Representing REAL NUMBERS IN A GENERALIZED NUMERATION SYSTEM

Émilie Charlier ${ }^{1} \quad$ Marion Le Gonidec ${ }^{2} \quad$ Michel Rigo ${ }^{1}$

${ }^{1}$ Université de Liège
${ }^{2}$ Université du Sud Toulon Var

Numeration, Leiden 2010, June 7

By enumerating the words of a language L with respect to some order, we define a numeration system.

For $L=\left\{w \in\{a, b\}^{*} \mid w\right.$ does not contain $\left.a a\right\}$ and the radix order induced by $a<b$, the first few representations are

ε	0	$a b a$	6
a	1	$a b b$	7
b	2	$b a b$	8
$a b$	3	$b b a$	9
$b a$	4	$b b b$	10
$b b$	5	$a b a b$	11

Abstract numeration systems

An abstract numeration system (ANS) is given by a triplet $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.

By enumerating the words in L with respect to the radix order induced by $<$, we define a one-to-one correspondence:

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

ANS: A GENERALIZATION

Most numeration systems satisfy the relation:

\[

\]

Examples:

- Binary numeration system: $\mathcal{L}_{2}=\{\varepsilon\} \cup 1\{0,1\}^{*}$ and $0<1$
- Fibonacci numeration system: $L=\{\varepsilon\} \cup 1\{0,01\}^{*}$ and $0<1$
- Non-standard numeration systems
- Rational base number systems

QUESTION: How to represent real numbers in an ANS ?

The decimal representation of $\frac{11}{13}$ is $0 .(846153)^{\omega}$:

$$
\begin{gathered}
\frac{8}{10}, \frac{84}{100}, \frac{846}{1000}, \frac{8461}{10000}, \frac{84615}{100000}, \ldots \\
n \text {-th fraction }=\frac{\text { val }_{10}\left(\text { prefix of length } n \text { of }(846153)^{\omega}\right)}{10^{n}}
\end{gathered}
$$

$\forall L \subseteq \Sigma^{*}, \mathbf{u}_{L}(n)=\operatorname{Card}\left(L \cap \Sigma^{n}\right) ;$

$$
\mathbf{v}_{L}(n)=\operatorname{Card}\left(L \cap \Sigma^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{L}(i)
$$

For the integer base $b \geq 2$:

$$
\begin{aligned}
\mathcal{L}_{b} & =\{\varepsilon\} \cup\{1, \ldots, b-1\}\{0, \ldots, b-1\}^{*} \\
\mathbf{v}_{\mathcal{L}_{b}}(n) & =\sum_{i=0}^{n} \mathbf{u}_{\mathcal{L}_{b}}(i)=b^{n} .
\end{aligned}
$$

The decimal representation of $\frac{11}{13}$ is $0 .(846153)^{\omega}$:

$$
\frac{8}{10}, \frac{84}{100}, \frac{846}{1000}, \frac{8461}{10000}, \frac{84615}{100000}, \ldots
$$

$$
n \text {-th fraction }=\frac{\text { val }_{10}\left(\text { prefix of length } n \text { of }(846153)^{\omega}\right)}{\mathbf{v}_{\mathcal{L}_{10}}(n)}
$$

The binary representation of $\frac{11}{13}$ is $0 .(110110001001)^{\omega}$:

$$
\begin{aligned}
& \frac{1}{2}, \frac{3}{4}=\frac{6}{8}, \frac{13}{16}, \frac{27}{32}=\frac{54}{64}=\frac{108}{128}=\frac{216}{256}, \frac{433}{512}=0.845703125, \ldots \\
& n \text {-th fraction }=\frac{\text { val }_{2}\left(\text { prefix of length } n \text { of }(110110001001)^{\omega}\right)}{\mathbf{v}_{\mathcal{L}_{2}}(n)}
\end{aligned}
$$

7-th fraction: $108=64+32+8+4=\operatorname{val}_{2}(1101100)$

$$
128=2^{7}=\mathbf{v}_{\mathcal{L}_{2}}(7)
$$

- $S=(L, \Sigma,<)$
- $w \in \Sigma^{\omega}$
- $\left(w^{(n)}\right)_{n \geq 0} \in L^{\mathbb{N}}, \quad w^{(n)} \rightarrow w$ as $n \rightarrow+\infty$

POINT: To show that, under certain hypotheses, the limit $\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left(w^{(n)}\right)}{\mathbf{v}_{L}\left(\left|w^{(n)}\right|\right)}$ exists and only depends on w.

In that case, w is an S-representation of the corresponding real.

QUESTION: And when L is not regular?

Example

The $\frac{3}{2}$-number system introduced by Akiyama, Frougny and Sakarovitch (2008) has a numeration language which is not context-free.

AIM: To provide a unified approach for representing real numbers

- Arbitrary infinite language L (not necessarily regular)
- Minimal automaton of $L: \mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- "Generalized" ANS: $S=(L, \Sigma,<)$

For all $x \in L$, the numerical value $\operatorname{val}_{S}(x)$ of x is given by

$$
\mathbf{v}_{L}(|x|-1)+\sum_{i=0}^{|x|-1} \sum_{a<x[i]} \mathbf{u}_{L_{\delta\left(q_{0}, \times[0, i-1] \mathrm{a}\right)}}(|x|-i-1)
$$

where $x[0, i-1]=$ prefix of length i of x and $L_{q}=$ language accepted from q in \mathcal{A}.

- $w=$ limit of words in $L \Leftrightarrow \operatorname{Pref}(w) \subseteq \operatorname{Pref}(L)$

$$
\Leftrightarrow w \in \operatorname{Adh}(L)
$$

REMARK

Since $\operatorname{Adh}(L)=\operatorname{Adh}(\operatorname{Pref}(L))$, there is no new representation if we assume that L is prefix-closed.

Example: $L=\left\{w \in\{a, b\}^{*}| ||w|_{a}-|w|_{b} \mid \leq 1\right\}$

$$
=\{\varepsilon, a, b, a b, b a, a a b, a b a, a b b, b a a, b a b, b b a, a a b b, \ldots\}
$$

For $S=(L,\{a, b\}, a<b)$, we can compute
$\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left((a b)^{n}\right)}{\mathbf{v}_{L}(2 n)}=\frac{3}{4}$ and $\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left((a b)^{n} a\right)}{\mathbf{v}_{L}(2 n+1)}=\frac{3}{5}$
which shows that $\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left((a b)^{\omega}[0, n-1]\right)}{\mathbf{v}_{L}(n)}$ does not exist.
L not prefix-closed: $\operatorname{Pref}(L)=\{a, b\}^{*}$

- (H1) L is prefix-closed
- (H2) $\operatorname{Adh}(L)$ is uncountable

QUESTION: What conditions must L satisfy so that
the limits $\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}(w[0, n-1])}{\mathbf{v}_{L}(n)}$ exist for all $w \in \operatorname{Adh}(L)$?

Hypotheses needed?

AIM: Define some approximation intervals of reals.
Their length should decrease as the prefix that is read becomes larger and larger.

$$
\forall x \in L \cap \Sigma^{n}, \underbrace{\frac{\mathbf{v}_{L}(n-1)}{\mathbf{v}_{L}(n)}}_{=1-\frac{u_{L}(n)}{\mathbf{v}_{L}(n)}} \leq \frac{\operatorname{val}_{S}(x)}{\mathbf{v}_{L}(n)} \leq \underbrace{\frac{\mathbf{v}_{L}(n)}{\mathbf{v}_{L}(n)}}_{=1}
$$

If $\lim _{n \rightarrow+\infty} \frac{\mathbf{u}_{L}(n)}{\mathbf{v}_{L}(n)}$ exists, then it is denoted by r_{ε} and the represented interval is $I_{\varepsilon}=\left[1-r_{\varepsilon}, 1\right]$.

Hypotheses needed?

Recall that, for all $x \in L$,

$$
\operatorname{val}_{S}(x)=\mathbf{v}_{L}(|x|-1)+\sum_{i=0}^{|x|-1} \sum_{a<x[i]} \mathbf{u}_{\left.L_{\delta(q 0, x[0, i-1]}\right)}(|x|-i-1)
$$

-(H3) $\forall x \in \Sigma^{*}, \exists r_{x} \geq 0, \lim _{n \rightarrow+\infty} \frac{\mathbf{u}_{L_{\delta\left(q_{0}, x\right)}(n-|x|)}}{\mathbf{v}_{L}(n)}=r_{x}$

Hypotheses needed?

In general, $\left|I_{x}\right|=r_{x}$

- (H4) $\forall w \in \operatorname{Adh}(L), \lim _{\ell \rightarrow+\infty} r_{w[0, \ell-1]}=0$

REMARK
 Let Center $(L)=\operatorname{Pref}(\operatorname{Adh}(L))$. Then $x \notin \operatorname{Center}(L) \Leftrightarrow r_{x}=0$.

Theorem (C.-Le G.-R. 2010)

The limits $\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}(w[0, n-1])}{\mathbf{v}_{L}(n)}$ exist when L satisfies
the following conditions:

- (H1) L prefix-closed
- (H2) Adh(L) uncountable
- (H3) $\forall x \in \Sigma^{*}, \exists r_{x} \geq 0, \lim _{n \rightarrow+\infty} \frac{\mathbf{u}_{\delta\left(q_{0}, x\right)}(n-|x|)}{\mathbf{v}_{L}(n)}=r_{x}$
- (H4) $\quad \forall w \in \operatorname{Adh}(L), \lim _{\ell \rightarrow+\infty} r_{w[0, \ell-1]}=0$

For all $w \in \operatorname{Adh}(L), \operatorname{val}_{S}(w)=\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}(w[0, n-1])}{\mathbf{v}_{L}(n)}$ is the numerical value of w.

The infinite word w is an S-representation of val $_{S}(w)$.

Proposition (C.-Le G.-R. 2010)

Let $L \subseteq \Sigma^{*}, S=(\operatorname{Pref}(L), \Sigma,<)$ be a (generalized) ANS.
If $\operatorname{Pref}(\mathrm{L})$ satisfies $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(H 3)$, then for all sequences $\left(w^{(n)}\right)_{n \geq 0} \in L^{\mathbb{N}}$ converging to a word $w \in \operatorname{Adh}(L)$, we have

$$
\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left(w^{(n)}\right)}{\mathbf{v}_{\operatorname{Pref}(L)}\left(\left|w^{(n)}\right|\right)}=\operatorname{val}_{S}(w)
$$

Example: Prefixes of Dyck words

$$
D=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b} \text { and } \forall u \in \operatorname{Pref}(w),|u|_{a} \geq|u|_{b}\right\}
$$

$$
\text { not prefix-closed } \longrightarrow \text { we consider } S=(\operatorname{Pref}(D),\{a, b\}, a<b)
$$

$$
\begin{aligned}
\operatorname{Pref}(D) & =\left\{w \in\{a, b\}^{*}\left|\forall u \in \operatorname{Pref}(w),|u|_{a} \geq|u|_{b}\right\}\right. \\
& =\{\varepsilon, a, a a, a b, a a a, a a b, a b a, \text { aaaa, aaab, aaba, aabb, } \ldots\} .
\end{aligned}
$$

Example: Prefixes of Dyck words (continued)

$$
\lim _{n \rightarrow+\infty} \frac{\operatorname{val}_{S}\left((a a b)^{\omega}[0, n-1]\right)}{\mathbf{v}_{L}(n)}=\frac{39}{49}=0.795918 \ldots
$$

x	$\operatorname{val}_{S}(x)$	$\mathbf{v}_{L}(\|x\|)$	$\frac{\mathrm{val}_{S}(x)}{\mathbf{v}_{L}(\|x\|)}$
a	1	2	0.50000
aa	2	4	0.50000
aab	5	7	0.71429
aaba	9	13	0.69231
aabaa	17	23	0.73913
aabaab	32	43	0.74419
aabaaba	60	78	0.76923
aabaabaa	112	148	0.75676
aabaabaab	213	274	0.77737
aabaabaaba	404	526	0.76806
aabaabaabaa	771	988	0.78036

Example: Prefixes of Dyck words (continued)

Since $\lim _{n \rightarrow+\infty} \frac{\mathbf{v}_{L}(n-1)}{\mathbf{v}_{L}(n)}=\frac{1}{2}$, we represent the interval $I_{\varepsilon}=\left[\frac{1}{2}, 1\right]$

Center $(\operatorname{Pref}(D))=\operatorname{Pref}(D):$

- $I_{a}=[1 / 2,1]$
- $I_{a \mathrm{a}}=[1 / 2,7 / 8] \quad I_{a b}=[7 / 8,1]$
- $I_{\text {aaa }}=[1 / 2,3 / 4] I_{a a b}=[3 / 4,7 / 8] \quad I_{a b a}=[7 / 8,1]$
$\forall x \in\left[\frac{1}{2}, 1\right], Q_{x}$ designates the set of representations of x.
We have $Q_{1 / 2}=\left\{a^{\omega}\right\}$ and $Q_{1}=\left\{(a b)^{\omega}\right\}$.
If $x \in] 1 / 2,1\left[\right.$ and $x=\sup I_{w}=\inf I_{z}$ then $Q_{x}=\left\{\bar{w}(a b)^{\omega}, z a^{\omega}\right\}$, where $\bar{w}=$ the least Dyck word having w as a prefix.

Proposition (C.-Le G.-R. 2010)

If L is context-free, then the representations of the endpoints of the intervals are ultimately periodic.

- Characterize the automata recognizing a language L such that the corresponding ω-language $\operatorname{Adh}(L)$ is uncountable.

Theorem (Boasson-Nivat 1980)

For every context-free language L, there exists a sequential mapping f such that $f(\operatorname{Adh}(D))=\operatorname{Adh}(L)$, where D is the Dyck language.

- Let S and T be abstract numeration systems built respectively on $\operatorname{Pref}(D)$ and $\operatorname{Pref}(L)$. Give a mapping g such that the following diagram commutes.

$$
\begin{aligned}
& \operatorname{Adh}(D) \xrightarrow{f} \operatorname{Adh}(L) \\
& \operatorname{val}_{s} \downarrow \\
& \downarrow \\
& {\left[s_{0}, 1\right] \xrightarrow[g]{ }\left[t_{0}, 1\right]}
\end{aligned}
$$

