous sera utile dans la suite lorsque nous parlerons du probléme de I'arrét.

Définition 2.7.3. On dit qu’un naturel m est produit par une machine de Turing lorsque
qo-## H* h.#u™ #. Pour tout m € N, on note M, la machine de Turing dessinée a la
Figug 11 s’ag?c d’une machine de Turing d’alphabet {#,u}, possédant m + 1 états
et produisant U'entier m. Pour tout m € N, on note §(m) le plus grand entier produit par
une machine de Turing d’alphabet {#,u} et possédant m + 1 états. La fonction [est la
fonction N — N, m — B(m).

#,u #,u #.,u

FIGURE 2.16 — La machine de Turing M,, produit entier m.

4. Pourquoi?

CHAPITRE 2. CALCULABILITE 27

Proposition 2.7.4. Toute fonction numérique calculable est calculable par une machine
de Turing sur l'alphabet {#,u}.

Idée de la preuve. Puisque les fonctions calculables et récursives coincident, il suffit de
montrer que les fonctions initiales sont calculables par une machine de Turing sur ’alphabet
{#,u}, et que ’ensemble des fonctions calculables par une machine de Turing sur ’alphabet
{#,u} est stable par composition, récursion primitive et minimisation de fonctions sires.
Il s’agit donc d’un raffinement de la preuve de la proposition : & chaque étape, il
faut vérifier que les machines de Turing construites sont d’alphabet {#,u}. Les détails
sont laissés en exercices. Il faudra en particulier justifier que les machines Sz, 4, Sr.a,Ca; E4q
utilisées sont également d’alphabet {#,u}.

Proposition 2.7.5. La fonction B n’est pas calculable.

Preuve. Montrons d’abord que 8 est une fonction strictement croissante. Soit m € N.
Soit By, une machine de Turing d’alphabet {#,u} ayant m + 1 états et produisant 3(m)
(une telle machine existe par définition de 3(m)). Alors la machine de Turing B,,, M7 est
d’alphabet {#,u}, a m+2 états et produit S(m)+1. On en déduit que 5(m+1) = S(m)+1.
Procédons maintenant par I’absurde et supposons que [est calculable. Alors la fonction
N — N, m — (3(2m) est calculable aussi. Soit une machine de Turing N la calculant et
soit k le nombre d’états de N. Au vu de la proposition précédente, on peut supposer que
N est d’alphabet {#,u}. Pour tout m € N, la machine de Turing M,, N produit 5(2m), a
m + k états et est d’alphabet {#,u}. D’ou, pour tout m e N, on a f(m +k —1) = 5(2m).
Puisque f est une fonction strictement croissante, on obtient que pour tout m € N, on a
m + k —1 = 2m, c’est-a-dire m < k — 1, une contradiction.]

2.8 Langages décidables

Définition 2.8.1. Un langage L sur un alphabet A ne contenant pas le symbole blanc #
est dit décidable si sa fonction caractéristique xr: A* — N est calculable.

Autrement dit, un langage L € A* (avec # ¢ A) est calculable s’il existe une machine
de Turing M = (Q,qo,h,B,d) avec A < B telle que, pour tout w € A*, lorsqu’elle
est exécutée a partir de la configuration initiale qo.#w#, atteint la configuration d’arrét
h.# u# si w appartient au langage L et atteint la configuration d’arrét h.## sinon. De
maniére informelle, dans le premier cas, on dira que la machine répond « oui » et dans le
deuxiéme cas, on dira que la machine répond « non ».

Puisque les fonctions calculables et récursives coincident, les langages décidables sont
également appelés les langages récursifs et la famille des langages décidables est notée R.

Si A est un alphabet totalement ordonné, 'ordre radiciel sur A* est l'ordre défini
comme suit : les mots de A* sont ordonnés longueur par longueur, et pour les mots de
méme longueur, ils sont ordonnés en suivant ’ordre lexicographiqueld. Par exemple, si
A = {a,b,c} avec a < b < ¢, les premiers mots de A* dans 'ordre radiciel sont donné a la

table [2.31

Lemme 2.8.2. Soit A un alphabet totalement ordonné. La fonction de A* dans A* qui a
un mot de A* associe le mot sutvant de A* dans [’ordre radiciel est calculable.

Preuve. Supposons que A = {ay,...,a;} avec a1 < ---aj. On vérifie aisément que 'orga-
nigramme de la figure 2.17 calcule la fonction souhaitée. O

5. C’est-a-dire, 'ordre du dictionnaire.

CHAPITRE 2. CALCULABILITE 28

6 |ac| 12| cc || 18| abc
7 | ba || 13 | aaa || 19 | aca
8 | bb| 14 | aab || 20 | acb
9 | be | 15| aac || 21 | acc
aa || 10 | ca || 16 | aba || 22 | baa
ab || 11| ¢b || 17 | abb || 23 | bab

G W N~ O

TABLE 2.3 — Ordre radiciel sur {a, b, c}*.

ag ag
2 i R ak al(lR # a1 R
a;, 1<k 4
#

ag

akCalR

FIGURE 2.17 — Organigramme pour la fonction successeur dans I'ordre radiciel.

Proposition 2.8.3. Soient Ay, ..., Aq.1 des alphabets ne contenant pas le symbole blanc
et soit i un symbole n’appartenant pas G Ufjll A; U {#}. Une fonction

fr AT > AL — Ay
est calculable si et seulement si le langage
Ly = {wipwop. .. pwgpf(wi, ..., we) : wi € AT, ..., wg € A}
est décidable.

Preuve. Soit f: AT x .-+ x Ay — Aj, ;. Supposons d’abord que Ly est décidable. Soit
My, une machine de Turing calculant la fonction caractéristique de Ly. Notons S la
machine de Turing décrite par l'organigramme de la figure 217 Alors I'organigramme
de la figure I8 calcule la fonction f. En effet, si on démarre avec la configuration
qo-#Hw1FHwaH . . . #waf, cette machine de Turing énumere les mots de A}, ; dans 'ordre
radiciel en utilisant la machine &, et pour chaque ¢ € N, si z; est le ¢ mot énuméré, elle
vérifie que wipwaps . .. pwgpx; € Ly. Si c'est le cas, alors x; = f(wi,...,wq) et la machine
de Turing sort la valeur obtenue. Sinon, on passe au mot x;1 suivant. Comme f est une
fonction totale, cette procédure va nécessairement s’arréter, et ce, avec la bonne image.

Inversement, supposons que f est fonction calculable. Soit My une machine de Turing
calculant f. On va expliquer les étapes de construction d’une machine de Turing calculant la
fonction caractéristique de L. On démarre avec la configuration gg.#w# ot w € Uf:ll A;u
{p}. On commence par vérifier que w est de la forme wjpwap . .. LGP g1 avec wy €
AT, ... wgy1 € AY, . Sice n'est pas le cas, la machine de Turing répond « non ». Sinon,
on calcule f(wi,...,wq) au moyen de M. Ensuite, on vérifie que wg1 = f(wi, ..., waq).
Si ce n’est pas le cas, la machine de Turing répond « non » et sinon, elle répond « oui ».
Les détails de construction sont laissés au lecteur. U

CHAPITRE 2. CALCULABILITE 29

R CoTi(Lyn) Ry My, L — S
u
#LEY

FIGURE 2.18 — Organigramme pour le calcul de f en utilisant My, .

Proposition 2.8.4. La famille des langages décidables est stable pour l’union, l’intersec-
tion, la complémentation, la concaténation, et l’étoile de Kleene.

Preuve. Soient K, L des langages sur un alphabet A. On a

— XKnL = XK ' XL
— XKuL = XK + XL — XK " XL
— Xank =1 —xk.
Ceci montre la stabilité pour les opérations booléennes.

Montrons & présent la stabilité par concaténation. Supposons que K et L soient déci-
dables. Soient Mg et M, des machines de Turing calculant x g et xz respectivement. On
décrit une machine de Turing calculant y . On démarre avec une configuration qo.#w#
ot we A*. Il 'y a |w| + 1 factorisations de w de la forme w = wjw,. La machine de Turing
crée ces factorisations I'une aprés ’autre, et pour chacune d’elles, teste si wy € K et wo € L
au moyen de Mg et M. Si on trouve une factorisation telle que les deux réponses sont
positives, alors la machine de Turing répond « oui » ; sinon, elle répond « non ».

Enfin, montrons a présent la stabilité par étoile de Kleene. Supposons que K est déci-
dable. Soit M une machine de Turing calculant yx. On décrit une machine de Turing
calculant x . On démarre avec une configuration qo.#w# ot w € A*. Il y a un nombre
fini de factorisations de w de la forme w = wy---w, avec n = 0 et w; # € pour tout
i € {1,...,n}. La machine de Turing crée ces factorisations I'une aprés l'autre, et pour
chacune d’elle, teste si w; € K pour tout 7 € {1,...,n} grace & Mg. Si on trouve une fac-
torisation telle que tous les facteurs appartiennent a K, alors la machine de Turing répond
«oui » et elle répond « non » sinon.]

2.9 Langages acceptables, machines de Turing universelles et
élimination des configurations pendantes

Une machine de Turing ne s’arréte pas toujours & partir d’une configuration initiale
donnée. D’ou la définition suivante.

Définition 2.9.1. Soit une machine de Turing M = (Q, qo, h, A,9). Un mot w sur A\{#}
est accepté par M si, en partant de la configuration gg.#w#, on atteint une configuration
d’arrét en suivant les transitions de M. Le langage accep?é par une machine de Turing
M, noté L(M), est ensemble des mots qu’elle accepte. Un langage est dit acceptable s'il
existe une machine de Turing qui 'accepte.

Afin d’étudier les propriétés des langages acceptables, nous allons montrer comment
construire une machine de Turing, dite universelle, capable de simuler le comportement
de n’importe quelle machine de Turing. Cette idée fondamentale est déja présente dans
larticle original de Turing [5], méme si le codage présenté ici différe de 1'original.

CHAPITRE 2. CALCULABILITE 30

Nous commengons par encoder les machines de Turing et les configurations machine
par des mots finis sur un alphabet de deux symboles u et *. Sans perte de généralité, nous
supposerons toujours qu’'une machine de Turing posséde un ensemble d’états @ inclus
dans Qo = {po,p1,p2,...) avec pg = h,p1 = qo, et un alphabet A inclus dans A, =
{a1,a2,a3,...} avec a1 = # et x ¢ Ay,. On considére le codage p donné a la table 2.4

TABLE 2.4 — Codage des états et des instructions de la machine de Turing universelle.

Pour chaque 1, j tels que la transition §(p;,a;) est définie, on définit

pij = *p(pi) * plag) * p(p) » p(x)*
ot (p,x) = 8(ps,a;). Si la transition d(p;, a;) n'est pas définie, on pose p;; = . Si Q =
{po,...,pr} et A={ay,...,ap}, on note

(M) = pi1- pie- - pr1- Pre-

Montrons maintenant comment coder les configurations machine. Pour un mot w € A*
de longueur k, on définit

P/ (w) = *p(w[1]) * p(w[2]) * -+ » p(w[k]) * .
Remarquons que pour une lettre a € 4, on a p'(a) = xp(a)* # p(a). Remarquons aussi que
p'(¢) = . Ensuite, on définit le code de la partie significative d’une configuration machine
q.ugv par
p(q-uav) = *p(q) * p'(u)p'(a)p' (v).
Enfin, on définit
c(w) = p(qo-#w#)
pour un mot fini w ne contenant pas les symboles # et *.
La configuration mémoire initiale de la machine de Turing universelle est de la forme

#He(M)e(w)#.

L’idée est que la machine de Turing universelle simule le comportement de M sur w, c’est &
dire qu’elle est programmée de telle sorte que si M passe de la configuration machine q.r a
¢’ .r’, la machine de Turing universelle met a jour sa mémoire en passant de #c(M)p(q.r)#
a #c(M)p(q.r')#. Pour effectuer une telle mise & jour, la partie a droite de la cellule
référencée pourra étre utilisée comme zone de travail par la machine de Turing universelle.

Cette partie ne contient jamais le symbole *.

Exemple 2.9.2. Considérons la machine de Turing de la figure 2191 Comme convenu, on
note a; = # et as = a, I'état initial est noté p; et I’état final pg. On obtient

pi1 = *p(p1) * plar) * p(p1) * p(R)x = *u® xu’ xu? xu’ x

prz = *p(p1) * p(az) * p(po) * p(#)* = *u® *ut xuxu’ .

En considérant la configuration machine p;.#aaa#a, la partie significative de la mémoire
de la machine de Turing universelle sera donnée par #c(M)p(p1.#aaa#a)#, c’est-a-dire

#*uQ*ug*uQ*uQ**uQ*u4*u*u3** u2 **ug*u4* *u4**u4*u3*u4*#,
N ——————— — T

(M) o) PHa) da) plada)

CHAPITRE 2. CALCULABILITE 31

#,R

_,QﬂQ

F1GURE 2.19 — Une machine de Turing & deux états.

Nous synthétisons la discussion qui précéde dans le résultat suivant.

Le codage présenté permet d’obtenir les résultat suivantsﬁ. En effet, il ne s’agit que de
vérifications et constructions syntaxiques.

Proposition 2.9.3.
— Les langages sutvants sont décidables.
— {e(w) : w un mot fini}
— {c(M) : M une machine de Turing}
— {c(M)e(w) : M une machine de Turing, w un mot fini}.

— Pour toute machine de Turing M, on peut construire des machines de Turing réali-
sant les actions suivantes, quels que soient la configuration mémoire r et [’état q :

— qo.r =¥ h#c(M)p(qo.r)#

— qo-#c(M)p(gr)# =* hor.

En fait, le choix du codage importe peu pour la théorie. Ce qui compte est d’avoir
un codage c satisfaisant les propositions précédentes. De nombreux auteurs ont construit
des machines de Turing universelles. Les nombres s d’états et t de lettres des plus petites
d’entre elles sont donnés par les couples (s,t) suivants : (15,2), (9,3), (6,4), (5,5), (4,6),
(3,9), (2,18). En comparaison, notre codage est construit sur 3 lettres, mais le nombre
d’états d’'une machine universelle correspondant & ce codage est probablement plus grand
que 9. Nous ne détaillerons pas ici la construction d’une telle machine de Turing, mais
nous espérons que le lecteur sera convaincu qu’il pourrait, avec de la patience, mener &
bien cette construction s’il le souhaitait. Des constructions impressionnantes de machines
de Turing universelles sont celles réalisées entierement en LEGO®)! Le lecteur est invité a
regarder plusieurs des nombreuses vidéos en ligne a ce sujet. Il existe méme des parodies
de certaines d’entre elles!

Une machine de Turing universelle peut étre vue comme un super-programme capable
d’exécuter d’autres programmes. L’intérét de cette approche est immense. Nous avons
maintenant prise sur les programmes eux-mémes! Nous sommes par exemple capables de
détecter certaines situations problématiques lors de 'exécution de ceux-ci, et aussi d’en
modifier 'action si de tels problémes sont rencontrés. Un deuxiéme atout de taille est que
nous pouvons également simuler plusieurs programmes en paralléle. Nous verrons que ces
deux idées nous seront utiles. Tout d’abord, nous tirons profit de la premiére afin d’éliminer
le probléme des configurations pendantes.

Théoréme 2.9.4. [l existe une machine de Turing U telle que pour toute machine de
Turing M et toute configuration mémoire r de M,

— U atteint la configuration d’arrét h.4tc(M)p(h.s)# a partir de qo.#c(M)p(qo.r)# si
M atteint la configuration d’arrét h.s & partir de qo.r ;

— U ne s’arréte pas a partir de qo.#c(M)p(qo.7)# si M ne s’arréte pas ou atteint une
configuration pendante & partir de qo.r.

6. Avec la convention que les mots sont écrits sur alphabet Ay et que les états des machines de Turing
appartiennent a Qo

CHAPITRE 2. CALCULABILITE 32

Dans le théoréme précédent, chacune des machines de Turing sont lancées & partir de
leurs états initiaux respectifs (appelés tous deux ¢g) et s’arrétent sur leurs états finaux
respectifs (appelés tous deux h). Cela ne cause aucune ambiguité puisqu’il n’y a jamais
d’interférence entre ces états.

Corollaire 2.9.5. Pour toute machine de Turing M, on peut construire une machine de
Turing M’ qui & partir d’une configuration initiale donnée, atteint la méme configuration
d’arrét que M lorsque M en en atteint une et ne s’arréte pas lorsque M ne s’arréte pas
ou que M atteint une configuration pendante.

Preuve. Supposons que M soit une machine de Turing. Notons A une machine de Tu-
ring qui réalise 'action qo.r =* h.#c(M)p(qo.r)#. Soit U une machine de Turing univer-
selle comme dans le théoréme 04l Notons B une machine de Turing qui réalise ’action
qo-#c(M)p(q.r)# =* h.r. La machine de Turing AU B convient pour la thése. O

Passons & présent aux propriétés des langages acceptables. Nous allons exploiter 1'idée
d’une machine de Turing universelle capable de simuler plusieurs machines de Turing en
paralléle.

Proposition 2.9.6. Un langage est décidable si et seulement si lui et son complémentaire
sont acceptables.

Preuve. Si L est un langage décidable et si M est une machine de Turing calculant xp, alors
la machine de Turing M P accepte L, ou P est la machine de Turing de la figure
Ainsi, tout langage décidable est acceptable. Le complémentaire d'un langage décidable
étant encore décidable, on obtient la condition nécessaire.

#,R
—O 8 =0

FIGURE 2.20 — Machine de Turing P.

Montrons & présent la condition suffisante. Soit L un langage sur un alphabet A et
supposons que M et M’ sont des machines de Turing acceptant L et A*\ L respectivement.
On va décrire une machine de Turing N décidant L. En partant de qo.#w# avec w € A*,
on va, au moyen d’une machine de Turing universelle, simuler une transition de M sur
qo-#wH# et tester si M a atteint une configuration d’arrét. Si oui, on sait que w € L et
la machine de Turing N répond « oui ». Si non, on va simuler une transition de M’ sur
qo-FwH# et tester si M’ a atteint une configuration d’arrét. Si oui, on sait que w ¢ L et la
machine de Turing A répond « non ». Si non, on recommence avec une nouvelle transition
de M. La machine N va donc alterner les simulations de M et M’, & chaque étape en
considérant une transition supplémentaire. Cette procédure va s’arréter puisque le mot w
appartient forcément a L ou a A*\L. O

Définition 2.9.7. On dit qu'un langage infini L est récursivement énumérable s’il existe
une bijection de N dans L calculable.

Proposition 2.9.8. Un langage infini est acceptable si et seulement s’il est récursivement
énumeérable.

Preuve. Soit M une machine de Turing acceptant un langage infini L. Sans perte de
généralité, on peut supposer que M n’atteint jamais de configuration pendante. On va

CHAPITRE 2. CALCULABILITE 33

montrer comment obtenir une machine de Turing qui calcule une bijection de N dans L.
On énumére les mots de A* dans l'ordre radiciel : wq, wy, wa,.... On travaille avec deux
listes : une liste L1 qui contiendra les éléments énumérés de L et une liste Lo qui contiendra
les éléments de A* dont on n’a pas encore prouvé 'appartenance & L. Pour commencer,
L est la liste vide et la liste Ly contient uniquement le mot wg. A 'étape k, pour chaque
mot w; de Lsg, au moyen d’une machine de Turing universelle, on applique un maximum
de k transitions de M & la configuration initiale qo.#w;#. Si M atteint une configuration
d’arrét en moins de k transitions, on déplace le mot U_}Z de la liste Ly vers la liste L.
Sinon, le mot w; est conservé dans la liste Ly pour ’étape k + 1. Si on continuait cette
procédure indéfiniment, la liste L; contiendrait exactement les mots de L (puisque nous
avons pris soin de d’abord éliminer les configurations pendantes). Pour chaque entrée n € N,
la machine de Turing s’arréte dés que la liste L posséde n + 1 éléments et sort le (n + 1)¢
mot de cette liste.

Supposons & présent que L est un langage infini récursivement énumeérable. Soit une
machine de Turing M calculant une bijection N — L, n — w,. Décrivons une machine de
Turing qui accepte L. Si w est un mot en entrée, la machine réalise une boucle parcourant
successivement les naturels n, pour chacun d’entre eux produit le mot w, au moyen de
M et ensuite teste si w = w,. Dés que la condition est vérifiée, la machine s’arréte. Cette
machine s’arréte donc exactement sur les mots de L. O

Au vu de la proposition précédente, les langages acceptables sont également appelés les
langages récursivement énumérables et la famille des langages acceptables est notée RE.

2.10 Le probléme de ’arrét

Théoréme 2.10.1. Le langage
A = {c(M)c(w) : w est accepté par la machine de Turing M}
est indécidable.

Preuve. On procéde par I'absurde. Supposons que A est décidé par une machine de Turing
M 4. Nous allons en déduire que la fonction S est calculable, une contradiction. Soit m € N.
Il existe un nombre fini & de machines de Turing d’alphabet {#,u} ayant m + 1 états,
numérotés 0, ..., m. On choisit une énumération de ces machines de Turing : My, ..., Mg.
Pour chaque i € {1,...,k}, on peut décider a I'aide de M4 si ¢(M;)c(e) € A. On fait une
boucle sur . A I'étape 4, si ¢(M;)c(e) ¢ A, on passe a i+ 1. Sinon, c’est-a-dire si M; s’arréte
a partir de qo.#+, alors on simule 'exécution de M; sur € au moyen d’une machine de
Turing universelle et on teste si la configuration d’arrét est de la forme h.#utﬁ avec t € N.
Si ce n’est pas le cas, on passe a ¢ + 1. Sinon, on compare t au plus grand entier produit
jusqu’a présent. On conserve la plus grande des deux valeurs et on passe & ¢ + 1. Comme
la boucle est finie, la derniére valeur conservée est §(m). O

Le langage A du théoréme précédent est appelé le langage du probléme de I'arrét. Ceci
est justifié par le fait, simple mais important, que le codage ¢ choisi n’influence pas le résul-
tat obtenu. On s’autorise donc a dire que le probléme de I'arrét lui-méme est indécidable.

Remarquons qu’on a en fait montré le résultat suivant.

Théoréme 2.10.2. Le langage
Az = {c(M)c(e) : € est accepté par la machine de Turing M}

est indécidable.

CHAPITRE 2. CALCULABILITE 34

Exercice. Montrer que les langages suivants sont indécidables.

L. {c(M)c(w) : M ne s’arréte pas a partir de #w#}

2. {c(M) : M ne s’arréte pas a partir de ##}

3. {c(M) : M ne s’arréte pas a partir de #}

4. {c(M) : LIM) # &}

5. {c(M) : L(M) = alph(L(M))*}, ou alph(L) est I'alphabet minimal de L
6. {c(M)c(N) : LIM) n LIN) # &}

7. {c(M)c(N) : LM) = L(N)}.

Théoréme 2.10.3. Le langage A est acceptable.

Preuve. Montrons comment construire une machine de Turing acceptant A. On démarre
avec une configuration machine gg.#y# ot y € {*,u}*. On teste d’abord si y = ¢(M)c(w)
pour une machine de Turing M et w un mot fini sur Palphabet de M ne contenant pas le
symbole #. Si c’est le cas, on simule 'exécution de M sur w au moyen d’une machine de
Turing universelle. Sinon, notre machine entre dans une boucle infinie. U

Théoréme 2.10.4. Le langage {*,u}*\ A n’est pas acceptable.

Preuve. Sinon, par le théoréme 2.10.3] les langages A et {x,u}*\ A seraient tous les deux
acceptables et par la proposition 2.9.6] le langage A serait décidable, contredisant le théo-
réme 2.10.1] O

2.11 Le théoréme de Rice

Le théoréme suivant nous dit que le probléme de ’arrét est loin d’étre un cas isolé : en
effet, n’importe quelle propriété non triviale des langages acceptables est non décidable!
L’idée de la démonstration est de montrer que si une telle propriété était décidable, alors
tout langage acceptable serait décidable, ce qu’on sait ne pas étre le cas.

Dans ce qui suit, on qualifie une partie A d’'un ensemble B de propre lorsque A n’est
ni vide ni égale a B.

Théoréme 2.11.1 (Rice). Pour toute partie propre S de RE, le langage
Ag = {c(M) : M est une machine de Turing telle que L(M) € S}

est indécidable.

Preuve. Par souci de clarté, nous découpons la preuve en plusieurs parties.

1. Tout d’abord, remarquons que quitte a travailler avec RE\S plutét qu’avec S, on
peut supposer que ¢ ¢ S. En effet, sinon on aurait ¢ ¢ RE\S. Or, d’une part, RE\S est
une partie propre de RE et, d’autre part, Agg\g est décidable si et seulement si Ag est
décidable puisque

Agrg\s = {c(M) : M est une machine de Turing telle que L(M) € RE\S}
= {c(M) : M est une machine de Turing}\Ag.

2. Soit L un langage acceptable écrit sur un alphabet A. Il existe une machine de Turing
M qui, pour tout mot w € A*, atteint la configuration d’arrét h.# a partir de qo.#w#
lorsque w € L et boucle indéfiniment sinon.

3. Puisque S est non vide par hypothése, il existe une machine de Turing M telle que
L(M) € S. Pour tout mot w € A*, on considére une machine de Turing B,, qui & partir de

CHAPITRE 2. CALCULABILITE 35

la configuration ¢q.# atteint la configuration d’arrét h.#w#. Soit maintenant une machine

de Turing B qui, pour tout mot w € A*, atteint la configuration d’arrét h.#c(By Mp M)#

a partir de la configuration qo.#w#. o
4.0Omn a

L(M) siwelL

(] sinon.

LBy M M) = {

Puisque ¢ ¢ S et L(M) € S, on obtient que L(B, M M) € S si et seulement w € L.

5. Montrons & présent que si le langage Ag est décidable, alors le langage L aussi. En
effet, au vu des deux points précédents, si Ag est décidé par une machine de Turing D,
alors la machine de Turing BD décide le langage L.

6. Nous déduisons du point précédent que Ag est indécidable puisque le langage L est
un langage acceptable arbitraire et qu’il existe des langages acceptables non décidables
(par exemple le langage du probléme de l'arrét). O

Voici quelques exemples d’applications du théoréme de Rice qu’on pourra réaliser en
exercice.

Exercice.

1. Adapter la preuve du théoréme de Rice pour montrer que si S est une partie propre
de I'ensemble C des fonctions numériques calculables, le probléme de savoir si une
machine de Turing donnée calcule une fonction de S est indécidable. Autrement dit,
le langage

{e(M) : M est une machine de Turing calculant une fonction de S}

est indécidable.

2. Le probléme de savoir si le langage accepté par une machine de Turing est non vide
est indécidable. Autrement dit, le langage

{c(M) : M est une machine de Turing telle que L(M) # I}

est indécidable.

3. Le probléme de savoir si deux machines de Turing acceptent le méme langage est
indécidable. Autrement dit, le langage

{c(M)c(N) : M et N sont des machines de Turing telles que L(M) = L(N)}

est indécidable.

2.12 Variantes des machines de Turing

Dans cette section, nous présentons quelques variations de la définition de machine
de Turing. Nous allons voir que ces définitions alternatives apparemment plus générales
ne permettent en fait pas de calculer plus de fonctions que les machines de Turing dites
standards. Il s’agit 14 d’un nouvel argument en faveur de la thése de Church-Turing.

2.12.1 Machines de Turing a ruban bi-infini

La définition d’une machine de Turing a ruban bi-infini est identique a celle d’une
machine de Turing standard, & ceci prés que le ruban mémoire est maintenant un mot
bi-infini sur 'alphabet de la machine.

CHAPITRE 2. CALCULABILITE 36

Formellement, une configuration mémoire est un couple (w, k) € A% % 7, ou le mot
bi-infini w ne contient qu’un nombre fini de fois le symbole blanc #. La partie significative
de la mémoire est de la forme uav ou a est la cellule référencée, la premiére lettre de u
n’est pas # et la derniére lettre de v n’est pas #.

Soient Ay, ..., Agy1 des alphabets ne contenant pas #. Une fonction f: A7 x---x A} —
Al est calculable par une machine de Turing a ruban bi-infini M = (Q,qo,h, B,9) si
Uf:llAi C B et si pour tout (wq,...,wq) € Af x --- x A}, ona

qo.wiF - - - #wdﬁ - h.f(wl, R ,wd)#.

Les définitions de langages décidables et acceptables sont adaptées de maniére évidente.

Théoréme 2.12.1. Les machines de Turing o ruban bi-infini calculent les mémes fonc-
tions que les machines de Turing standards. Les langages décidés/acceptés par machines
de Turing a ruban bi-infini coincident avec les langages décidés/acceptés par machines de
Turing standards.

Preuve. Tout d’abord, observons qu'une machine de Turing standard est une machine de
Turing & ruban bi-infini particuliére : il s’agit d’'une machine de Turing & ruban bi-infini
qui n’utilise que la partie droite de sa mémoire.

Intéressons-nous & l'autre direction. Soit une machine de Turing & ruban bi-infini 5.
On construira d’abord une machine de Turing standard S réalisant ’action

qo-F#wH# =¥ hFtc(B)e(w)#.

Ensuite, on construira une machine de Turing universelle ¢ (standard) comme dans le
théoréme 2.9.41 On construira finalement une machine de Turing standard S’ réalisant
laction

qo-#c(B)p(quav)# —* h.#uav.

Ainsi, si B calcule une fonction de F7, la machine de Turing standard SU S’ calcule la
méme fonction. (L’encodage devra étre adapté pour le calcul des fonctions de Fg4 ot d = 0

est arbitraire.) En particulier, si B décide un langage L, la machine SU 8" décide le méme
langage. De plus, on a L(SU) = L(B). O

Une autre variante est la suivante. On considére cette fois que la fonction de transition
est de la forme 6: Q\{h} x A — @ x A x {L,R, S}. Autrement dit, si la machine de Turing
se trouve dans un état q et si la cellule référencée contient la lettre a, la machine de Turing
peut écrire un nouveau symbole dans la cellule référencée et effectuer un déplacement a
gauche (instruction L) ou & droite (instruction S), ou encore ne pas effectuer de déplacement
(instruction S, pour « stationnaire »). Il n’est pas difficile de voir qu’une telle machine ne
calcule pas plus de fonctions qu'une machine de Turing standard (nous ne détaillerons pas).

Exemple 2.12.2 (Castor affairé). La fonction du castor affairé est la fonction BB: N —
N, n — BB(n) ot BB(n) est le nombre maximum de u consécutifs qu’on peut écrire
sur le ruban mémoire d’une machine de Turing & ruban bi-infini, d’alphabet {#,u} et
ayant n + 1 états en partant de la configuration go.# et dont la fonction de transition
est du type 6: Q\{h} x A — Q x A x {L,R}. Une telle machine ne peut donc rester sta-
tionnaire. La notation BB vient de l'anglais « Busy Beaver ». On peut montrer que la
fonction BB n’est pas calculable. En fait, il s’agit d’un des premiers exemples de fonc-
tion non calculable. La fonction 8 que nous avons vue précédemment est une variante
de la fonction BB pour s’adapter au machines de Turing standards. Une machine de
Turing réalisant la valeur BB(n) est appelé un castor affairé. Des castors affairés pour
n = 2 et n = 3 sont représentées aux figures 2.27] et On sait aujourd’hui que
(BB(1),BB(2),BB(3),BB(4)) = (1,4,6,13) mais on ne connait pas les valeurs de BB(n)
pour n = 5. On peut démontrer que BB(5) > 4098 et que BB(6) > 101439,

CHAPITRE 2. CALCULABILITE 37

u,u,L
#7u7R‘
#,u,L

FIGURE 2.21 — Castor affairé atteignant la valeur BB(2) = 4.

FIGURE 2.22 — Castor affairé atteignant la valeur BB(3) = 6.

2.12.2 Machines de Turing a plusieurs bandes

Une machine de Turing a v bandes est définie comme une machine de Turing standard
a la différence prés que la mémoire est constituée de r rubans mémoire. Une configuration
mémoire est un 2r-uple (wq, k1, wo, ko, ..., wy, k) € (A*#¥ x N)". La partie significative
de la mémoire est de la forme ujaivy . ugagvay . -+ . ura,v,. La fonction de transition
d’une telle machine est de la forme §: Q\{h} x A" - @Q x (AU {L,R})".

Seule la premiére bande contient les informations nécessaires au calcul d’une fonction a
la configuration initiale et la configuration d’arrét. Les bandes supplémentaires ne servent
qu’a aider dans la réalisation du calcul. Formellement, une fonction f: Ay x---x A7 — A% |
(avec les conventions habituelles sur les alphabets) est calculable par une machine de Turing

a r bandes si pour tout (wq,...,wq) € Af x -+ x A}, ona
Go-FEw - Hwadh . H o R0, wa) L e 3
— R
r—1 fois r—1 fois

A nouveau, les définitions de langages décidables et acceptables s’adaptent de facon natu-
relle.

Le graphe d’une machine de Turing & r bandes est adapté comme suit : pour tous
p,qEQ, ai,...,ar € Aet xq,...,x, € AU {L,R} tels que d(p,a1,...,a.) = (¢, x1,...,),
on dessine un arc de p vers ¢ étiqueté par (ai,...,a.), (T1,...,2).

Exemple 2.12.3. Notre but est de programmer Sg 4 au moyen d’une machine de Turing
a 2 bandes. On va réaliser ’action

Qo-TFWIH - - - FwaH H FT ha#HHFwi# - FwaHF

On commence par construire une machine & 2 bandes A réalisant
Q- #wH# # - hftHwl.

La machine de Turing de la figure 223 convient. Soient maintenant R(Y) une machine a 2

CHAPITRE 2. CALCULABILITE 38

(a, %), (#,a), Va # #

- =0

(#,a), (L,R), Va # #

#,#), (L,R
Lo ##Ln

(#, #), (#, #)

FIGURE 2.23 — Machine de Turing a 2 bandes qui au départ d’'un mot w placé sur sa
premiére bande, d’arrét avec le mot miroir w’ sur sa deuxiéme bande.

bandes qui déplace sa téte de lecture & droite sur sa premiére bande et B une machine a 2
bandes qui réalise

Qo F-FwHt. —* hofpwl# #.

(De telles machines sont faciles a construire.) Alors la machine de Turing a 2 bandes
AYRM B convient.

Exercice.

1. Programmer Sz, 4,Cq, & au moyen de machines de Turing & 2 bandes.

2. Programmer la fonction d’Ackermann au moyen d’une machine de Turing a r bandes,
avec r au choix.

A nouveau, nous montrons que les machines de Turing & plusieurs bandes ne sont pas
plus puissantes que les machines de Turing standard en termes de calculabilité.

Théoréme 2.12.4. Les machines de Turing a plusieurs bandes calculent les mémes fonc-
tions que les machines de Turing standards. Les langages décidés/acceptés par machines
de Turing a plusieurs bandes coincident avec les langages décidés/acceptés par machines
de Turing standards.

Preuve. Toute machine de Turing standard est une machine de Turing a plusieurs bandes
qui n’utilise que la premiére bande de sa mémoire.

Intéressons-nous a l'autre direction. Soit une machine de Turing & r bande R. Pour
utiliser les machines universelles dans ce contexte, nous devons d’abord adapter les codages
de ces machines. On peut par exemple coder la fonction de transition d’une machine a r
bandes en concaténant les codes des 2(r + 1)-uples

(p’alya%"' yAry 4, L1, X2, . - - ’xr)

tels que d(p,ay,az,...,a,) = (q,z1,22,...,2,). On prendra soin de placer un nombre
adéquat de séparateurs ». Une fois que le choix d’un codage ¢(M) des machines de Turing
a r bandes est posé, on construira une machine de Turing standard & réalisant 1’action

qo-#w# =" hogte(R)plqo-#w#) * p(#) * - - * p(#) #

r—1 fois

et une machine de Turing universelle standard U simulant 1’exécution d’une machine de
Turing & r bandes (il faut adapter I’énoncé du théoréme [2.9.4] aux machines a plusieurs
bandes). On conclut comme pour le théoréme 21211 O

CHAPITRE 2. CALCULABILITE 39

2.12.3 Machines de Turing non déterministes

Une machine de Turing non déterministe est définie comme une machine de Turing
standard & ceci prés que ¢ est maintenant une relation de transition.

Afin de se représenter les possibles actions d’une machine de Turing non déterministe
au départ d’'une configuration mémoire donnée, on construit l'arbre des transitions de la
machine dont le sommet est la configuration d’intérét.

Exemple 2.12.5 (Générateur aléatoire de nombre). La machine de Turing de la figure 2.24]
engendre aléatoirement un naturel n : partant de go.#, on aboutit a une configuration
d’arrét h.# u" # pour un certain n € N.

FIGURE 2.24 — Générateur aléatoire de nombres.

La relation de transition est donnée par ’ensemble de quadruplets

0= {(qo,u,p,R), (QO7 #7p7 R')7 (QO7U~7 h7R')7 (QO7 #7 h7R')7 (p7 #7 a07u)}'

L’arbre des transitions du générateur aléatoire de nombres de la figure 2.24] au départ de
la configuration go.# est représenté a la figure 2.2

(90-#uun)

FIGURE 2.25 — Premiers niveaux de l'arbre des transitions du générateur aléatoire de
nombres au départ de la configuration qo.#.

Dans I'arbre des transitions, certaines branches sont finies, d’autres pas. Une branche
finie méne soit dans une configuration d’arrét soit dans une configuration pendante. Un
mot w est accepté par une machine de Turing non déterministe s’il existe une branche dans
I’arbre des transitions de sommet ¢g.#w# qui se termine dans une configuration d’arrét.

CHAPITRE 2. CALCULABILITE 40

Remarquons qu’on ne peut pas utiliser les machines de Turing non déterministes pour
calculer des fonctions ou pour décider des langages. En effet, au départ d’une configuration
donnée, la machine peut atteindre plusieurs configurations d’arrét différentes. Les machines
de Turing non déterministes sont utilisées uniquement comme des accepteurs.

Théoréme 2.12.6. Les machines de Turing non déterministes acceptent les mémes lan-
gages que les machines de Turing standards.

Preuve. Les machines de Turing standards sont des machines de Turing non déterministes
particuliéres : celles dont la relation de transition est en fait une fonction.
Intéressons-nous a l'autre direction. Soit une machine de Turing non déterministe N/
Nous décrivons une procédure qui s’arréte au départ d’une entrée w si et seulement si N
accepte w. L’idée est de passer en revue I’arbre des transitions de N de sommet qo-Hw#
niveau par niveau. A chaque étape, on teste si A a atteint une configuration d’arrét. Si
oui, on s’arréte. Si non, on continue. Dans le cas ol toutes les branches sont finies sans
atteindre de configuration d’arrét (c’est-a-dire ménent a des configurations pendantes), on
boucle indéfiniment. De cette maniére, on ne s’arréte pas si et seulement si aucune branche
de 'arbre ne méne a une configuration d’arrét. O

Remarquons que dans la preuve précédente, on aurait pu tout aussi bien commencer
par éliminer les configurations pendantes. Ceci peut se faire de la méme maniére que pour
les machines de Turing standards, encore une fois en utilisant des codages adéquats.

Exercice. Décrire une machine de Turing universelle standard exécutant ’algorithme de
la preuve.

Chapitre 3

Complexité

3.1 Complexité temporelle des machines de Turing

Définition 3.1.1. Soient M une machine de Turing non déterministe (potentiellement a
plusieurs bandes) d’alphabet A et w un mot sur A\{#}. La durée d’exécution de M sur w,
notée dpq(w), vaut 0 si w ¢ L(M) et vaut le nombre minimum de transitions permettant
d’atteindre une configuration d’arrét & partir de gg.#w+ en respectant les transitions de
M. La fonction de compleité (temporelle) de M est la fonction

Tvm: N - N, n— sup{dp(w) : we (A\{#})"}

Remarque. Il s’agit de la complexité temporelle dans le pire cas. Il est aussi souvent
pertinent d’étudier d’autres complexités temporelles, par exemple la complexité temporelle
moyenne. Dans ce cas, on a besoin de connaitre la distribution des données en fonction
de leur durée d’exécution. Cette question peut s’avérer trés difficile en pratique. De fagon
générale, les deux approches (pire cas et moyenne) sont complémentaires.

Exemple 3.1.2. La complexité temporelle de la machine de Turing représentée a la Fi-
gure 21 est 2n% + 8n + 6.

Définition 3.1.3. Une machine de Turing est polynomiale si sa fonction de complexité
est majorée par un polynoéme, ou de maniére équivalente, si Thy(n) € O(n*) pour un
certain k € N. Une fonction est P-calculable s’il existe une machine de Turing déterministe
polynomiale qui la calcule.

Exercice.

1. Montrer que tout polynéme encodé en unaire est P-calculable.

2. Montrer que la fonction n — 2™ n’est pas P-calculable. Envisager le codage unaire
et le codage binaire.

3. Montrer que I’égalité de deux entiers encodés en unaire est calculable par une machine
de Turing standard en temps O(n?).

4. Montrer que I’égalité de deux entiers encodés en unaire est calculable par une machine
de Turing & 2 bandes en temps O(n).

5. Montrer que la composition de fonctions P-calculables est P-calculable.

6. Montrer que toute fonction (A*)? — B* calculable par une machine de Turing & 2
bandes de complexité T'(n) = n est calculable par une machine de Turing standard
de complexité en O((T'(n))?).

41

CHAPITRE 3. COMPLEXITE 42

3.2 Transformations polynomiales

Définition 3.2.1. Soient K < A* et L. < B*. Une application f: A* — B* est une
transformation polynomiale de K vers L si les deux conditions suivantes sont satisfaites :
1. f est P-calculable
2. Vwe A*, we K < f(w) € L.

On écrit K < L pour exprimer qu’il existe une transformation polynomiale de K vers L.

Remarque 3.2.2.
— La deuxiéme condition de la définition peut se réexprimer par K = f~1(L).
— Larelation < est transitive : si K < Let L < M, alors K < M. Elle est aussi réflexive
puisque l'identité est une transformation polynomiale d’un langage vers lui-méme.

— Pour toute transformation polynomiale f de K vers L, on a xx = xr o f.

Proposition 3.2.3. Lorsque K < L, on a que K est décidable/acceptable si L l’est.

Preuve. Supposons que f est une transformation polynomiale de K vers L. En particulier,
il existe une machine de Turing F qui calcule f. Si M est une machine de Turing qui
calcule x, (resp. accepte L), alors la machine de Turing F M calcule xx (resp. accepte
K). O

3.3 Problémes de décision

Probléme du voyageur de commerce

Les instances du probléme sont n villes, numérotées 1,...,n, une matrice des distances
entre ces villes D = (D;j)1<ij<n € N"*™ avec comme condition que D;; > 0 si i # j, et
enfin un nombre b représentant la distance maximale autorisée. Une instance du probléme
est donc la donnée du couple (D, b). Le probléme est alors le suivant : existe-t-il un circuit
passant exactement une fois par chaque ville dont la longueur totale ne dépasse par b7
Autrement dit, le probléme est de déterminer s’il existe une permutation v € S, telle que

Dl/11/2 + DV2V3 +oee 4+ Danll/n + DVnVl < b.

Ce probléme est noté TS (pour travelling saleman).

Afin de se ramener & la définition des langages décidables, nous devons convenir d’un
codage des instances (ou les données) du probléme considéré par des mots. Par exemple,
dans le cas du probléme du voyageur de commerce, on peut coder les instances du probléme
par le mot

repy(D11) * - - x1€py(D1y) * - - - *Tepy(Dp1) * - - - x 1€Po (D) * Tepy(b).

Définition 3.3.1. Une instance positive (resp. négative) est une instance pour laquelle la
réponse au probléme est « oui » (resp. « non »).

A chaque codage du probléme est associé un langage, qui est le langage des instances
positives. Ce langage est écrit sur I'alphabet utilisé pour le codage des instances. Remar-
quons qu'un mot quelconque sur cet alphabet n’est pas nécessairement le codage d’une
instance du probléme. Dans le cas ou il est, il est soit le codage d’une instance positive,
soit le codage d’une instance négative. Ces trois cas de figure sont a considérer séparément.

Définition 3.3.2. Un probléme est décidable si le langage des instances positives associé
I’est.

CHAPITRE 3. COMPLEXITE 43

On peut s’étonner d’une telle définition puisqu’elle dépend a priori du codage choisi.
Il convient donc de prendre quelques précautions sur les codages autorisés afin d’assurer
I'indépendance de la définition par rapport au choix du codage. Il suffit de s’assurer que le
codage de notre probléme soit effectif (tout comme nous en avions déja eu le souci dans la
proposition 2.9.3

Proposition 3.3.3. TS est décidable.

Preuve. Il existe un nombre fini de permutations de n villes. Il suffit donc de les tester toutes
I'une apreés 'autre, et de vérifier si oui ou non la somme des distances correspondantes vaut
au plus b. O

Probléme du circuit hamiltonien

Une instance du probléme est un graphe non orienté G = (V, E), ol on convient que
V ={1,...,n}. Le probléme est de déterminer si G posséde un circuit hamiltonien. Si on
convient qu'une instance du probléme est donnée par la matrice A = (A;;)1<ij<n € N**",
ou n est le nombre de sommets du graphe, définie par

4 = {1 s (i,j) e E
0 sinon,
alors le probléme revient a déterminer s’il existe une permutation v € S, telle que
Avipy, = Avgug = =Ay, v, = Avy = 1.
Ce probléme est noté HC (pour Hamitonian circuit).

Proposition 3.3.4. HC est décidable.

Preuve. Il existe un nombre fini de permutations des sommets d’un graphe. Pour chacune
d’entre elle, on peut tester si la permutation définit un circuit du graphe. O

Proposition 3.3.5. HC < TS.

Preuve. Soit f la fonction A — (D4, n) o
1 sid;=1
(D%)ij = Y
2 si Aij = 0.

et n est la dimension de la matrice A. Cette fonction est clairement P-calculable. Montrons
que si A est une instance positive de HC, alors f(A) = (DA,n) est une instance positive
de TS. Soit A une instance positive de HC. Alors il existe une permutation v € S, telle
que

Aulug = Augug == Aun_lun = Aunul =1

Par définition de D4, on a
(DA)VIVQ + (DA)VQVS +eee Tt (DA)Vn—IVn + (DA)VnV1 =n
et (D4, n) est une instance positive de TS.

Il nous reste & montrer que réciproquement, si f(A) est une instance positive de TS,
alors A est une instance positive de HC. Supposons que (D4, n) soit une instance positive
de TS. Alors il existe une permutation v € S,, telle que

(DA)V1V2 + (DA)V2V3 +-+ (DA)anll/n + (DA)Vnm s n.
Par définition de D4, tous les termes de la sommes sont égaux a 1, et donc on a
Amuz = Avws == Al’n—ll/n = AVnVI =1

Ainsi, A est une instance positive de HC. O

CHAPITRE 3. COMPLEXITE 44

Probléme du pavage

Une instance du probléme du pavage est la donnée
e d’un ensemble fini de tuiles T
e d’une tuile initiale ¢ € T'
e d’un ensemble de régles de juxtaposition horizontales H € T' x T
e ct d’un ensemble de régles de juxtaposition verticales V€ T x T'.
La question est de déterminer s’il existe une fagon de disposer les tuiles de T partout dans

N2 en respectant H et V et telle que la tuile posée en (0,0) soit la tuile initiale . Autrement
dit, on demande de déterminer s’il existe une fonction f: N? — T telle que

e f(0,0) =i
e Ym,neN, (f(m,n), f(lm+1,n))e H
e Ym,neN, (f(m,n), f(m,n+1))eV.

Théoréme 3.3.6. Le probléme du pavage est indécidable.

Preuve. 1’idée de la preuve est de se ramener & I'indécidabilité du probléme de ’arrét. Pour
ce faire, & toute machine de Turing M, on associe une instance du probléme du pavage
(Tnm,y iam, Haq, Vaq) de la fagon suivante. Si M = (Q, qo, h, A, d) est une machine de Turing
sans configuration pendante, alors ’ensemble Ty est constitué des tuiles suivantes :

e en considérant un nouveau symbole spécial « :

« q(]a# #

e pour chaque a € A U {a} :

e pour chaque p,q € Q\{h} et a,b e A tels que §(p,a) = (¢,b) :

q,b

D,a,g,b =

b, a

e pour chaque p,q € Q\{h} et a € A tels que §(p,a) = (¢, R) et pour chaque be A :

a q,b

tpa,q,R = q et Rgp =g
p.a b

1. Ce n’est pas une vraie restriction au vu de la section 2.9

CHAPITRE 3. COMPLEXITE 45

e pour chaque p,q € Q\{h} et a € A tel que §(p,a) = (¢,L) et chaque be A :

a q,b

tpagl = 4 et Lgp = q

La tuile initiale est la tuile i,. L’ensemble Haq S Ty X Ty est formé par les couples
de tuiles (t1,t2) telles que le bord droit de ¢; contient la méme information que le bord
gauche de ty. L’ensemble Vi € Ty x T est formé par les couples de tuiles (¢1,t2) telles
que le bord supérieur de t; contient la méme information que le bord inférieur de ts.

Supposons qu’on puisse décider du probléme du pavage. Alors on pourrait décider s’il
existe une facon de disposer les tuiles de T'a en respectant les régles imposées par le choix
de ing, Haq et Vg, Or, un tel pavage de N? existe si et seulement si la machine de Turing
M ne s’arréte pas a partir de gg.#. On pourrait donc décider si une machine de Turing
s’arréte a partir de qo.#, ce que nous savons étre impossible. O

Exemple 3.3.7. Considérons la machine de Turing M donnée a la figure Bl Afin d’illus-

7,1

#,u
_»8 u,R 8 u,R @

FIGURE 3.1 — Une machine de Turing M.

trer la preuve du théoréme [B.3.6] nous donnons les tuiles constituant ’ensemble T cor-
respondant. Il s’agit des onze tuiles suivantes.

o 0,# # o
o = a IM = |a # tp = |# # o ta =
(6%
+# u 0,u 1,u
t# = t'll = tO,#,O,u = tl?#vlvu =
il u 0,# 1,#
u 1,#]_,U.
tou1,R = 1 Rigx =|1 Riw =11
0,u # u

On commence a paver le quart de plan en plagant les tuiles ligne par ligne. Toutes
les tuiles placées sont forcées par les régles de juxtaposition et il n’est possible de placer
aucune tuile en position (1,4). Ce pavage partiel est représenté a la figure

CHAPITRE 3. COMPLEXITE 46

au
4

a | w | tu o## oa
3

o | u | 1# | # | o# | o
2 1

a | Ou | # | # | o# | o
1

a | o# | # | o# | o# | o
3 P o o A

0 1 2 3 4 5)

FIGURE 3.2 — Pavage partiel correspondant a l'exécution de M au départ de 0.#.

3.4 Les classes P, NP et NPC

Définition 3.4.1. On note P la classe des langages décidés par une machine de Turing
déterministe polynomiale. On note NP la classe des langages acceptés par une machine de
Turing non déterministe polynomiale.

Remarque. Clairement, on a P € NP. Le probléme de savoir si P = NP est I'un des sept
problémes mathématiques du millénaire 1B Ce probléme a été posé par Stephen Cook.

Proposition 3.4.2. Si L € NP, alors L est décidable.

Preuve. Soit L € NP et soit M une machine de Turing non déterministe polynomiale
qui accepte L. Soit @ un polynome tel que pour tout n € N, on ait Th(n) < Q(n). Si
w € L, alors il existe un chemin d’acceptation de w dans M de longueur au plus Q(|w|).
Pour décider de 'appartenance d’'un mot w & L, une machine de Turing déterministe D va
calculer Q(|w|) et simuler 'exécution de M sur gg.#w# en parcourant les Q(|w|) premiers
niveaux de ’arbre des transitions de M. La machine_répond « oui » si elle a trouvé une
configuration d’arrét parmi ces niveaux et répond « non » sinon.]

Remarquez que la machine de Turing D de la preuve précédente n’est pas en général
pas polynomiale !

Proposition 3.4.3. Lorsque K < L, on a que K € P (resp. NP) si L € P (resp. NP).

Preuve. La preuve est similaire & celle de la proposition .23l Soit F une machine de
Turing déterministe polynomiale qui calcule une transformation polynomiale de K vers L.
Si M est une machine de Turing déterministe (resp. non déterministe) polynomiale qui
calcule xr, (resp. qui accepte L), alors la machine de Turing F M est déterministe (resp.
non déterministe) polynomiale et calcule xx (resp. accepte K). O

Définition 3.4.4. Soient K € A* et L < B*. Onnote K =L si K < L et L < K. Dans
ce cas, on dit que K et L sont P-équivalents.

2. https://en.wikipedia.org/wiki/Millennium_drize_droblems

CHAPITRE 3. COMPLEXITE 47

Exercice. Montrer que la relation = est une relation d’équivalence.

Proposition 3.4.5. Les ensembles suivants sont des classes d’équivalence pour la rela-
tion =.

1. {}

2. {A*: A est un alphabet}

3. P\ ({4* : A est un alphabet} L {})
4. {LeNP:VK e NP, K < L}.

Preuve.

1. II suffit de montrer que L < ¢ = L = . Soient A et B des alphabets et soit
L < A*, le langage vide étant vu comme un sous-ensemble de B*. Supposons que
L < &, c’est-a-dire qu’il existe une transformation polynomiale f: A* — B* de L
vers (f. Par définition, pour tout w € A*, onawe L <= f(w)e &. D'oa L = .

2. Montrons que pour tous alphabets A et B, on a A* < B*. Soit f: A* — B*, w e.
Cette fonction est P-calculable et pour tout w € A*, on a w € A* — ece€ B*. 1l
s’agit donc d’une transformation polynomiale de A* vers B*.

De plus, si f: A* — B* est une transformation polynomiale de L vers B*, alors
L = A*. En effet, pour tout we A*, onawe L < f(w) € B*. On en déduit que
L = A*.

3. Soient K, L € P\ ({A* : A est un alphabet} U {Z}). Montrons que K < L. Soient A
et B des alphabets tels que K € A* et L € B* et soient u € L et v e B*\L. Alors la
fonction

u siwe K

f: A* - B* w— { _
v siwg¢ K

est une transformation polynomiale de K dans L.
Soit a présent L € P\ ({A* : A est un alphabet} u {@}) et soit K = L. Par les points
1 et 2, nous savons que K ¢ {A* : A est un alphabet} u {F}. De plus, K € P par la
Proposition [3.4.3

4. Pour tous L, M € NP tels que pour tout K € NP, ona K < Let K < M, on a
clairement L = M.
Soit a présent L € NP tel que K < L pour tout K € NP et soit M = L. Comme
L < M, on obtient par transitivité de < que K < M pour tout K € NP. Comme
M < L, on obtient que M € NP par la Proposition 3.4.3]

]
Définition 3.4.6. La derniére classe d’équivalence de la proposition B.4.5] est notée NPC :
NPC ={LeNP:VK e NP,K < L}.

Les langages appartenant & NPC sont appelés les langages NP-complets. Un langage L est
dit NP-difficile si pour tout K € NP on a K < L.

Ainsi, pour montrer qu'un langage L est NP-complet, on doit montrer que L € NP et
que L est NP-difficile. Ces deux étapes sont indépendantes. En général, la premiére étape
consiste a trouver un certificat succinct de L (voir définition ci-aprés) et la deuxiéme étape
en une réduction d’un probléme qu’on sait déja étre NP-difficile vers L.

Définition 3.4.7. Soit L un langage sur un alphabet A. Un certificat succinct de L est
la donnée d’un langage D € P, écrit sur un alphabet B contenant A et un symbole spécial
x ¢ A, et d'un polynéme Q@ tels que

L ={we A*: 3z € (B\{*})S%U"D tel que w * z € D}.

CHAPITRE 3. COMPLEXITE 48

L’idée du certificat succinct est que pour chaque instance positive, il existe une preuve
« courte » que cette instance est en effet positive. Par exemple, considérons le probléme de
déterminer si un nombre naturel donné est composé. Si Pierre se trouve devant l'instance
476677, pour décider que ce nombre est composé, Pierre va passer en revue les diviseurs
possibles, ce qui lui prendra tout de méme un peu de temps. Par contre, si Laura affirme
a Pierre que 476677 est un nombre composé, et que pour le lui prouver, elle lui fournit ses
diviseurs premiers 179 et 2663, il suffit & Pierre de vérifier que le produit de ces nombres
vaut effectivement 476677 pour étre d’accord avec Laura.

Théoréme 3.4.8. La classe NP est la famille des langages pour lesquels il existe un cer-
tificat succinct.

Preuve. Soit un langage L © A* et supposons que celui-ci posséde un certificat succinct
donné par D et) (nous utilisons les notations de la définition B.4.7)). On construit une
machine de Turing non déterministe N qui & partir d’une entrée w € A* se comporte de
la fagon suivante : N produit un mot z € (B\{*})* de fagon non déterministe, ensuite elle
vérifie au moyen d’une machine de Turing déterministe polynomiale si la longueur de x est
au plus Q(|w|) et si le mot w * x appartient a D. Si c’est le cas, elle s’arréte, et dans le cas
contraire, elle entre dans une boucle infinie. Ainsi, la machine de Turing A est polynomiale
et telle que L = L(N).

Inversement, soit L € NP nA*. Soit une machine de Turing non déterministe polyno-
miale N qui accepte L. Notons k le nombre maximum de transitions possibles a partir d’un
état de NV. En supposant que les sommets atteints depuis chaque sommet des arbres des
transitions sont ordonnées de 1 a k, on considére qu'un mot z sur 'alphabet {1,2,..., k}
décrit une branche de I'arbre des transitions de A/ (on peut supposer que tout sommet a
k fils, quitte & ajouter des transitions inutiles). Soit & présent D le langage des mots de la
forme wxz, avec w € A* x € {1,2,..., k}* et x¢ AU{1,2,...,k}, ot la suite de transitions
décrite par = correspond a un chemin d’acceptation de w dans A. Clairement, on a D € P
(détaillez). Comme la machine de Turing A est polynomiale, on peut trouver un polynéme
Q tel que Thr < Q. Ainsi, si w € L, alors il est accepté par N en au plus Q(|w|) transitions.
Un mot w appartient a L si et seulement s’il existe un mot = de longueur au plus Q(|w|)
tel que w*x € D. La donnée de D et de () constitue donc un certificat succinct de L. [

Pour illustrer la preuve précédente, une machine de Turing non déterministe produisant
les mots de {0,1}* en temps linéaire est représentée a la figure [3.3] et les premiers niveaux
de son arbre des transitions & partir de la configuration 0.# sont représentés a la figure [3.41

FIGURE 3.3 — Générateur aléatoire de mots sur {0, 1}.

Tout comme nous avons parlé de probléemes décidables, nous souhaiterions également
pouvoir parler de problémes dans P et probléemes dans NP, sans avoir a se soucier du codage
utilisé. En termes de complexité, nous devons étre un peu précautionneux et opter pour
des codages dis raisonnables. On respectera les trois principes suivants :

CHAPITRE 3. COMPLEXITE 49

140 (A1 244
@
@ @D D @D @D D
(1.#00@ @.#01@ (1.#10@ @.#11@

FIGURE 3.4 — Premiers niveaux de ’arbre des transitions du générateur aléatoire de mots
sur {0, 1} au départ de la configuration 0.#.

1. Le codage choisi ne peut pas contenir de bourrage, c’est-a-dire un grand nombre de
symboles inutiles.

2. Le codage des entiers est fait en base entiére b > 2 (donc, jamais en unaire).

3. Le décodage doit pouvoir s’effectuer en temps polynomial.

On admettra qu’en respectant ces principes, le passage d’'un codage & un autre se fait
toujours en temps polynomial, de sorte que le choix du codage n’a pas d’importance pour
définir un probléme dans P, NP ou NPC.

3.5 Le théoréme de Cook

Définition 3.5.1. Une formule de la logique propositionnelle est dite satisfaisable s’il
existe une distribution des valeurs de vérité des variables qui la composent qui la rend
vraie. Une clause est une disjonction de variables propositionnelles ou de négation de
variables propositionnelles. Une forme normale conjonctive (FNC) est une conjonction de
clauses. La longueur d’une clause est le nombre de variables ou négations de variables
propositionnelles qui la composent. La longueur d’une FNC' est la somme des longueurs
des clauses qui la composent.

Exemple 3.5.2. La formule z v y v —z est une clause de longueur 3. La formule (z v y v
—z) A (x v zvitv—u)est une FNC. Sa longueur est la somme des longueur de ses clauses,
c¢’est-a-dire 7.

Le probléme SAT est le suivant : étant donné une FNC, décider si elle est satisfaisable.

Théoréme 3.5.3 (Cook). SAT € NPC.

Preuve. 11 est facile de voir que SAT posséde un certificat succinct. En effet, étant donné
une FNC et une distribution des valeurs de vérités des variables, on peut vérifier en temps
linéaire si la FNC est vraie ou fausse pour cette distribution.

CHAPITRE 3. COMPLEXITE 50

Montrons que SAT est NP-difficile. Soit donc L € NP nA* et soit une machine de
Turing M = (Q, qo, h, A’,) non déterministe polynomiale qui accepte L, ou l'alphabet
A’ de la machine contient I’alphabet A du langage L. Sans perte de généralité, on peut
supposer que M n’atteint pas de configuration pendante. Notre but est de montrer que
L < SAT. Nous allons donc construire une transformation polynomiale de L vers SAT. A
tout mot w € A*, nous allons associer une FNC ¢(w) de longueur majorée par un polynéme
en |w| et telle que w € L si et seulement si ¢(w) est satisfaisable.
Soit P un polynéme majorant la complexité de M. Si un mot w est accepté par M,
alors il I’est en au plus P(|w|) transitions. Donc pour accepter un mot w, la machine passe
par au plus P(Jw|) + 1 configurations en utilisant au plus P(|w|) + |w| + 2 cellules de sa
mémoire. Par commodité, quitte & remplacer P par P(n) 4+ n + 2, on supposera que pour
accepter un mot w, la machine passe par au plus P(Jw|) configurations en utilisant au
plus P(Jw|) cellules de sa mémoire. On supposera méme que tout chemin d’acceptation
d’un mot w passe par exactement P(|w|) configurations, qu’on convient de numéroter par
i=1,...,P(Jw|). Il suffit de considérer que si une configuration d’arrét est rencontrée en
moins de P(Jw|) configurations successives, M subit des transitions supplémentaires de la
forme (h,a, h,a) pour un total de P(|w|) configurations.
De méme, si 7 est le nombre maximal de transitions définies dans M & partir de tout
couple (p,a) € Q x A’, on supposera qu’il existe exactement r transitions depuis chaque
couple (p,a) € @ x A’. S’il y a j transitions au départ d’un couple (p,a) avec j < r, il suffit
de considérer que M posséde r — j transitions (p, a,p,a) supplémentaires. Cela revient a
compléter Parbre des transitions de M au départ de gg.#w# avec des branches inutiles
pour avoir un arbre complet de P(|w|) niveaux. o
Avec ces conventions, nous pouvons maintenant définir les variables propositionnelles
de notre formule ¢(w). Pour chaque couple (p,a), on convient d’une numérotation des
transitions sortantes de 1 a r. Nous distinguons 4 types de variables :
o Cjjapourl<i,j<P(|lw|)etae A La valeur de vérité 1 pour C; j, traduit le fait
que & la configuration 4, le contenu de la cellule j est a.

e R;jpour 1 <i,j < P(Jw|). La valeur de vérité 1 pour R;; traduit le fait que a la
configuration ¢, la cellule référencée est la cellule j.

o Sigpour 1 <i< P(|lw|) et g€ Q. La valeur de vérité 1 pour S; , traduit le fait que
a la configuration 4, on se trouve dans I’état q.

o T, pour 1 <i < P(|lw|) et 1 <k < r. La valeur de vérité 1 pour T; traduit le
fait que depuis la configuration ¢, on opte pour la transition k& parmi les r transitions
possibles.

Nous définissons plusieurs FNC.

1. La FNC

S0 A Bijwia2 A Crig A Crowi) A A Cjwltwffwl]] A Cjwl+2,4 A - A CLp(jw]) #

traduit le fait que la configuration initiale est go.#w#. Sa longueur est en O (P(|wl)).
2. La FNC

A \/ Rij|n /N (SRi;v —Rij)

1<i<P(jwl) \ \1<j<P(Jw]) 1<j<j'<P(lw))

traduit le fait que pour toute configuration i, exactement une cellule j est référencée.
Sa longueur est en O((P(|w]))?). En effet, de fagon générale, la FNC

(x1 Vv vEg) A /\ (—z; v —x;)

1<i<j<d

CHAPITRE 3. COMPLEXITE 51

est de longueur d? et est vraie si et seulement exactement une des variables z; est vraie.
3. En convenant d’un ordre sur I’alphabet A, la FNC

A (\/ Cz;y;a) A N\ FCija v —Cijw)
1<4,j<P(|lwl) acA’ a,a’€eA
a<da’

traduit le fait que pour toute configuration ¢, toute cellule j contient exactement une
lettre de A’. Sa longueur est en O((P(|wl))?).

4. En convenant d’un ordre sur ’ensemble des états @, la FNC

A <\/ S) M 8y =Sig)
I<i<P(lw]) | \¢e@Q 7,4'€Q

a<q’
traduit le fait que pour toute configuration 4, la machine de Turing M se trouve dans
exactement un état de Q. Sa longueur est en O (P(|w])).

traduit le fait que pour toute configuration ¢, la machine de Turing M opte pour exac-
tement une transition parmi les r transitions possibles. Sa longueur est en O(P(|w|)).

6. La FNC

N\ (Rijv—Cijav Cit1a)
1<i<P(|w|)
1<j<P(lwl])
acA’
traduit le fait que pour tout ¢, toute cellule non référencée a la configuration 7 ne change

pas de contenu a la configuration ¢ + 1. En effet, les propositions
(—Rij A Cija) = Cit1ja et Rijv =Cijav Citija

sont logiquement équivalentes. Sa longueur est en O((P(|w|))?).

7. Considérons maintenant la formule

A <(5i,p AR CijanTig) = (Siv1q A Riv1j+a A Cz‘+1,j,b))
1<i<P(|jw))
1<j<P(|wl)
PEQ
acA’
1<k<r

ou les données p, a, k déterminent les valeurs de ¢, b, d de la fagon suivante : si (p, a, ¢, x)
est la k° transition possible & partir de (p, a), alors on pose

. W —1 sixz=L
T size
b= { _ et d=1+1 siz=R
a sinon]
0 sinon.

Cette formule traduit que les transitions de la machine de Turing M sont respectées
lors du passage d’une configuration a la suivante. La formule est équivalente a la FNC

CHAPITRE 3. COMPLEXITE 52

/\ <(ﬁ ipV R iV =CijaVv =T kv Sit1q)
1<i<P(jw))
1<j<P(|wl) A (=Sipv=Rijv=Cijav =T kv Rit1j1d)
1<k<r
S
Lyt A (ﬁSz',pVﬂRmVﬂCz‘,j,aVﬁﬂ',kVCm,jvb))

dont la longueur est en O((P(jw|))?).
8. Enfin, la FNC
SP(wl)h

traduit que la derniére configuration est une configuration d’arrét. Sa longueur est en

o(1).

La FNC ¢(w) est la conjonction de toutes les FNC précédentes. Sa longueur est en
O((P(Jwl))?). Par construction, a chaque chemin d’acceptation de w correspond une dis-
tribution des valeurs de vérité de la formule ¢(w) qui la rend vraie, et réciproquement, a
chaque distribution des valeurs de vérité de la formule ¢(w) qui la rend vraie correspond un
chemin d’acceptation de w dans M (détaillez). Ainsi, w est accepté par M si et seulement
si la formule ¢(w) est satisfaisable. Nous pouvons donc conclure que L < SAT puisque la
fonction w — ¢(w) est une transformation polynomiale de L vers SAT.]

Corollaire 3.5.4. P = NP < NPCnP # (.

Preuve. Supposons d’abord qu’il existe K € NPC n P. Montrons qu’alors NP < P. Soit
L € NP. Puisque K € NPC, on a L < K. Mais puisque K € P, la Proposition B.4.3limplique
que L € P.

Supposons a présent que P = NP. Soit L € NPC (un tel L existe vu le théoréme de
Cook). En particulier L € NP, donc L € P vu notre hypothése. D’'odt NPC NP # (.]

3.6 Catalogue de problémes NP-complets

Définition 3.6.1 (3SAT). Etant donné une FNC comportant uniquement des clauses de
longueur 3, décider si elle est satisfaisable.

Théoréme 3.6.2. 3SAT € NPC.

Preuve. 11 suffit de montrer que 3SAT = SAT. On a clairement que 3 SAT < SAT. Mon-
trons qu’on a aussi SAT < 3SAT. A toute FNC ¢, nous allons associer une FNC f(¢)
comportant uniquement des clauses de longueur 3, dont la longueur est proportionnelle a
celle de ¢ et telle que ¢ est satisfaisable si et seulement si f(¢) l'est aussi.

Considérons d’abord le cas ou ¢ est une clause. Dans les formules suivantes, les notations
a, B,7, a1, ..., an représentent des variables propositionnelles ou des négations de variables
propositionnelles.

e Si ¢ = a, alors on définit f(¢) =a v a v a.
e Si¢p=a v f,alors on définit f(¢) =a v v a.
e Sip=av f v, alors on définit f(¢) = ¢.

e Siog=ay;vagv- Vv a, avec m = 4, alors on définit
m—2
f(@) = (a1 vaz vr) A </\(ﬁyi—2 Vv yz‘—l)) A (TYm—3 V Qpo1 V Qi)
=3

ou Y1, .- .,Ym—_3 sont des nouvelles variables propositionnelles.

CHAPITRE 3. COMPLEXITE 53

Dans les trois premiers cas, il est clair que ¢ est vrai pour une distribution des valeurs de
vérité de ses variables si et seulement si f(¢) est vrai pour la méme distribution.

Dans le quatriéme cas, montrons que pour toute distribution des valeurs de vérité des
variables de ¢, on a que ¢ est vrai si et seulement s’il existe une distribution des valeurs
de vérité de y1, ..., ym—3 telle que f(¢) est vrai.

Considérons une distribution des valeurs de vérité des variables de ¢ rendant ¢ vrai.

Alors il existe i € {1,...,m} tel que o; soit vrai pour cette distribution. Nous distinguons
trois cas. Sii € {1, 2}, alors la distribution y; = -+ = y,,—3 = 0 convient. Sii € {m—1,m},
alors la distribution y; = -+ = y;,,—3 = 1 convient. Sii € {3,...,m—2}, alors la distribution
donnée par y; = -+ =y;_ o =1let y;_ 1 =+ - = Yym_3 = 0 convient.

Inversement, soit une distribution des valeurs de vérité des variables de ¢ et de y1,...,
Ym—3 telle que f(¢) soit vrai Nous devons montrer que ¢ est vrai pour cette méme dis-
tribution. Supposons le contraire. Dans ce cas, tous les «; sont faux pour la distribution
choisie. En parcourant les clauses de f(¢) de gauche a droite jusqu’a l’avant-derniére, on
obtient successivement que y; = -+ = y,,—3 = 1. Mais alors la derniére clause de f(¢) est
fausse, et la conjonction f(¢) est fausse elle aussi, une contradiction.

Considérons maintenant le cas oil ¢ est une conjonction de clauses.

e Sigp=c A+ Acgouk=1ete,. .. cp sont des clauses, alors on définit f(¢) =
fler) A+ A f(ex), ou les variables potentiellement introduites sont différentes pour
chaque clause.

Montrons que ¢ est satisfaisable si et seulement si f(¢) lest. Notons z1,...,Z,, les
variables de ¢ et x1,...,Tm, Y1 ..., Y les variables de f(¢). Au vu de ce qui précéde, nous
obtenons successivement

f () est satisfaisable
<= 3 distribution de x1,...,Zm,y1 ..., Yy telle que f(P) =1
<= 7 distribution de x1,...,Zm,y1-..,Yn telle que f(c1) =1et ... et f(cgx) =1
<= d distribution de z1,...,z,, telleque cgy =l et ... et ¢ =1
<= d distribution de z1, ..., z,, telle que ¢ =1

<= ¢ est satisfaisable.

La fonction f que nous avons définie est une transformation polynomiale puisque pour
toute FNC ¢, on a |f(¢)| < 3|¢| et ¢ € SAT — f(¢) € 3SAT. O

Définition 3.6.3 (VC). Une couverture d’un graphe G est un ensemble S de sommets de
G tel que toute aréte de G a au moins une extrémité dans S. On suppose qu’une couverture
ne contient pas de sommet isolé. Le probléme de couverture de sommets, abrévié VC, est
le suivant : étant donné un graphe G et un entier n, existe-t-il une couverture de G de
taille n 7

Exemple 3.6.4. Considérons le graphe représenté figure L’ensemble de sommets
{1,4,5,6} en est une couverture de taille 4 et ce graphe ne posséde pas de couverture
avec moins de 4 sommets.

Théoréme 3.6.5. VC € NPC.

Preuve. 1l est facile de voir que VC € NP. En effet, étant donné un ensemble S de sommets
d’un graphe G, on peut vérifier si S est une couverture de G en un temps linéaire par
rapport aux nombres d’arétes de G.

Au vu du théoréme précédent, il suffit de montrer que 3 SAT < VC pour obtenir que
VC est NP-difficile. A chaque FNC ¢ dont toutes les clauses sont de longueur 3, nous allons

CHAPITRE 3. COMPLEXITE 54
1—2
3 4
S

FiGURE 3.5 — Graphe A; associé & la clause ¢;.

associer un couple (Gg,ny) tel que ¢ est satisfaisable si et seulement si le graphe G4 posséde
une couverture a ng sommets. De plus, les tailles de G et ng seront proportionnelles a la
longueur de ¢.

Soit ¢ = c¢1 A -+ A ¢ ol chaque ¢; est une clause de longueur 3. Soit ¢ le nombre de
variables propositionnelles de ¢. On définit le graphe G4 de la facon suivante. A chaque
clause ¢; = a1 v a2 v a43 (00 a1, g, a3 sont des variables propositionnelles ou des
négations de variables propositionnelles), on associe le graphe A; représenté a la figure
A chaque variable xj de ¢, on associe le graphe B; représenté a la figure 3.71 Pour obtenir le

Q] —————— 2
Q53

Fi1GURE 3.6 — Graphe associé A; a la clause ¢;.

$j - —'."L‘j

FIGURE 3.7 — Graphe associé B; a la variable propositionnelle y;.

graphe G, on relie chacun des sommets des graphes A; au seul sommet Iui correspondant
parmi les graphes Bj. Enfin, on pose ng = 2k + . Remarquons que ¢ < 3k. On a donc
ng < 5k = 2|¢. Si la taille d'un graphe G = (V, E) est définie comme |G| = [V| + |E|, on
a |Gyl = (3k +20) 4 (6k + £) = 9k + 3¢ < 18k = 6]¢|.

Supposons d’abord que ¢ admet une distribution des valeurs de vérité de ses ¢ variables
propositionnelles qui la rend vraie. Dans chaque graphe Bj, on sélectionne le sommet x;
si sa valeur est 1 et le sommet —z; sinon. Dans chaque graphe A;, on sélectionne deux
sommets de telle sorte que le sommet non sélectionné soit vrai. On a ainsi sélectionné 2k + ¢
de G 4. Montrons que I’ensemble de ces sommets est une couverture de G 4. D'une part, les
arétes des graphes A; et Bj sont trivialement couvertes. D’autre part, si un sommet d’un
graphe A; est non sélectionné, alors il est vrai et il est donc relié & un sommet d’un graphe
Bj vrai également, qui doit donc avoir été sélectionné.

Inversement, supposons que S est une couverture de G4 de taille 2k+/. Toute couverture
de G doit contenir deux sommets de chaque graphe A; et un sommet de chaque graphe
Bj. Ainsi S posséde exactement deux sommets de chaque graphe A; et un sommet de
chaque graphe B;. A chaque variable x; de ¢, on attribue la valeur de vérité 1 si le sommet
correspondant des graphes B; appartient a S et 0 sinon. Montrons que cette distribution
des valeurs de vérité de x1,...,xy rend ¢ vrai. Il suffit de montrer que chaque clause ¢; de
¢ doit étre vraie. Il suffit de montrer que pour chaque i, le sommet de A; qui n’est pas

CHAPITRE 3. COMPLEXITE 55

dans S est vrai. C’est bien le cas car 'aréte qui le relie au sommet correspondant parmi
les graphes B; est couverte par S, donc le sommet correspondant doit étre dans S, et donc
étre vrai par construction. O

Exemple 3.6.6. Nous illustrons la construction de G de la preuve du théoreme Si
p=(xvyvz)a(-xzvyvz) (3.1)

alors le graphe G, correspondant est le graphe représenté a la figure 3.8l La distribution

FIGURE 3.8 — Graphe associé a la FNC (B.0).

(1,1,0) pour (z,y,z) rend ¢ vrai et la couverture de sommets donnée par les sommets
entourés correspond & cette distribution. Remarquons que le choix des deux sommets dans
le graphe Ay correspondant a la clause co = (—x v y v z) est unique mais que tous les
choix de deux sommets parmi les trois sommets du graphe A; correspondant a la clause
1 = (—x v y v z) étaient possibles. Il n’y a donc pas une unique couverture a 2k + £
sommets associée & une distribution des valeurs de vérité des variables.

Théoréme 3.6.7. HC € NPC.

Preuve. 1l est facile de voir que HC € NP. En effet, étant donné une suite finie de sommets
d’un graphe G, on peut vérifier si cette suite définit un circuit hamiltonien de G en un
temps polynomial par rapport aux nombres d’arétes de G.

Au vu du théoréme précédent, il suffit de montrer que VC < HC pour obtenir que
HC est NP-difficile. A chaque couple (G,n), nous allons associer un graphe G’ tel que G
posséde une couverture a n sommets si et seulement si G’ posséde un circuit hamiltonien.
De plus, |G’| sera proportionnel a |G| + n.

Voici les étapes de construction de G”.

1. A chaque aréte {z,y} de G, on associe le sous-graphe Ay, de G a 12 sommets
et 14 arétes représenté a la figure 3.9 Dans un graphe A, ,, on considére que 6
sommets d’une ligne correspondent au sommet = et que les 6 sommets de 'autre
ligne correspondent au sommet y.

2. Pour chaque sommet = de G, s’il y a r arétes adjacentes en x dans G, on convient
d’un ordre {z,y1},...,{x,y,} sur ces arétes et on ajoute r — 1 arétes reliant les sous-
graphes Ag ., ..., Az, dans cet ordre : pour chaque i € {1,...,7 — 1}, on relie une
extrémité des 6 sommets associés a x dans A, ,, & une extrémité des 6 sommets
associés a x dans Ay 4, . Ceci est illustré a la figure .10

3. Enfin, on ajoute n sommets oy, ..., a, et pour chacun d’eux et chaque sommet = de

G, on ajoute 2 arétes reliant les extrémités des 6 sommets associés a x dans A, ,, et
Ay,

CHAPITRE 3. COMPLEXITE 56

G G
X
y

FIGURE 3.9 — Graphe A, .

Gl

FI1GURE 3.10 — Ajout de r — 1 arétes correspondant aux r arétes adjacentes en un sommet.

Le graphe G’ ainsi construit posséde 12|E| + n sommets. Puisque chaque sommet de G
posséde au plus |V| — 1 arétes adjacentes, le graphe G’ posséde au plus 14|E| + 2n|V| +
[V|(|[V| — 1) arétes. Ainsi, la taille de G’ est polynomiale en la taille |V| + |E| + n des
entrées.

Supposons d’abord que G posséde une couverture S de n sommets. Décrivons un circuit
hamiltonien de G'. On démarre de a;. On choisit un sommet x de S et on se rend dans A, ,,
via l'extrémité correspondant a x (celle-ci est reliée a tous les a; par construction). On
parcourt ce graphe en zigzag si y; ¢ S (premier cas de la figure B.11]) et en ligne droite sinon
(deuxiéme cas de la figure B.IT)). Dans les deux cas, on ressort du graphe A, ,, par 'autre
extrémité correspondant au sommet . On continue notre chemin en entrant dans A, ,,
et on choisit les mémes régles de parcours. De cette maniére, on parcourt tous les graphes
Az yis-- - Agy,.. On arrive donc a 'extrémité de cette suite de graphes correspondants
aux arétes adjacentes au sommet x de S et on se rend ensuite dans le sommet ay. On
recommence la méme procédure : on choisit un nouveau sommet de la couverture et on
parcourt d’une traite tous les graphes correspondants aux arétes adjacentes en ce sommet
avant d’entrer dans le sommet ag. Quand tous les sommets de la couverture sont épuisés,
on retourne dans le sommet aq. On a ainsi défini un circuit de G’. Chaque graphe A, ,
de G’ aura été visité puisque, S étant une couverture de G, x ou y doit appartenir a S et
les n sommets de la couverture ont été utilisés. De plus, vu nos choix de parcours de ces
graphes, un graphe A, , est visité exactement une fois si un seul des deux sommets x et y
est dans S et un graphe A, , est visité exactement deux fois si les deux sommets x,y sont
dans S. Dans les deux cas, & nouveau grace & nos choix de parcours, tous les sommets de
A, auront été visités une et une seule fois. Les sommets a1, ..., a;, étant eux aussi visités
une et une seule fois, le circuit décrit est hamiltonien.

Inversement, supposons que G’ posséde un circuit hamiltonien. Il passe donc par tous les
sommets aq,...,q, une et une seule fois. Quitte a les renuméroter, on peut suppose qu’ils

CHAPITRE 3. COMPLEXITE o7

-~ (y) N

FIGURE 3.11 — Parcours d'un graphe A, ,.

sont visités dans cet ordre. Par construction de G’, entre deux sommets o et a1, le circuit
doit passer par au moins un graphe A, ,. De plus, pour faire partie d’un circuit hamiltonien,
le parcours d’un graphe A, , est obligatoirement un de ceux représentés a la figure 3.11l En
particulier, si le circuit entre dans tel graphe par une extrémité correspondant & un sommet,
il doit en ressortir par 'autre extrémité correspondant & ce méme sommet. Cela implique
que le circuit doit nécessairement parcourir tous les graphes A, , correspondant aux arétes
adjacentes en un sommet pour ensuite arriver dans le sommet ;1. Construisons a présent
une couverture de sommets S de G & n sommets. En suivant le circuit hamiltonien, on
place dans S les sommets correspondants aux extrémités des graphes A, , connectées aux
sommets a1, ..., a,. L'ensemble S posséde ainsi n sommets. Pour chaque aréte {z,y} de
G, le graphe A, , de G’ est visité par le circuit hamiltonien, donc au moins un des deux
sommets x ou y a été placé dans S. Ceci montre que S est une couverture de G. O

Théoréme 3.6.8. TS € NPC.

Preuve. Au vu de la proposition et du théoréme B.6.7] nous savons déja que TS est
NP-difficile. On a aussi que TS € NP parce que, étant donné un graphe G, une borne b et
une suite finie de sommets de G, on peut vérifier si cette suite définit un circuit hamiltonien
de G dont la somme des distances est inférieur ou égale b en un temps polynomial par
rapport a |G| + b. O

3.7 Autres classes de complexité

Dans cette derniére section, nous donnons les définitions de nouvelles classes de com-
plexité et nous les comparons entre elles et avec les classes vues jusqu’ici.

Définition 3.7.1. On note
co-NP = {L: L € A*, A alphabet et A*\L € NP}

et
co-NPC = {L : L € A*, A alphabet et A*\L € NPC}.

Remarquons que les définitions des classes précédentes sont indépendantes de I'alphabet
choisi : si A € B et L © A* alors on a A*\L € NP <= B*\L € NP (resp. A*\L €

CHAPITRE 3. COMPLEXITE 58

NPC <= B*\L € NPC). Ceci est di au faitl que B*\L = (A*\L) u (B*\A*) et que
B*\A* e P.

Tout comme il est généralement admis que P # NP, il est supposé que NP # co-NP.
Nous avons le résultat suivant, analogue du Corollaire 3.5.41

Proposition 3.7.2. NP = co-NP <= NP n co-NPC # (¥.

Preuve. Supposons d’abord que NP = co-NP. Soit L € co-NPC (un tel L existe, par
exemple le complémentaire de SAT). Pour montrer que NP n co-NPC # ¥, il suffit de
montrer que L € NP. Soit A un alphabet tel que L € A*. Par définition, A*\L € NPC. En
particulier, A*\L € NP. Donc A*\L € co-NP vu notre hypothése. On obtient que L € NP.

Montrons a présent la réciproque. Supposons qu’il existe L € NP n co-NPC. Soit A un
alphabet tel que L © A*. Par symétrie, il suffit de montrer que NP < co-NP. Soit K € NP
et soit B un alphabet tel que K < B*. Par hypothése, A*\L € NPC. On a donc K < A*\L.
Soit f: B* — A* une transformation polynomiale de K vers A*\L. Il est facile de voir
que f est aussi une transformation polynomiale de B*\K vers L. Ainsi, on a B*\K < L.
Comme L € NP, on obtient que par la Proposition B.43] que B*\K € NP, c’est-a-dire que
K € co-NP.]

Définition 3.7.3. On note EXPTIME la classe des langages décidés par une machine de
Turing (déterministe) dont la complexité est en O(27(™)) pour un polynéme P, c’est-a-dire
bornée par une fonction exponentielle.

Il est connu que non seulement la classe EXPTIME est non vide, mais on sait méme
qu’elle contient des langages non polynomiaux. Nous donnons le résultat suivant sans
démonstration.

Théoréme 3.7.4. P < EXPTIME et NP € EXPTIME.

De la méme fagon que nous avons défini les problémes NP-complets, on peut définir les
problémes EXPTIME-complets.

Définition 3.7.5. On note

EXPTIME-complet = {L € EXPTIME : YK € EXPTIME, K < L}.

De ce théoréme admis, nous pouvons déduire le résultat suivant.

Corollaire 3.7.6. EXPTIME-complet nP = (7.

Preuve. Supposons au contraire qu’il existe un langage L € EXPTIME-complet nP. Mon-
trons qu’alors on aurait EXPTIME = P, ce qu’on sait étre faux par le théoréme [3.7.4. En
effet, considérons M € EXPTIME. On a donc M < L. Mais puisque L € P, on obtient que
M € P par la proposition 3.4.3 O

La complexité spatiale est définie de maniére similaire & la complexité temporelle en
tenant compte du nombre de cases du ruban mémoire utilisées (en plus de celui utilisé pour
stocker le mot en entrée) au cours d’une exécution d’une machine de Turing plutot que du
nombre de transitions effectuées@.

Définition 3.7.7. On note PSPACE la classe des langages décidés par une machine de
Turing déterministe dont la complexité spatiale est majorée par un polynéme et NPSPACE
la classe des langages acceptés par une machine de Turing non déterministe dont la com-
plexité spatiale est majorée par un polynéme.

3. Le symbole L désigne 'union disjointe.
4. Adaptez la définition BTl & ce contexte.

CHAPITRE 3. COMPLEXITE 59

Contrairement & la complexité temporelle, on peut montrer que ces deux classes coin-
cident. Nous admettons ce résultat.

Théoréme 3.7.8. PSPACE = NPSPACE.

Nous pouvons en déduire le résultat suivant.

Corollaire 3.7.9. NP < PSPACE et co-NP < PSPACE.

Preuve. Il suffit de remarquer que la complexité spatiale est toujours inférieure & la com-
plexité temporelle. O

Nous avons le résultat suivant, admis également.

Théoréme 3.7.10. PSPACE < EXPTIME.

Comme d’habitude, on peut définir les problémes PSPACE-complets, mais il n’est pas
connu si ces problémes sont tous EXPTIME-complets ou non.

Enfin, considérons une derniére classe de complexité.

Définition 3.7.11. On note LOGSPACE la classe des langages décidés par une machine
de Turing déterministe utilisant un espace mémoire logarithmique en plus de celui utilisé
pour stocker le mot en entrée.

Théoréme 3.7.12. LOGSPACE c P.

On pense que cette inclusion est stricte, mais cette affirmation n’a pas encore été
démontrée a ce jour. Il s’agit d’une conjecture majeure en théorie de la complexité.

3.8 Deux problémes indécidables célébres

Nous terminons ce document par mentionner deux importants problémes en théorie
de la décidabilité. Le premier est le dixiéme probléme de Hilbert. En 1900, au deuxiéme
congrés international des mathématiciens, David Hilbert expose 23 problémes qu’il consi-
dére comme les problémes mathématiques de 1’époque. Ces problémes sont de natures
différentes. Le dixiéme d’entre eux concerne en fait, avant '’heure, une question de décida-
bilité.

Définition 3.8.1. Le dixiéme probléme de Hilbert est le suivant. Etant donné un poly-
nome multivarié P & coefficients entiers, c’est-a-dire P € Z[X1, ..., X,] pour un certain n,
déterminer si I’équation P = 0 posséde une solution entiére.

Une équation du P = 0, ou P est un polynéme multivarié, pour laquelle on recherche
des solutions entiéres est ce qu’on appelle une équation diophantienne. Grace aux travaux
de Church et Turing des années 1930, initiateurs de la théorie de la calculabilité, le dixiéme
probléme de Hilbert a pu étre formulé de fagon rigoureuse (la formulation originale de Hil-
bert reposait sur une notion intuitive de procédure effective). Ce n’est qu’en 1970 que Youri
Matiiassevitch (a4 23 ans a peine) a démontré qu’il s’agissait d’'un probléme indécidable.
La preuve de Matiiassevitch s’appuie sur les travaux précédents de Julia Robinson, c’est
pourquoi on parle en général du théoréme de Matiiassevitch-Robinson.

Pour énoncer le théoréme de Matiiassevitch-Robinson, nous donnons d’abord les défi-
nitions suivantes.

CHAPITRE 3. COMPLEXITE 60

Définition 3.8.2. Un ensemble diophantien est un ensemble de la forme
{(a1,...,am) e N :3(by,...,by) €Z", P(ay,...,Gm,b1,...,b,) =0}
pour un certain polynéme P € Z[X1, ..., Xyin]-

Par exemple, le sous-ensemble de N2 formés des couples de naturels premiers entre eux
est diophantien puisque, par le théoréme de Bézout, cet ensemble est donné par

{(a,b) e N? : 3(m,n) € Z*, ma +nb— 1 = 0}.

Définition 3.8.3. On qualifie un sous-ensemble A de N™ de récursif (resp. récursivement
énumérable) lorsque le langage {u® pu .- pu® : (ay,...,an) € A}, ol u est un symbole
différent de u, est décidable (resp. acceptable).

Le théoréme de Matiiassevitch-Robinson nous dit que ces deux notions coincident.

Théoréme 3.8.4 (Matiiassevitch-Robinson). La classe des ensembles diophantiens coin-
cide avec la classe des ensembles d’entiers récursivement énumérables.

Puisqu’il existe des langages acceptables indécidables, le théoréme de Matiiassevitch-
Robinson a pour conséquence le résultat suivant.

Corollaire 3.8.5. [l existe un ensemble diophantien non récursif.

En conséquence, on obtient 'indécidabilité du dixiéme probléme de Hilbert.

Corollaire 3.8.6. Le dixziéme probléme de Hilbert est indécidable.

Preuve. Supposons au contraire que le dixiéme probléme de Hilbert soit décidable. Soient
PeZ[Xy,...,Xmin] €t (a1,...,an) € N Considérons le polynome

Q:P(al?"'aam,Xerla"',Xern)

de Z[Xm+1, - s Xintn]. Par hypothése, nous pouvons décider si I’équation @ = 0 posséde
une solution entiére. L’ensemble diophantien correspondant

{(al,...,am)eNm:El(bl,...,bn)eZ”, P(al,...,am,bl,...,bn) IO}

est donc récursif. Puisque m,n, P sont arbitraires, ceci montre que tous les ensembles
diophantiens sont récursifs, ce qui est en contradiction avec le corollaire précédent.]

En fait, on peut méme montrer ce qu’on appelle la version forte de I'indécidabilité du
dixiéme probléme de Hilbert.

Théoréme 3.8.7 (Version forte de I'indécidabilité du dixiéme probléme de Hilbert). 11
existe un polynome P € Z[X1, ..., X] tel que 'ensemble

{aeN:3by,...,by, €Z, Pla,by,...,by) =0}
est mon récursif.

Le deuxiéme probléme indécidable que nous mentionnons est le probléme de correspon-
dance de Post.

Définition 3.8.8. Le probléme de correspondance de Post (PCP) est le suivant. Etant
donné deux morphismes (de monoides) f,g: A* — B* déterminer s'il existe un mot non
vide w sur l'alphabet A tel que f(w) = g(w).

CHAPITRE 3. COMPLEXITE 61

Exemple 3.8.9. Soient les alphabets A = {0, 1} et B = {a, b}, et les morphismes f,g: A* —
B* définis par f(0) = ab, f(1) = a, g(0) = a, g(0) = ba. On a aba = f(01) = ¢(01). Ceci
montre que le couple (f,g) est une instance positive du probléme de correspondance de
Post.

On peut montrer que PCP est indécidable en exhibant une réduction directe du pro-
bléme de 'arrét & PCP. Nous ne montrons pas ce résultat dans ces notes.

Théoréme 3.8.10. PCP est indécidable.

Néanmoins, certaines restrictions de PCP sont décidables. Par exemple, si on impose
que A soit un alphabet binaire, le probléme devient décidable. Si la taille de ’alphabet A
est fixée et supérieure ou égale a 5, le probléme reste indécidable. Le statut du probléme
restreint & un alphabet A de taille 3 ou 4 est inconnu.

Table des matiéres

62

Bibliographie

[
2]
13l
4]
[5]
[6]

Stephen Cook. The complexity of theorem-proving procedures automata. In Proceedings
of the third annual ACM symposium on Theory of computing, page 151-158, 1971.

Pierre Lecomte. Algorithmique et calculabilité. Notes de cours, Université de Liége,
1994-1995.

Michel Rigo. Algorithmique et calculabilité. Notes de cours, Université de Ligge, 2009-
2010.

Michael Sipser. Introduction to the theory of computation. Course Technology, Boston,
MA, Third edition, 2013.

Alan Turing. On Computable Numbers, with an Application to the Entscheidungspro-
blem. Proc. London Math. Soc. (2), 42(3) :230-265, 1936.

Pierre Wolper. Introduction a la calculabilité. Dunod, Troiséme édition, 2006.

63

	Introduction
	Calculabilité
	Rappels de théorie des langages
	Machines de Turing
	Fonctions calculables par machines de Turing
	Composition de machines de Turing
	Fonctions récursives
	Fonctions récursives primitives
	Fonctions récursives
	Les fonctions calculables et récursives coïncident

	La fonction d'Ackermann
	Fonctions non calculables
	Langages décidables
	Langages acceptables, machines de Turing universelles
	Le problème de l'arrêt
	Le théorème de Rice
	Variantes des machines de Turing
	Machines de Turing à ruban bi-infini
	Machines de Turing à plusieurs bandes
	Machines de Turing non déterministes

	Complexité
	Complexité temporelle des machines de Turing
	Transformations polynomiales
	Problèmes de décision
	Les classes P, NP et NPC
	Le théorème de Cook
	Catalogue de problèmes NP-complets
	Autres classes de complexité
	Deux problèmes indécidables célèbres

