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Ensemble K

Nous supposerons partout dans le cours que K est l’un des quatre
ensembles de nombres suivants : C, R, Q ou Zm avec m un nombre
premier

Lorsque nous utiliserons les notations + et · entre éléments de K, il est
entendu que nous faisons référence à l’addition et la multiplication usuelle
dans K.

Rappelons que l’addition et la multiplication dans Zm étaient notées +m

et ·m dans le cours "Mathématique pour l’informatique 1". Nous ne
prendrons plus toujours ces précautions s’il est clair que nous travaillons
dans Zm.

Nous utiliserons la notation K0 pour désigner l’ensemble K \{0}.



Polynômes formels

Définition
Un polynôme à coefficients dans K est une expression de la forme

P = p0 + p1X + p2X
2 + · · ·+ pdX

d

où d est un naturel, p0, p1, . . . , pd sont des éléments de K et où X est un
symbole spécial.

Les éléments p0, p1, . . . de K sont appelés les coefficients de P tandis que
X est appelé l’indéterminée de P .

Lorsque P 6= 0, le naturel d est appelé le degré de P et est noté deg(P).
Par convention, on pose deg(0) = −∞.

Le coefficient pd est appelé le coefficient dominant de P .

Un polynôme constant est un polynôme de degré 0 ou −∞.

L’ensemble des polynômes à coefficients dans K et d’intéterminée X est
noté K[X ].



Exemple

Soient P = 2X 3 + 3X 2 − 1 et Q = X 2 − X + 2.

I On peut voir P et Q vu comme des polynômes de Q[X ].
I On peut aussi les voir comme des polynômes de Z3[X ].

Dans ce cas, on a P = 2X 3 + 2 et Q = X 2 + 2X + 2.



Un polynôme est donné par la suite de ses
coefficients.

Formellement, un polynôme de K[X ] est en fait simplement une suite
finie de K, c’est-à-dire une suite d’éléments de K valant 0 à partir d’un
certain rang :

P = (p0, p1, . . . , pd , 0, 0, . . .).

Ainsi, lorsqu’on ne souhaite pas spécifier le degré d’un polynôme P , on
écrit plus généralement

P = p0 + p1X + p2X
2 + · · ·

où il est entendu que pi = 0 pour tout i > deg(P).



Manipuler des polynômes

On munit l’ensemble K[X ] de deux opérations internes

K[X ]×K[X ]→ K[X ], (P,Q) 7→ P + Q (somme)
K[X ]×K[X ]→ K[X ], (P,Q) 7→ P · Q (produit)

et d’une opération externe

K×K[X ]→ K[X ], (k ,P) 7→ kP. (multiplication scalaire)



Manipuler des polynômes

Si P = p0 + p1X + p2X
2 + · · · et Q = q0 + q1X + q2X

2 + · · · sont des
polynômes de K[X ] et si k ∈ K, alors

P + Q = (p0 + q0) + (p1 + q1)X + (p2 + q2)X 2 + · · ·
P · Q = (p0q0) + (p0q1 + p1q0)X + (p0q2 + p1q1 + p2q0)X 2 + · · ·

kP = (kp0) + (kp1)X + (kp2)X 2 + · · · .

Autrement dit, pour tout n ∈ N, le coefficient de X n dans
I P + Q est égal à pn + qn
I P · Q est égal à

∑n
i=0 pi qn−i

I kP est égal à kpn.



Exemple

I Soient P = 3X 3 + 2X 2 − 1 et Q = X 2 − X + 2 vu comme
polynômes de Q[X ]. On calcule

P + Q = 3X 3 + (2 + 1)X 2 − X + (−1 + 2)

= 3X 3 + 3X 2 − X + 1

P · Q = (3 · 1)X 5 + (3 · (−1) + 2 · 1)X 4 + (3 · 2 + 2 · (−1))X 3

+ (2 · 2 + (−1) · 1)X 2 + ((−1) · (−1))X + ((−1) · 2)

= 3X 5 − X 4 + 4X 3 + 3X 2 + X − 2

3P = (3 · 3)X 3 + (3 · 2)X 2 + (3 · (−1))

= 9X 3 + 6X 2 − 3.



Exemple

I Soient P = 3X 3 + 2X 2 − 1 et Q = X 2 − X + 2 vu comme
polynômes de Z3[X ]. On a donc P = 2X 2 + 2, Q = X 2 + 2X + 2 et
deg(P) = deg(Q) = 2.

P + Q = (2X 2 + 2) + (X 2 + 2X + 2)

= 3X 2 + 2X + (2 + 2)

= 2X + 1

P · Q = (2X 2 + 2)(X 2 + 2X + 2)

= (2 · 1)X 4 + (2 · 2)X 3 + (2 · 2 + 2 · 1)X 2

+ (2 · 2)X + (2 · 2)

= 2X 4 + X 3 + X + 1
3P = 0P = 0.



La proposition suivante explicite le comportement du degré par rapport à
ces trois opérations.

Proposition
Pour tous P,Q ∈ K[X ] et tous k ∈ K0, on a
1. deg(P + Q) ≤ max{deg(P), deg(Q)},
2. deg(P · Q) = deg(P) + deg(Q),
3. deg(kP) = deg(P).

Remarquons que ces formules sont correctes même si P ou Q est nul,
avec la convention que max{−∞, d} = d et −∞+ d = −∞ pour tout
d ∈ N∪{−∞}.



K[X ] est intègre

.

Corollaire
Si P,Q ∈ K[X ] sont tels que P · Q = 0, alors P = 0 ou Q = 0.

Preuve
Nous montrons la contraposée. Si P et Q sont deux polynômes non nuls
de K[X ], alors deg(P · Q) = deg(P) + deg(Q) ≥ 0, et donc P · Q 6= 0.



Division euclidienne de polynômes

De la même façon que nous avons montré la division euclidienne dans Z
dans le cours “Mathématiques pour l’informatique 1”, nous pouvons
montrer le résultat suivant.

Théorème (Division euclidienne de polynômes)
Pour tous polynômes P,D ∈ K[X ] tels que D 6= 0, il existe des polynômes
Q,R ∈ K[X ] uniques tels que P = QD + R et deg(R) < deg(D).



Exemple

Avant de donner une preuve de ce théorème, considérons un exemple qui
nous aidera à comprendre le raisonnement utilisé dans cette preuve.

Soient P = 6X 5 + X 4 − X 3 + 2X − 1 et D = 2X 2 + X − 3.

On souhaite trouver des polynômes Q et R de Q[X ] tels que
P = QD + R et deg(R) < 2.

Si de tels polynômes existent, alors nécessairement deg(Q) = 3.

Écrivons donc Q = aX 3 + bX 2 + cX + d .



Exemple (suite)

En identifiant les coefficients de X 5 dans l’égalité P = QD + R ,
c’est-à-dire

6X 5 + X 4 − X 3 + 2X − 1 = (aX 3 + bX 2 + cX + d)(2X 2 + X − 3) + R

on obtient l’équation 6 = 2a. D’où a = 6
2 = 3.

Nous pouvons donc écrire Q = 3X 3 + Q ′, avec Q ′ = bX 2 + cX + d .



Exemple (suite)

On doit avoir
P = QD + R =

(
3X 3 + Q ′

)
D + R

donc
P − 3X 3D = Q ′D + R.

Posons P ′ = P − 3X 3D.

On a deg(P ′) < deg(P) car

P ′ = (6X 5 + X 4 − X 3 + 2X − 1)− 3X 3(2X 2 + X − 3)

= (6− 6)X 5 + (1− 3)X 4 + (−1 + 9)X 3 + 2X − 1

= −2X 4 + 8X 3 + 2X − 1.



Exemple (suite)

Nous nous sommes ramenés au problème initial où le polynôme P de
degré 5 a été remplacé par un polynôme P ′ de degré 4 : nous devons
maintenant trouver des polynômes Q ′ et R tels que P ′ = Q ′D + R et
deg(R) < deg(D).

Cette observation nous incitera à utiliser le principe de la récurrence sur le
degré du polynôme P dans la démonstration du théorème.



Exemple (suite)

Poursuivons notre raisonnement pour obtenir les coefficients restants de
Q, c’est-à-dire b, c, d .

En identifiant les coefficients de X 4 dans l’équation P ′ = Q ′D + R ,
c’est-à-dire

−2X 4 + 8X 3 + 2X − 1 = (bX 2 + cX + d)(2X 2 + X − 3) + R

on obtient l’équation −2 = 2b. D’où b = −1.

On peut donc écrire Q ′ = −X 2 + Q ′′ avec Q ′′ = cX + d .



Exemple (suite)

En posant P ′′ = P ′ + X 2D, on doit avoir P ′′ = Q ′′D + R et
deg(P ′′) < deg(P ′).

On calcule

P ′′ =
(
−2X 4 + 8X 3 + 2X − 1

)
+ X 2(2X 2 + X − 3)

= (−2 + 2)X 4 + (8 + 1)X 3 + (0− 3)X 2 + 2X − 1

= 9X 3 − 3X 2 + 2X − 1.



Exemple (suite)

Nous nous sommes à nouveau ramené au problème initial avec
maintenant un polynôme P ′′ de degré 3.

En identifiant les coefficients de X 3 dans l’équation P ′′ = Q ′′D + R ,
c’est-à-dire

9X 3 − 3X 2 + 2X − 1 = (cX + d)(2X 2 + X − 3) + R

on obtient l’équation 9 = 2c . D’où c = 9
2 .

On peut donc écrire Q ′′ = 9
2X + Q ′′′ avec Q ′′′ = d .



Exemple (suite)

En posant P ′′′ = P ′′ − 9
2XD, on doit avoir P ′′′ = Q ′′′D + R et

deg(P ′′′) < deg(P ′′).

On calcule

P ′′′ =
(
9X 3 − 3X 2 + 2X − 1

)
− 9

2
X (2X 2 + X − 3)

=

(
9− 9

2
· 2
)
X 3 +

(
−3− 9

2

)
X 2 +

(
2− 9

2
· (−3)

)
X − 1

= −15
2
X 2 +

31
2
X − 1.



Exemple (suite)

Une fois de plus, nous nous sommes ramenés au problème initial avec
maintenant un polynôme P ′′′ de degré 2.

En identifiant les coefficients de X 2 dans l’équation P ′′′ = Q ′′′D + R , on
obtient l’équation −15

2 = 2d . D’où d = −15
4 .

On obtient aussi que

R = P ′′′ +
15
4
D

=

(
−15

2
X 2 +

31
2
X − 1

)
+

15
4
(
2X 2 + X − 3

)
=

(
−15

2
+

15
4
· 2
)
X 2 +

(
31
2

+
15
4

)
X +

(
−1− 45

4

)
=

77
4
X − 49

4
.



Exemple (fin)

Nous devons donc avoir

Q = 3X 3 − X 2 +
9
2
X − 15

4
et R =

77
4
X − 49

4

et on peut vérifier qu’en effet P = QD + R et que deg(R) < deg(D).



Preuve du théorème

Soient P,D ∈ K[X ] tels que D 6= 0.

Nous montrons d’abord l’existence de polynômes Q et R tels que

P = QD + R et deg(R) < deg(D)

par récurrence sur le degré de P .

Cas de base : Si deg(P) < deg(D), alors il suffit de choisir Q = 0 et
R = P .

Hypothèse de récurrence : Supposons maintenant que deg(P) ≥ deg(D)
et que le résultat soit vérifié pour tout polynôme de degré strictement
inférieur à celui de P .



Si p et d sont les coefficients dominants de P et D respectivement, alors
le polynôme P ′ = P − p

dX
deg(P)−deg(D)D a un degré strictement inférieur

à celui de P .

Par hypothèse de récurrence, il existe des polynômes Q ′ et R ′ de K[X ]
tels que

P ′ = Q ′D + R ′ et deg(R ′) < deg(D).

On obtient donc que

P = P ′ +
p

d
X deg(P)−deg(D)D

= Q ′D + R ′ +
p

d
X deg(P)−deg(D)D

=
(
Q ′ +

p

d
X deg(P)−deg(D)

)
D + R ′.

D’où Q = Q ′ + p
dX

deg(P)−deg(D) et R = R ′ conviennent.



Montrons à présent l’unicité des polynômes Q et R .

Supposons qu’il existe des polynômes Q1,R1,Q2,R2 ∈ K[X ] tels que

P = Q1D + R1 = Q2D + R2, deg(R1) < deg(D), deg(R2) < deg(D).

Alors on doit avoir (Q1 − Q2)D = R2 − R1.

Si Q1 6= Q2, alors

deg((Q1 − Q2)D) = deg(Q1 − Q2) + deg(D) ≥ deg(D).

C’est impossible puisque

deg(R2 − R1) ≤ max{deg(R1), deg(R2)} < deg(D).

D’où Q1 = Q2 et par conséquent R1 = R2 aussi.



Exemple (suite)

La preuve précédente (plus précisément, la partie “existence”) nous
procure en fait un algorithme pour obtenir Q et R .

On peut organiser les calculs effectués dans un tableau de division à la
manière de la division des entiers classiques :

6X 5 +X 4 −X 3 +2X −1 2X 2 + X − 3
−6X 5 −3X 4 +9X 3 3X 3 − X 2 + 9

2X −
15
4

−2X 4 +8X 3 +2X −1
+2X 4 +X 3 −3X 2

9X 3 −3X 2 +2X −1
−9X 3 − 9

2X
2 + 27

2 X
− 15

2 X 2 + 31
2 X −1

+ 15
2 X 2 + 15

4 X − 45
4

77
4 X − 49

4



Autres exemples

Effectuons la division euclidienne de P = X 5 + iX 3 + (1 + i)X − 1 par
D = 2X 3 − 2X 2 + 1 dans C[X ] :

X 5 +iX 3 +(1 + i)X −1 2X 3 − 2X 2 + 1
−X 5 +X 4 − 1

2X
2 1

2X
2 + 1

2X + 1+i
2

X 4 +iX 3 − 1
2X

2 +(1 + i)X −1
−X 4 +X 3 − 1

2X
(1 + i)X 3 − 1

2X
2 +( 1

2 + i)X −1
−(1 + i)X 3 +(1 + i)X 2 − 1+i

2
( 1
2 + i)X 2 +( 1

2 + i)X − 3+i
2

On obtient Q = 1
2X

2 + 1
2X + 1+i

2 et R = (1
2 + i)X 2 + (1

2 + i)X − 3+i
2 .



Effectuons maintenant la division euclidienne de P = X 4 + X 3 + 2X + 1
par D = 2X 3 + X 2 + 1 dans Z3[X ] :

X 4 +X 3 +2X +1 2X 3 + X 2 + 1
−X 4 −2X 3 −2X 2X + 1

2X 3 +1
−2X 3 −X 2 −1

2X 2

On obtient Q = 2X + 1 et R = 2X 2.

En effet, dans Z3[X ], on a bien

QD + R = (2X + 1)(2X 3 + X 2 + 1) + 2X 2

= X 4 + 2X 3 + 2X + 2X 3 + X 2 + 1 + 2X 2

= X 4 + X 3 + 2X + 1
= P.



Un autre algorithme pour trouver Q et R dans le cas où
deg(P) ≥ deg(D) est de remarquer que deg(Q) = deg(P)− deg(D).

Dans notre exemple, on cherche donc des polynômes Q et R de Z3[X ] de
la forme Q = aX + b et R = cX 2 + dX + e.

En identifiant les coefficients des polynômes dans les deux membres de
l’équation P = QD + R , c’est-à-dire l’équation

X 4 + X 3 + 2X + 1 = (aX + b)(2X 3 + X 2 + 1) + cX 2 + dX + e

on obtient le système d’équations

1 = 2a

1 = a + 2b

0 = b + c

2 = a + d

1 = b + e.

En résolvant ce système dans Z3 (par la méthode de Gauss par exemple),
on obtient l’unique solution (a, b, c, d , e) = (2, 1, 2, 0, 0), c’est-à-dire
Q = 2X + 1 et R = 2X 2.



Définition
Soient P,D ∈ K[X ] avec D 6= 0. Les polynômes (uniques) Q,R donnés
dans l’énoncé du théorème précédent sont appelés respectivement le
quotient et le reste de la division euclidienne de P par D.

Définition
Dans K[X ], on dit qu’un polynôme D divise un polynôme P lorsque le
reste R de la division euclidienne de P par D vaut 0.
Autrement dit, D divise P s’il existe un polynôme Q (nécessairement
unique au vu du théorème précédent) tel que P = QD.



Pour continuer notre analogie entre l’ensemble des polynômes K[X ] et
l’ensemble des entiers Z, nous donnons ici la définition du PGCD de deux
polynômes.

Définition
Un PGCD de deux polynômes P et Q de K[X ] est un polynôme D qui
divise P et Q et qui est tel que tout polynôme divisant simultanément P
et Q divise aussi D.



Remarquons que la notion de PGCD de polynômes n’est définie qu’à une
constante multiplicative non nulle près : si D est un PGCD de P et Q,
alors pour tout k ∈ K \{0}, le polynôme kD est aussi un PGCD de P et
Q.

Parmi tous les PGCD, on privilégie parfois celui ayant 1 comme coefficient
dominant : on parle alors du PGCD de deux polynômes.



Algorithme d’Euclide

Maintenant que nous disposons de la division euclidienne dans K[X ],
l’algorithme d’Euclide pour la recherche du PGCD de deux polynômes
s’effectue de façon similaire à celui pour obtenir le PGCD de deux entiers.



Exemple

Plaçons-nous dans Z3[X ] et calculons le PGCD de P = X 5 + 2X et de
Q = X 4 + 2X 3 + 2X .

Comme deg(Q) < deg(P), on pose R0 = Q et on obtient successivement

P = (X + 1)R0 + X 3 + X 2, R1 = X 3 + X 2,

R0 = (X + 1)R1 + 2X 2 + 2X , R2 = 2X 2 + 2X ,
R1 = (2X )R2, R3 = 0.

Le PGCD obtenu est le dernier reste non nul, c’est-à-dire 2X 2 + 2X .
Remarquons que le PGCD étant défini à une constante multiplicative
près, le polynôme 2(2X 2 + 2X ) = X 2 + X est aussi un PGCD de P et Q.



Bézout

En remontant l’algorithme d’Euclide, on obtient le théorème de Bézout
pour les polynômes.

Théorème (Bézout)
Soient P,Q ∈ K[X ] et D ∈ K[X ] un PGCD de P et Q. Alors il existe
A,B ∈ K[X ] tels que AP + BQ = D.



Exemple (suite)

On calcule

2X 2 + 2X = R0 − (X + 1)R1

= Q − (X + 1)(P − (X + 1)Q)

= −(X + 1)P + (1 + (X + 1)2)Q

= (2X + 2)P + (X 2 + 2X + 2)Q.

On a donc obtenu que les polynômes A = 2X + 2 et B = X 2 + 2X + 2
vérifiaient l’égalité de Bézout AP + BQ = D pour le PGCD
D = 2X 2 + 2X .

Pour obtenir des coefficients de Bézout pour le PGCD X 2 + X , on
multiplie cette égalité par 2 (inverse de 2 dans Z3) :

X 2 + X = (X + 1)P + (2X 2 + X + 1)Q.



Définition
Deux polynômes P et Q de K[X ] sont premiers entre eux si 1 est un
PGCD de P et Q.

Théorème (Gauss)
Si P,Q,D ∈ K[X ] sont tels que D divise PQ et que D et P sont
premiers entre eux, alors D divise Q.

Preuve
Soient P,Q,D ∈ K[X ] tels que D divise PQ et que D et P sont premiers
entre eux.

Alors d’une part, il existe S ∈ K[X ] tel que PQ = SD et d’autre part, par
le théorème de Bézout, il existe A,B ∈ K[X ] tels que AD + BP = 1.

On obtient que

Q = ADQ + BPQ = ADQ + BSD = (AQ + BS)D,

ce qui montre que D divise Q.



Polynôme et fonction polynomiale

Définition
Pour P ∈ K[X ] et k ∈ K, la notation P(k) désigne l’élément de K
obtenu en substituant dans P l’indéterminée X par k et en exécutant les
opérations + et · dans K : si

P = p0 + p1X + p2X
2 + · · ·+ pdX

d ,

alors
P(k) = p0 + p1k + p2k

2 + · · ·+ pdk
d .

On dit qu’on a évalué P en k .

La fonction induite par P est la fonction

K→ K, k 7→ P(k).

Une fonction polynomiale de K est une fonction induite par un polynôme
de K[X ].



Deux polynômes différents peuvent donner lieu à
une même fonction induite.

Par exemple, pour tout k ∈ Z2, on a k2 = k . Les polynômes X 2 et X de
Z2[X ] donnent donc lieu à la même fonction polynomiale induite.

Voici un autre exemple : les polynômes X 3 + 2X et 0 de Z3[X ] donnent
lieu à la même fonction polynomiale induite puisque pour tout k ∈ Z3, on
a k3 + 2k = 0.

Nous verrons plus loin, grâce au théorème fondamental de l’algèbre, que
ceci n’est pas possible lorsque K est C,R ou Q.



Dérivation des polynômes
On définit ensuite la notion de dérivée (formelle) d’un polynôme.

Définition
L’opérateur de dérivation

D : K[X ]→ K[X ]

est défini comme suit.

Pour tout polynôme

P = p0 + p1X + p2X
2 + · · ·+ pdX

d

de K[X ], le polynôme dérivé DP est le polynôme

DP = p1 + 2p2X + · · ·+ dpdX
d−1.

Autrement dit, pour tout n ∈ N, le coefficient de X n dans DP est égal à
(n + 1)pn+1.



Proposition
L’opérateur de dérivation D : K[X ]→ K[X ] est linéaire : pour tous
k , ` ∈ K et tous P,Q ∈ K[X ], on a D(kP + `Q) = k DP + `DQ.

Preuve
C’est une simple vérification.



On utilise la notation Di P pour signifier qu’on applique i fois l’opérateur
D à P :

D0 P = P, D1 P = DP, D2 P = D(DP), D3 P = D(D(DP))), . . . .

Proposition
Supposons que K est C, R ou Q. Alors pour tous d , i ∈ N, on a

Di

(
1
d!

X d

)
=

{
1

(d−i)!X
d−i si d ≥ i ,

0 si d < i .

Preuve
La preuve s’obtient par récurrence sur i .



Exemple

Pour d = 7 et i = 3, on calcule

D3
(

1
7!
X 7
)

= D2
(

7
7!
X 6
)

= D
(
7 · 6
7!

X 5
)

=
7 · 6 · 5

7!
X 4 =

1
4!
X 4

et on a bien 4 = 7− 3 = d − i .



Proposition (Binôme de Newton)
Pour tout P,Q ∈ K[X ] et tout n ∈ N, on a

(P + Q)n =
n∑

i=0

Ci
n P

iQn−i .

Preuve
Laissée en exercice. C’est une adaptation directe de la preuve du binôme
de Newton pour les complexes que vous avez vue au bloc 1 dans le cours
“Mathématique”.



Proposition (Formule de Leibniz)
Pour tous P,Q ∈ K[X ] et tout n ∈ N, on a

Dn(PQ) =
n∑

i=0

Ci
n Di P ·Dn−i Q.

Preuve
Laissée en exercice. C’est une adaptation directe de la preuve de la
formule de Leibniz pour les fonctions d’une variable réelle que vous avez
vue au bloc 1 dans le cours “Mathématique”.



Proposition (Formule de Taylor)
Supposons que K est C, R ou Q. Alors pour tout P ∈ K[X ] et tout
k ∈ K, on a

P =

deg(P)∑
i=0

Di P(k)

i !
(X − k)i .

Preuve
Soit P =

∑d
n=0 pnX

n (où d = deg(P)) et soit k ∈ K.

En utilisant le binôme de Newton et en échangeant ensuite les sommes,
on obtient

P =
d∑

n=0

pn(X − k + k)n

=
d∑

n=0

pn

n∑
i=0

Ci
n(X − k)ikn−i

=
d∑

i=0

(
d∑

n=i

pn Ci
n k

n−i

)
(X − k)i .



Pour conclure, il suffit donc de montrer que

d∑
n=i

pn Ci
n k

n−i =
Di P(k)

i !
.

Ceci est vrai puisque pour tout i ∈ {0, . . . , d},

1
i !

Di P =
1
i !

Di

(
d∑

n=0

pnX
n

)

=
1
i !

d∑
n=0

pn Di (X n)

=
d∑

n=i

pn
n!

i !(n − i)!
X n−i

=
d∑

n=i

pn Ci
n X

n−i .



Exemple

Soient P = 2X 2 + 3X − 1 dans C[X ] et k = 2.

On a DP = 4X + 3 et D2 P = 4.

Ainsi P(2) = 8 + 6− 1 = 13, DP(2) = 11 et D2 P(2) = 4.

On obtient

2∑
i=0

Di P(2)

i !
(X − 2)i =

D2 P(2)

2!
(X − 2)2 + DP(2)(X − 2) + P(2)

=
4
2

(X 2 − 4X + 4) + 11(X − 2) + 13

= 2X 2 + 3X − 1
= P.



Zéros d’un polynôme

Définition
Soit P ∈ K[X ]. Un zéro de P est un nombre k ∈ K tel que le polynôme
X − k divise P .

Si P est non nul, la multiplicité d’un nombre k en tant que zéro du
polynôme P est le plus grand entier α tel que (X − k)α divise P .

Remarque
Avec cette définition, le fait que k soit un zéro de multiplicité 0 de P
équivaut au fait que k ne soit pas un zéro de P .

On pourrait étendre la définition de la multiplicité aux polynômes nuls en
disant qu’elle vaut +∞ pour tout k ∈ K.



Exemple

Considérons le polynôme P = X 3 − 2X 2 − 2X − 3 de Q[X ].

Il admet 3 comme zéro simple, c’est-à-dire de multiplicité 1.

En effet, X − 3 divise P mais (X − 3)2 ne divise pas P . On a
P = (X 2 + X + 1)(X − 3).

En effectuant la division euclidienne de P par (X − 3)2, on obtient
P = (X + 4)(X − 3)2 + 13X − 39.



La condition pour être un zéro d’un polynôme
donnée par cette définition est équivalente à
l’annulation de sa fonction polynomiale induite.

Proposition
Soient P ∈ K[X ] et k ∈ K. Le nombre k est un zéro de P si et seulement
si P(k) = 0.

Preuve
Effectuons la division euclidienne de P par X − k :

P = Q(X − k) + R , avec Q,R ∈ K[X ] et deg(R) < 1.

Nécessairement, R est un polynôme constant c ∈ K.

En évaluant les deux membres de cette égalité en k , on obtient P(k) = c .

Mais par définition, k est un zéro de P si et seulement si R = 0. D’où la
conclusion.



Lien entre la multiplicité et les dérivées

Théorème
Supposons que K est égal à C, R ou Q.

Soient P ∈ K[X ] non nul, k ∈ K et α ∈ N.

Le nombre k est un zéro de multiplicité α de P si et seulement si
P(k) = 0, DP(k) = 0, . . . , Dα−1 P(k) = 0 et Dα P(k) 6= 0.



Exemple

Considérons le polynôme P = X 3 − 2X 2 − 2X − 3 de Q[X ].

Nous avons vu qu’il admet 3 comme zéro simple.

On a bien que

P(3) = 33 − 2 · 32 − 2 · 3− 3 = 27− 18− 6− 3 = 0.

On calcule DP = 3X 2 − 4X − 2 et on a bien aussi que

DP(3) = 3 · 32 − 4 · 3− 2 = 27− 12− 2 = 13 6= 0.



Polynômes à coefficients complexes et théorème
fondamental de l’algèbre

Théorème fondamental de l’algèbre
Tout polynôme de C[X ] non constant de degré d possède exactement d
zéros (complexes) lorsque ceux-ci sont comptés avec leurs multiplicités.

Ainsi, si k1, . . . , km sont les zéros de P de multiplicités α1, . . . , αm

respectivement, alors
α1 + · · ·+ αm = d

et
P = p(X − k1)α1 · · · (X − km)αm ,

où p est le coefficient dominant de P .



Corollaire
Supposons que K est C, R ou Q.
1. Deux polynômes de K[X ] ayant les mêmes zéros complexes avec les

mêmes multiplicités sont égaux à une constante non nulle
multiplicative près.

2. Deux polynômes de K[X ] de même degré d prenant les mêmes
valeurs en d + 1 arguments sont égaux.

3. Deux polynômes de K[X ] sont égaux si et seulement si leurs
fonctions polynomiales induites (de K dans K) sont égales.



Preuve
1. Deux polynômes de K[X ] ayant les mêmes zéros complexes avec les

mêmes multiplicités sont égaux à une constante non nulle
multiplicative près.

S’il s’agit de deux polynômes constants, alors nécessairement ils sont soit
tous les deux nuls soit tous les deux non nuls. La propriété est évidente
dans ce cas.

Si l’un des deux est constant et l’autre non, il ne peuvent avoir les mêmes
zéros complexes par le théorème fondamental de l’algèbre (et il n’y a rien
à montrer).

Enfin, si les deux polynômes sont non-constants, cela découle de la
factorisation donnée par le théorème fondamental de l’algèbre.



2. Deux polynômes de K[X ] de même degré d prenant les mêmes
valeurs en d + 1 arguments sont égaux.

Si P,Q ∈ K[X ] sont de même degré d et sont égaux en d + 1 valeurs,
alors le polynôme P − Q est de degré au plus d et s’annule en d + 1
valeurs.

Ainsi, P − Q possède d + 1 zéros.

Puisque K ⊆ C, on obtient par le théorème fondamental de l’algèbre que
P − Q est un polynôme constant.

Le seul polynôme constant qui possède au moins un zéro étant le
polynôme nul, on obtient P = Q.



3. Deux polynômes de K[X ] sont égaux si et seulement si leurs
fonctions polynomiales induites (de K dans K) sont égales.

Clairement, si deux polynômes sont égaux, alors ils prennent la même
valeur en tout élément de K.

Montrons la réciproque. Soient P,Q ∈ K[X ] des polynômes tels que leurs
fonctions polynomiales induites sont égales.

Alors P − Q possède une infinité de zéros (en fait la fonction induite par
P − Q est la fonction nulle).

Comme dans le point précédent, le théorème fondamental de l’algèbre
impose P = Q.



Équivalence des notions de polynômes formels et
de fonction polynomiales dans les cas où K est C,
R ou Q.

Le troisième point du corollaire précédent montre l’équivalence des
notions de polynômes et de fonction polynomiales dans les cas où K est
C, R ou Q.

Cela permet d’utiliser la méthode d’identification des coefficients pour la
résolutions d’équations polynomiales.



Remarque

Le théorème fondamental de l’algèbre ne fournit pas d’algorithme pour
trouver les zéros d’un polynôme !

Cependant, il existe des méthodes pour obtenir les zéros d’un polynôme
de degré au plus 4.

Pour un polynôme de degré supérieur à 5, aucune méthode n’existe !

Néanmoins, plusieurs méthodes relevant de l’analyse numérique
permettent de fournir des approximations aussi fines que souhaitées des
zéros d’un polynôme d’un degré quelconque.

C’est l’un des objets du cours “Introduction à l’algorithmique numérique”.



Polynômes à coefficients réels

Lemme 1
Soit P ∈ R[X ]. Si c ∈ C est un zéro de P , alors son conjugué c̄ est aussi
un zéro de P .

Preuve
Notons P = p0 + p1X + · · ·+ pdX

d .

Soit c ∈ C un zéro de P .

Alors
P(c) = p0 + p1c + · · ·+ pdc

d = 0.

Puisque les coefficients de P sont réels, on obtient

P(c̄) = p0 + p1c̄ + · · ·+ pd c̄
d = P(c) = 0̄ = 0.

Ceci montre que c̄ est un zéro de P .



Lemme 2
Pour tout c ∈ C, on a (X − c)(X − c̄) ∈ R[X ].

Preuve
Soit c ∈ C. On a c = a + ib avec a, b ∈ R. En distribuant le produit, on
obtient que

(X − c)(X − c̄) = X 2 − (c + c̄)X + cc̄ = X − 2aX + (a2 + b2) ∈ R[X ].

Exemple
Soit c = 3 + i . On a

(X − c)(X − c̄) = (X − 3− i)(X − 3 + i)

= X 2 − (3− i + 3 + i)X + (3 + i)(3− i)

= X 2 − 6X + 10.

On a bien c + c̄ = 3 + i + 3− i = 6 et cc̄ = (3 + i)(3− i) = 10.



Proposition
Tout polynôme P de R[X ] se factorise dans R[X ] sous la forme

P = p(X − r1) · · · (X − rm)Q1 · · ·Qn,

où p est le coefficient dominant de P , r1, . . . , rm sont les zéros réels de P
et Q1, . . . ,Qn ∈ R[X ] sont des polynômes du second degré avec un
réalisant ∆ < 0.



Preuve
Soit P ∈ R[X ]. Par le lemme 1, les zéros de P sont de la forme

r1, . . . , rk , c1, . . . , c`, c1, . . . , c`,

avec r1, . . . , rk ∈ R et c1, . . . , c` ∈ C \R.

Par le théorème fondamental de l’algèbre, on obtient

P = p(X − r1) · · · (X − rk)(X − c1)(X − c1) · · · (X − c`)(X − c`)

= p(X − r1) · · · (X − rk)Q1 · · ·Q`,

où p est le coefficient dominant de P et où on a posé
Qi = (X − ci )(X − ci ) pour tout i ∈ {1, . . . , `}.

Par le lemme 2, nous savons que les polynômes Qi sont à coefficients
réels.

De plus, ces polynômes ont un réalisant ∆ < 0 puisqu’ils ne possèdent
pas de zéro réel.


