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Ensemble K

Nous supposerons partout dans le cours que K est I'un des quatre
ensembles de nombres suivants : C, R, Q ou Z,, avec m un nombre
premier

Lorsque nous utiliserons les notations + et - entre éléments de K, il est
entendu que nous faisons référence a I'addition et la multiplication usuelle
dans K.

Rappelons que I'addition et la multiplication dans Z,, étaient notées +,,
et -, dans le cours "Mathématique pour I'informatique 1". Nous ne
prendrons plus toujours ces précautions s'il est clair que nous travaillons
dans Z,,.

Nous utiliserons la notation Ko pour désigner I'ensemble K\ {0}.



Polynémes formels

Définition
Un polynéme a coefficients dans K est une expression de la forme

P=po+pX+pX>+- 4 pgX?

ol d est un naturel, pg, p1, ..., pg sont des éléments de K et ou X est un
symbole spécial.

Les éléments pg, p1, ... de K sont appelés les coefficients de P tandis que
X est appelé l'indéterminée de P.

Lorsque P # 0, le naturel d est appelé le degré de P et est noté deg(P).
Par convention, on pose deg(0) = —oc.

Le coefficient py est appelé le coefficient dominant de P.
Un polynéme constant est un polynéme de degré 0 ou —co.

L'ensemble des polynémes a coefficients dans K et d'intéterminée X est
noté K[X].



Exemple

Soient P =2X3+3X2—1et Q=X%2—-X+2.

» On peut voir P et Q vu comme des polynémes de Q[X].

» On peut aussi les voir comme des polynémes de Z3[X].
Danscecas,ona P=2X3+2et Q=X2+2X +2.



Un polyndme est donné par la suite de ses
coefficients.

Formellement, un polynéme de K[X] est en fait simplement une suite
finie de K, c'est-a-dire une suite d'éléments de K valant 0 a partir d'un
certain rang :

P= (po,pl,...,pd,o,o,...).

Ainsi, lorsqu’on ne souhaite pas spécifier le degré d'un polynéme P, on
écrit plus généralement

P=po+piX+pX -

ou il est entendu que p; = 0 pour tout i > deg(P).



Manipuler des polynémes

On munit I'ensemble K[X] de deux opérations internes

K[X] x K[X] = K[X], (P, Q) — P+ Q (somme)
K[X] x K[X] = K[X], (P,Q) — P-Q (produit)

et d'une opération externe

K x K[X] — K[X], (k, P) — kP. (multiplication scalaire)



Manipuler des polynémes

SiP=pg+piX+pX>+- - et Q=qgo+ q1X + gX?>+--- sont des
polynémes de K[X] et si k € K, alors

P+ Q=(po+qo)+ (pr+ q)X + (p2+ q2)X>+ -
P Q= (poqo) + (Pog1 + P1Go)X + (Poq2 + p1a1 + p2qo) X> + - -+
kP = (kpo) + (kp1)X + (kp2)X? + -+ .

Autrement dit, pour tout n € N, le coefficient de X" dans
> P+ Q est égal a p,+ g,
> P-Qestégala > o piqgn_i
> kP est égal a kp,.



Exemple

» Soient P=3X34+2X2—-1et Q=X%2— X+ 2 vu comme
polynédmes de Q[X]. On calcule
P+Q=3X+2+1)X?*-X+(-1+2)
=3X34+3X2-X+1
P-Q=0CB-1)X°+@B-(-1)+2-1)X*+(3-2+2-(-1)) X3
+(2-24+(-1)-)X2+((-1) - (1) X +((-1)-2)
=3X5 - X*+4X34+3X2+ X =2
3P =(3-3)X3+(3-2)X2+ (3-(-1))
=9x3 4+ 6X%-3.



Exemple

> Soient P =3X3 +2X2 ~1et @ = X% — X +2 vu comme
polyndmes de Z3[X]. On a donc P =2X?+2, @ = X2 +2X + 2 et
deg(P) = deg(Q) = 2.

P+ Q= (2X2+2) + (X? +2X +2)
=3X2 42X +(2+2)
=2X+1
P.-Q=(2X?+2)(X?+2X +2)
=2 - D)X*+(2-2)X3+(2-2+2-1)X?
+(2-2)X+(2-2)
=2X* + X3+ X +1
3P =0P =0.



La proposition suivante explicite le comportement du degré par rapport a
ces trois opérations.
Proposition
Pour tous P, Q € K[X] et tous k € Ko, on a
1. deg(P + Q) < max{deg(P),deg(Q)},
2. deg(P - Q) = deg(P) + deg(Q),
3. deg(kP) = deg(P).
Remarquons que ces formules sont correctes méme si P ou @ est nul,

avec la convention que max{—oo,d} = d et —0o + d = —oo pour tout
d € NU{—o0}.



K[X] est intégre

Corollaire
Si P,Q € K[X] sont tels que P- Q =0, alors P=0o0u Q@ =0.

Preuve
Nous montrons la contraposée. Si P et @ sont deux polynémes non nuls
de K[X], alors deg(P - Q) = deg(P) + deg(Q) > 0, et donc P - Q # 0.



Division euclidienne de polynGmes

De la méme facon que nous avons montré la division euclidienne dans Z
dans le cours “Mathématiques pour I'informatique 1", nous pouvons
montrer le résultat suivant.

Théoréme (Division euclidienne de polynémes)

Pour tous polynémes P, D € K[X] tels que D # 0, il existe des polynémes
Q. R € K[X] uniques tels que P = QD + R et deg(R) < deg(D).



Exemple

Avant de donner une preuve de ce théoréme, considérons un exemple qui
nous aidera a comprendre le raisonnement utilisé dans cette preuve.

Soient P =6X°> + X* — X3 +2X —1let D=2X%2+ X —3.

On souhaite trouver des polynémes Q et R de Q[X] tels que
P = QD + R et deg(R) < 2.

Si de tels polyndmes existent, alors nécessairement deg(Q) = 3.

Ecrivons donc Q = aX3 + bX%2 + cX + d.



Exemple (suite)

En identifiant les coefficients de X° dans I'égalite P = QD + R,
c'est-a-dire

6X° 4+ X* —X3+2X —1=(aX?+bX*+ X +d)2X* + X - 3)+ R
on obtient I'équation 6 = 2a. D'od a = g =3.

Nous pouvons donc écrire Q = 3X3 + @', avec Q' = bX?> +cX +d.



Exemple (suite)

On doit avoir
P=QD+R=(3X*+Q)D+R

donc
P-3X3D=QD+R.

Posons P’ = P — 3X3D.
On a deg(P’) < deg(P) car
P’ = (6X° 4+ X* — X3 42X —1) —3X3(2X? + X — 3)
=(6-6)X°+(1-3)X*"+(-1+9)X3+2Xx -1
= 2X*+8X3+2X — 1.



Exemple (suite)

Nous nous sommes ramenés au probléme initial ou le polynéme P de
degré 5 a été remplacé par un polyndme P’ de degré 4 : nous devons
maintenant trouver des polynémes Q' et R tels que P’ = Q'D + R et
deg(R) < deg(D).

Cette observation nous incitera a utiliser le principe de la récurrence sur le
degré du polynéme P dans la démonstration du théoréme.



Exemple (suite)

Poursuivons notre raisonnement pour obtenir les coefficients restants de
Q, c'est-a-dire b, ¢, d.

En identifiant les coefficients de X* dans I'équation P’ = Q'D + R,
c'est-a-dire

—2X* 48X +2X — 1= (bX?+ X +d)2X* + X -3)+ R

on obtient I'équation —2 = 2b. D'ot b = —1.
On peut donc écrire Q' = —X? + Q" avec Q" = cX + d.



Exemple (suite)

En posant P” = P’ + X?D, on doit avoir P” = Q"D + R et
deg(P") < deg(P").

On calcule
P" = (—2X*+8X3 +2X — 1) + X?(2X*> + X — 3)
=(—2+2)X*+(8+1) X3+ (0-3)X*+2X —1
=9X3—3X*+2X — 1.



Exemple (suite)

Nous nous sommes a nouveau ramené au probléme initial avec
maintenant un polynéme P” de degré 3.

En identifiant les coefficients de X3 dans I'équation P” = Q"D + R,
c'est-a-dire
9X3 —3X? 42X —1=(cX+d)2X?>+ X -3)+R

on obtient I'équation 9 = 2¢. Dol ¢ = %.

On peut donc écrire Q" = %X + Q" avec Q" =d.



Exemple (suite)

En posant P = P" — 9XD on doit avoir P = Q"D + R et
deg(P"") < deg(P").

On calcule
P" = (9X3 —3X% +2X — 1) — gX(2X2 + X —3)

:<9—2-2>X3+<—3—2>X2+<2—2-(—3)>X—1

1
= —12—5X2 37><—1



Exemple (suite)
Une fois de plus, nous nous sommes ramenés au probléme initial avec

maintenant un polynéme P”’ de degré 2.

En identifiant les coefficients de X? dans I equation P" = Q"D + R, on
obtient I'équation —=2 = 2d. D'ott d = T

On obtient aussi que

R:Pl//_i_%D

1 1 15
:<—25X2 32x—1> — (2X?+ X - 3)

15 15 31 15 45
=+ 2) X+ [T+ ) X+ (-1 —
(w2 (Gea)e (o)
_ T w9



Exemple (fin)

Nous devons donc avoir
9 15 77 49

=3X3 - X?+_X-=— =—X-—
Q + 3 . o R 4X 2

et on peut vérifier qu'en effet P = QD + R et que deg(R) < deg(D).



Preuve du théoréeme

Soient P, D € K[X] tels que D # 0.
Nous montrons d'abord I'existence de polynémes Q et R tels que
P=QD+R et deg(R) < deg(D)

par récurrence sur le degré de P.

Cas de base : Si deg(P) < deg(D), alors il suffit de choisir @ = 0 et
R=P.

Hypothése de récurrence : Supposons maintenant que deg(P) > deg(D)
et que le résultat soit vérifié pour tout polynéme de degré strictement
inférieur a celui de P.



Si p et d sont les coefficients dominants de P et D respectivement, alors
le polynéme P' = P — §Xdeg(P)*deg(D)D a un degré strictement inférieur
a celui de P.

Par hypothése de récurrence, il existe des polynémes Q' et R’ de K[X]
tels que

P'=QD+ R et deg(R') < deg(D).
On obtient donc que

p—p + BXdeg(P)—deg(D)D
d
_ QID + R’ + Sxdeg(P)—deg(D)D

_ (Q’ n Z Xdeg(P)—deg(D)) DiR.

Dot Q =Q' + §Xdeg(P)*deg(D) et R = R’ conviennent.



Montrons a présent |'unicité des polynémes @ et R.

Supposons qu'il existe des polynémes Qy, Ri, @2, R2 € K[X] tels que

P= QD+ R = @D + Ry, deg(R1) < deg(D), deg(R2) < deg(D).

Alors on doit avoir (Q1 — @)D = R, — Ry.
Si Q1 # @, alors

deg((Q1 — Q2)D) = deg(Q1 — Q2) + deg(D) > deg(D).
C'est impossible puisque
deg(R2 — R1) < max{deg(R1),deg(R2)} < deg(D).

D'ot @1 = Q> et par conséquent R; = R, aussi.

O



Exemple (suite)

La preuve précédente (plus précisément, la partie “existence”) nous
procure en fait un algorithme pour obtenir Q et R.

On peut organiser les calculs effectués dans un tableau de division a la
maniére de la division des entiers classiques :

6X> +Xx* -x3 42X —1|2X24+X-3
—6X®> —3X* +9Xx3 3IXF-XZ+IX -2
—2X* +8X° +2X -1

+2X4 X3 —3X2
9X®  3X%  2X -1
—9x3  -2Xx2 4+ZX
_1ox? +QX 1
Lhxe By s




Autres exemples

Effectuons la division euclidienne de P = X5 + iX3 + (1 +i)X — 1 par
D =2X3—2X2 +1dans C[X] :

X5 +iX3 +(1+0)X  —1]2x3-2X2+1
X5 +x* —IX? X2+ IX+ I
X* +iX3 X7 +1+0N)xX -1
—X* +X3 ~-1x
1+)x3 X2 +G+X -1
—(14+)X3 +(1+i)X? H
G+NX? +G+)X -3

On obtient Q = IX2 + X + L et R= (1 + I)X2+ (3 + )X — 3.



Effectuons maintenant la division euclidienne de P = X4 + X3 +2X + 1
par D = 2X3 + X2 + 1 dans Z3[X] :

X4 +Xx3 42X 41| 2X34+ X241
—X* —2Xx3 —2X 2X +1
2X3 +1
—-2X3 —Xx? -1
2X2

On obtient Q =2X + 1 et R = 2X2.
En effet, dans Z3[X], on a bien

QD+ R = (2X+1)(2X3+ X2 +1) 4 2X?
= X 42X3pox4+2X3 + X2+ 14 2X?
= X'+ X34+2X+1
- P



Un autre algorithme pour trouver @ et R dans le cas ou
deg(P) > deg(D) est de remarquer que deg(Q) = deg(P) — deg(D).

Dans notre exemple, on cherche donc des polyndmes Q et R de Z3[X] de
la forme Q =aX + bet R=cX?2+dX +e.

En identifiant les coefficients des polyndmes dans les deux membres de
I'équation P = QD + R, c’est-a-dire I'équation

X* 4 X3 42X +1=(aX+b) X3+ X2 +1)+ cX? +dX + e

on obtient le systéme d’'équations

(1=2a
l=a+2b
0=b+c
2=a+d
l=b+e.

En résolvant ce systéme dans Z3 (par la méthode de Gauss par exemple),
on obtient |'unique solution (a, b, c,d, e) = (2,1,2,0,0), c'est-a-dire
Q=2X+1let R=2X2



Définition

Soient P, D € K[X] avec D # 0. Les polynédmes (uniques) Q, R donnés
dans I'énoncé du théoréme précédent sont appelés respectivement le
quotient et le reste de la division euclidienne de P par D.

Définition
Dans K[X], on dit qu'un polynéme D divise un polynéme P lorsque le
reste R de la division euclidienne de P par D vaut 0.

Autrement dit, D divise P s'il existe un polynéme Q (nécessairement
unique au vu du théoréme précédent) tel que P = QD.



Pour continuer notre analogie entre I'ensemble des polynémes K[X] et
I'’ensemble des entiers Z, nous donnons ici la définition du PGCD de deux
polynémes.

Définition

Un PGCD de deux polynémes P et Q de K[X] est un polynéme D qui
divise P et @ et qui est tel que tout polyndme divisant simultanément P
et Q divise aussi D.



Remarquons que la notion de PGCD de polynémes n'est définie qu'a une
constante multiplicative non nulle prés : si D est un PGCD de P et Q,
alors pour tout k € K\{0}, le polyndme kD est aussi un PGCD de P et
Q.

Parmi tous les PGCD, on privilégie parfois celui ayant 1 comme coefficient
dominant : on parle alors du PGCD de deux polynémes.



Algorithme d’'Euclide

Maintenant que nous disposons de la division euclidienne dans K[X],
I'algorithme d'Euclide pour la recherche du PGCD de deux polynémes
s'effectue de facon similaire a celui pour obtenir le PGCD de deux entiers.



Exemple

Placons-nous dans Z3[X] et calculons le PGCD de P = X® + 2X et de
Q= X*+2X3+2X.

Comme deg(Q) < deg(P), on pose Ry = Q et on obtient successivement
P:(X+1)RO+X3+X2, R1:X3+X27
Ro = (X + 1)Ry +2X? +2X, Ry = 2X? + 2X,
Ry = (2X)R, Ry = 0.

Le PGCD obtenu est le dernier reste non nul, c'est-a-dire 2X? 4 2.X.
Remarquons que le PGCD étant défini a une constante multiplicative
prés, le polyndme 2(2X? +2X) = X2 + X est aussi un PGCD de P et Q.



Bézout

En remontant I'algorithme d’Euclide, on obtient le théoréme de Bézout
pour les polyndmes.

Théoréeme (Bézout)

Soient P, Q € K[X] et D € K[X] un PGCD de P et Q. Alors il existe
A, B € K[X] tels que AP + BQ = D.



Exemple (suite)

On calcule

2X2 42X = Ry—(X+1R,
= Q-(X+1(P-(X+1Q)
= —-(X+1)P+(1+(X+1)HQ
= (2X+2)P+ (X3 +2X +2)Q.

On a donc obtenu que les polynomes A =2X 4+2 et B = X% +2X +2
vérifiaient I'égalité de Bézout AP + BQ = D pour le PGCD
D = 2X? 4 2X.

Pour obtenir des coefficients de Bézout pour le PGCD X2 + X, on
multiplie cette égalité par 2 (inverse de 2 dans Z3) :

X2+ X =(X+1)P+(2X2+ X +1)Q.



Définition
Deux polynémes P et Q de K[X] sont premiers entre eux si 1 est un
PGCD de P et Q.

Théoreme (Gauss)

Si P, Q,D € K[X] sont tels que D divise PQ et que D et P sont
premiers entre eux, alors D divise Q.

Preuve
Soient P, @, D € K[X] tels que D divise PQ et que D et P sont premiers
entre eux.

Alors d'une part, il existe S € K[X] tel que PQ = SD et d'autre part, par
le théoréme de Bézout, il existe A, B € K[X] tels que AD + BP = 1.

On obtient que
Q = ADQ + BPQ = ADQ + BSD = (AQ + BS)D,

ce qui montre que D divise Q. O



Polynéme et fonction polynomiale

Définition

Pour P € K[X] et k € K, la notation P(k) désigne I'élement de K
obtenu en substituant dans P |'indéterminée X par k et en exécutant les
opérations + et - dans K : si

P = po+piX + paX? 4o+ pgX?,

alors
P(k) = po + pik + p2k® + -+ + pak?.

On dit qu'on a évalué P en k.
La fonction induite par P est la fonction

K — K, k+— P(k).

Une fonction polynomiale de K est une fonction induite par un polynéme
de K[X].



Deux polynémes différents peuvent donner lieu a
une méme fonction induite.

Par exemple, pour tout k € Zjy, on a k? = k. Les polynémes X2 et X de
Z»[X] donnent donc lieu a la méme fonction polynomiale induite.

Voici un autre exemple : les polyndmes X3 + 2X et 0 de Z3[X] donnent
lieu 3 la méme fonction polynomiale induite puisque pour tout k € Zs3, on
a k®+2k=0.

Nous verrons plus loin, grace au théoréme fondamental de I'algebre, que
ceci n'est pas possible lorsque K est C,R ou Q.



Dérivation des polynémes
On définit ensuite la notion de dérivée (formelle) d'un polyndme.
Définition
L'opérateur de dérivation

D: K[X] — K[X]

est défini comme suit.

Pour tout polynéme
P=po+pX+pX>+- 4 pgX?
de K[X], le polynéme dérivé D P est le polynome
DP =py+2pX + -+ dpg X971

Autrement dit, pour tout n € N, le coefficient de X" dans D P est égal a
(n+1)pn+1.



Proposition
L'opérateur de dérivation D: K[X] — K[X] est linéaire : pour tous
k,l € K et tous P,Q € K[X], on a D(kP+(Q) =kDP+¢D Q.

Preuve
C'est une simple vérification.



On utilise la notation D’ P pour signifier qu’on applique i fois |'opérateur
DaP:

D°P=P,D'P=DP, D’P=D(DP), D*P=D(DDP))), ....

Proposition
Supposons que K est C, R ou Q. Alors pour tous d,i € N, on a

D’ <1Xd> _ @ X T sid 2
d! 0 sid<i.

Preuve
La preuve s'obtient par récurrence sur i.



Exemple

Pour d =7 et i = 3, on calcule

0 (1) <2 () <o (550 g e
7! 7! 7! 7! 41

etonaben4d=7—-3=d—1.




Proposition (Bindme de Newton)
Pour tout P, Q € K[X] et tout n € N, on a

(P+Q)" Zc' PIQ".

Preuve

Laissée en exercice. C'est une adaptation directe de la preuve du binéme
de Newton pour les complexes que vous avez vue au bloc 1 dans le cours
“Mathématique’”.



Proposition (Formule de Leibniz)
Pour tous P, Q@ € K[X] et tout n € N, on a

D"(PQ) =) C;D'P.-D"Q.
i=0

Preuve
Laissée en exercice. C'est une adaptation directe de la preuve de la

formule de Leibniz pour les fonctions d'une variable réelle que vous avez
vue au bloc 1 dans le cours “Mathématique”.



Proposition (Formule de Taylor)

Supposons que K est C, R ou Q. Alors pour tout P € K[X] et tout
k€K, ona

deg(P) ;
D' P(k) i
P=> T (XK
i=0

Preuve
Soit P = Zgzo pnX" (ot d = deg(P)) et soit k € K.

En utilisant le binéme de Newton et en échangeant ensuite les sommes,
on obtient

d

P = an(X_k+k)n
n=0

d n
= D Py Ch(X —k)k
n;0 ld:0 | | |
-y (Z pn k”') (X — k).

i=0 n=i



Pour conclure, il suffit donc de montrer que

anc, i = DPU)

Ceci est vrai puisque pour tout i € {0,...,d},
1 1 (S
GD'P = 4D <ZO an”>
1
W ICD
n=0
d nl n—i
- ;p"i!(n—/)lx
d

O



Exemple

Soient P =2X2 +3X — 1 dans C[X] et k = 2.
OnaDP=4X+3etD?’P =4
Ainsi P(2) =8+ 6 —1 =13, DP(2) = 11 et D> P(2) = 4.
On obtient

iDi P(2)(X_2),-_ D? P(2)

= X =22+ DPR)(X ~2) + P(2)

4
:§(x2—4x+4)+11(><—2)+13

=2X?+3X -1
= P.



Zéros d'un polynéme

Définition
Soit P € K[X]. Un zéro de P est un nombre k € K tel que le polynéme
X — k divise P.

Si P est non nul, la multiplicité d'un nombre k en tant que zéro du
polyndme P est le plus grand entier « tel que (X — k)® divise P.

Remarque
Avec cette définition, le fait que k soit un zéro de multiplicité 0 de P
équivaut au fait que k ne soit pas un zéro de P.

On pourrait étendre la définition de la multiplicité aux polynémes nuls en
disant qu'elle vaut +o0o pour tout k € K.



Exemple

Considérons le polynome P = X3 — 2X? — 2X — 3 de Q[X].
Il admet 3 comme zéro simple, c'est-a-dire de multiplicité 1.

En effet, X — 3 divise P mais (X — 3)? ne divise pas P. On a
P=(X?2+X+1)(X-3).

En effectuant la division euclidienne de P par (X — 3)2, on obtient
P = (X 4+ 4)(X —3)? + 13X — 39.



La condition pour étre un zéro d'un polynéme
donnée par cette définition est équivalente a
I’annulation de sa fonction polynomiale induite.

Proposition
Soient P € K[X] et k € K. Le nombre k est un zéro de P si et seulement
si P(k) = 0.

Preuve
Effectuons la division euclidienne de P par X — k :

P = Q(X — k)+ R, avec Q,R € K[X] et deg(R) < 1.

Nécessairement, R est un polynéme constant ¢ € K.
En évaluant les deux membres de cette égalité en k, on obtient P(k) = c.

Mais par définition, k est un zéro de P si et seulement si R = 0. D'ou la
conclusion. m



Lien entre la multiplicité et les dérivées

Théoréme
Supposons que K est égal a C, R ou Q.

Soient P € K[X] non nul, k € Ket « € N.

Le nombre k est un zéro de multiplicité « de P si et seulement si
P(k) =0, DP(k) =0, ..., D* ' P(k) =0 et D* P(k) # 0.



Exemple

Considérons le polynéme P = X3 —2X2 — 2X — 3 de Q[X].
Nous avons vu qu'il admet 3 comme zéro simple.

On a bien que
P(3)=3>-2-3-2.3-3=27-18-6-3=0.
On calcule DP = 3X? —4X — 2 et on a bien aussi que

DP(3)=3-32-4.3-2=27-12-2=13+40.



Polynémes a coefficients complexes et théoréme
fondamental de |'algebre

Théoréeme fondamental de I'algébre

Tout polynéme de C[X] non constant de degré d posséde exactement d
zéros (complexes) lorsque ceux-ci sont comptés avec leurs multiplicités.

Ainsi, si ki,..., kny sont les zéros de P de multiplicités a1, ..., am
respectivement, alors
ai+---+an=d

et
P = p(X — k1) - (X = km)®m,

ol p est le coefficient dominant de P.



Corollaire
Supposons que K est C, R ou Q.

1. Deux polynémes de K[X] ayant les mémes zéros complexes avec les
mémes multiplicités sont égaux a une constante non nulle
multiplicative prés.

2. Deux polynémes de K[X] de méme degré d prenant les mémes
valeurs en d + 1 arguments sont égaux.

3. Deux polynémes de K[X] sont égaux si et seulement si leurs
fonctions polynomiales induites (de K dans K) sont égales.



Preuve
1. Deux polynémes de K[X] ayant les mémes zéros complexes avec les
mémes multiplicités sont égaux a une constante non nulle
multiplicative prés.

S'il s'agit de deux polynémes constants, alors nécessairement ils sont soit
tous les deux nuls soit tous les deux non nuls. La propriété est évidente
dans ce cas.

Si I'un des deux est constant et I'autre non, il ne peuvent avoir les mémes
zéros complexes par le théoréme fondamental de I'algébre (et il n'y a rien
a montrer).

Enfin, si les deux polyndmes sont non-constants, cela découle de la
factorisation donnée par le théoréme fondamental de I'algébre.



2. Deux polynémes de K[X] de méme degré d prenant les mémes
valeurs en d + 1 arguments sont égaux.

Si P, Q € K[X] sont de méme degré d et sont égaux en d + 1 valeurs,

alors le polynéme P — @ est de degré au plus d et s'annule en d + 1
valeurs.

Ainsi, P — Q posséde d + 1 zéros.

Puisque K C C, on obtient par le théoréme fondamental de |'algébre que
P — @ est un polynéme constant.

Le seul polynéme constant qui posséde au moins un zéro étant le
polynéme nul, on obtient P = Q.



3. Deux polynémes de K[X] sont égaux si et seulement si leurs
fonctions polynomiales induites (de K dans K) sont égales.

Clairement, si deux polyndmes sont égaux, alors ils prennent la méme
valeur en tout élément de K.

Montrons la réciproque. Soient P, Q € K[X] des polynémes tels que leurs
fonctions polynomiales induites sont égales.

Alors P — Q posseéde une infinité de zéros (en fait la fonction induite par
P — Q@ est la fonction nulle).

Comme dans le point précédent, le théoréme fondamental de I'algébre
impose P = Q.



Equivalence des notions de polynémes formels et
de fonction polynomiales dans les cas ou K est C,
R ou Q.

Le troisiéme point du corollaire précédent montre I'équivalence des
notions de polynémes et de fonction polynomiales dans les cas ou K est
C, R ou Q.

Cela permet d'utiliser la méthode d'identification des coefficients pour la
résolutions d'équations polynomiales.



Remarque

Le théoréeme fondamental de I'algébre ne fournit pas d'algorithme pour
trouver les zéros d'un polynéme !

Cependant, il existe des méthodes pour obtenir les zéros d'un polynéme
de degré au plus 4.

Pour un polynéme de degré supérieur a 5, aucune méthode n'existe !

Néanmoins, plusieurs méthodes relevant de I'analyse numérique
permettent de fournir des approximations aussi fines que souhaitées des
zéros d'un polynéme d'un degré quelconque.

C'est I'un des objets du cours “Introduction a I'algorithmique numérique”.



Polynémes a coefficients réels

Lemme 1
Soit P € R[X]. Si ¢ € C est un zéro de P, alors son conjugué C est aussi
un zéro de P.

Preuve
Notons P = pg + p1 X + -+ - + pgX¢.

Soit ¢ € C un zéro de P.

Alors
P(C):po+P1C+"'+PdCd:O.

Puisque les coefficients de P sont réels, on obtient
P(E) = po+ p1&+ -+ pgc? = P(c) =0 =0.

Ceci montre que C est un zéro de P.



Lemme 2
Pour tout c € C, on a (X — ¢)(X — ) € R[X].

Preuve
Soit c € C. On a ¢ = a+ ib avec a, b € R. En distribuant le produit, on
obtient que

(X —c)(X =€) =X?—(c+E)X +cE=X—2aX +(a° + b?) € R[X].

]

Exemple
Soitc=3+4+1i.0na
X—c)(X-¢)=(X-3-N(X-3+1)
=X?—(B—i+3+NX+B+)(3—1)
= X% - 6X + 10.

Onabienc+¢=3+i+3—i=6etcc=(3+)(3—1i)=10.



Proposition
Tout polynéme P de R[X] se factorise dans R[X] sous la forme

P:p(X*rl)“'(X*rm)Ql"'Qna

ol p est le coefficient dominant de P, r1,..., ry sont les zéros réels de P
et Q1,..., Q, € R[X] sont des polynémes du second degré avec un
réalisant A < 0.



Preuve
Soit P € R[X]. Par le lemme 1, les zéros de P sont de la forme

r]_’---7’7(,C1,~--7CZ,E]_,--.,6,

avec ri,...,rk € Retcy,...,q € C\R.
Par le théoréme fondamental de I'algébre, on obtient
P= p(X — r1) cee (X — I’k)(X — Cl)(X —fl) cee (X — Cg)(X —Eg)
=p(X—n) - (X—=rn)Q1---Qy,
ol p est le coefficient dominant de P et ol on a posé
Qi =(X—=¢)(X—=73) pour tout i € {1,...,/¢}.

Par le lemme 2, nous savons que les polyndmes Q; sont a coefficients
réels.

De plus, ces polynémes ont un réalisant A < 0 puisqu'ils ne possédent
pas de zéro réel.



