Enumeration and Decidable Properties of Automatic Sequences

Émilie Charlier ${ }^{1}$ Narad Rampersad ${ }^{2}$ Jeffrey Shallit ${ }^{1}$
${ }^{1}$ University of Waterloo
${ }^{2}$ Université de Liège
Numération
Liège, June 6, 2011

k-automatic words

An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is k-automatic if it is computable by a finite automaton taking as input the base- k representation of n, and having x_{n} as the output associated with the last state encountered.

Example

The Thue-Morse word is 2-automatic:

$$
\mathbf{t}=t_{0} t_{1} t_{2} \cdots=011010011001 \cdots
$$

It is defined by $t_{n}=0$ if the binary representation of n has an even number of 1 's and $t_{n}=1$ otherwise.

Properties of the Thue-Morse word

- aperiodic
- uniformly recurrent
- contains no block of the form $x x x$
- contains at most $4 n$ blocks of length $n+1$ for $n \geq 1$
- etc.

Enumeration and decidable properties

We present algorithms to decide if a k-automatic word

- is aperiodic
- is recurrent
- avoids repetitions
- etc.

We also describe algorithms to calculate its

- complexity function
- recurrence function
- etc.

Connection with logic

Theorem (Allouche-Rampersad-Shallit 2009)

Many properties are decidable for k-automatic words.

These properties are decidable because they are expressible as predicates in the first-order structure $\left\langle\mathbb{N},+, V_{k}\right\rangle$, where $V_{k}(n)$ is the largest power of k dividing n.

Main idea
If we can express a property of a k-automatic word \mathbf{x} using quantifiers, logical operations, integer variables, the operations of addition, subtraction, indexing into \mathbf{x}, and comparison of integers or elements of \mathbf{x}, then this property is decidable.

Another definition for k-automatic words

An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is k-definable if, for each letter a, there exists a FO formula φ_{a} of $\left\langle\mathbb{N},+, V_{k}\right\rangle$ s.t.

$$
\varphi_{a}(n) \text { is true if and only if } x_{n}=a .
$$

Theorem (Büchi-Bruyère)
An infinite word is k-automatic iff it is k-definable.

First direction: formula $\varphi \rightarrow$ DFA \mathcal{A}_{φ}
Second direction: DFA $\mathcal{A}_{\varphi} \rightarrow$ formula $\varphi_{\mathcal{A}}$

First direction: formula $\varphi \rightarrow$ DFA \mathcal{A}_{φ}

Automata for addition, equality and V_{k} are built in a straightforward way.

The connectives "or" and negation are also easy to represent.
Nondeterminism can be used to implement " \exists ".
Ultimately, deciding the property we are interested in corresponds to verifying that $L(M)=\emptyset$ or that $L(M)$ is finite for the DFA M we construct.

Both can easily be done by the standard methods for automata.

Corollary (Bruyère 1985)
$\operatorname{Th}(\langle\mathbb{N},+\rangle)$ and $\operatorname{Th}\left(\left\langle\mathbb{N},+, V_{k}\right\rangle\right)$ are decidable theories.

Determining periodicity

Theorem (Honkala 1986)

Given a DFAO, it is decidable if the infinite word it generates is ultimately periodic.

It is sufficient to give the proof for k-automatic sets $X \subseteq \mathbb{N}$. Let $\varphi_{X}(n)$ be a formula of $\left\langle\mathbb{N},+, V_{k}\right\rangle$ defining X.

The set X is ultimately periodic iff

$$
(\exists i)(\exists p)(\forall n)\left(\left(n>i \text { and } \varphi_{X}(n)\right) \Rightarrow \varphi_{X}(n+p)\right)
$$

As $\operatorname{Th}\left(\left\langle\mathbb{N},+, V_{k}\right\rangle\right)$ is a decidable theory, it is decidable whether this sentence is true, i.e., whether X is ultimately periodic.

Bordered factors

A finite word w is bordered if it begins and ends with the same word x with $0<|x| \leq \frac{|w|}{2}$. Otherwise it is unbordered.

Example
The English word ingoing is bordered.
Theorem (C-Rampersad-Shallit 2011)
Let \mathbf{x} be a k-automatic word. Then the infinite word $\mathbf{y}=y_{0} y_{1} y_{2} \cdots$ defined by

$$
y_{n}= \begin{cases}1, & \text { if } \mathbf{x} \text { has an unbordered factor of length } n ; \\ 0, & \text { otherwise; }\end{cases}
$$

is k-automatic.

Arbitrarily large unbordered factors

Theorem (C-Rampersad-Shallit 2011)
The following question is decidable: given a k-automatic word \mathbf{x}, does \mathbf{x} contain arbitrarily large unbordered factors.

Recurrence

An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is recurrent if every factor that occurs at least once in it occurs infinitely often.

Equivalently, for each occurrence of a factor there exists a later occurrence of that factor.

Equivalently, for all n and for all $r \geq 1$, there exists $m>n$ such that for all $j<r, x_{n+j}=x_{m+j}$.

Uniform recurrence

An infinite word is uniformly recurrent if every factor that occurs at least once occurs infinitely often with bounded gaps between consecutive occurrences.

Equivalently, for all $r \geq 1$, there exists $t \geq 1$ such that for all n, there exists m with $n<m<n+t$ such that for all $i<r$,
$x_{n+i}=x_{m+i}$.

Deciding recurrence

We obtain another proof of the following result:
Theorem (Nicolas-Pritykin 2009)
There is an algorithm to decide if a k-automatic word is recurrent or uniformly recurrent.

Some more results

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} be a k-automatic word. Then the following infinite words are also k-automatic:
(a) $b(i)=1$ if there is a square beginning at position $i ; 0$ otherwise
(b) $c(i)=1$ if there is an overlap beginning at position $i ; 0$ otherwise
(c) $d(i)=1$ if there is a palindrome beginning at position $i ; 0$ otherwise

Brown, Rampersad, Shallit, and Vasiga proved results (a)-(b) for the Thue-Morse word.

Enumeration results

The k-kernel of an infinite word $\left(x_{n}\right)_{n \geq 0}$ is the set

$$
\left\{\left(x_{k^{e} n+c}\right)_{n \geq 0}: e \geq 0,0 \leq c<k^{e}\right\} .
$$

Theorem (Eilenberg)
An infinite word is k-automatic iff its k-kernel is finite.

k-regular sequences

With this definition we can generalize the notion of k-automatic words to the class of sequences over infinite alphabets.

A sequence $\left(x_{n}\right)_{n \geq 0}$ over \mathbb{Z} is k-regular if the \mathbb{Z}-module generated by the set

$$
\left\{\left(x_{k^{e} n+c}\right)_{n \geq 0}: e \geq 0,0 \leq c<k^{e}\right\}
$$

is finitely generated.

Examples

- Polynomials in n with coefficients in \mathbb{N}
- The sum $s_{k}(n)$ of the base- k digits of n.

Factor complexity

The following result generalizes slightly a result of Mossé (1996).
Carpi and D'Alonzo (2010) proved a slightly more general result.
Theorem (C-Rampersad-Shallit 2011)
Let \mathbf{x} be a k-automatic word. Let y_{n} be the number of (distinct) factors of length n in \mathbf{x}. Then $\left(y_{n}\right)_{n \geq 0}$ is a k-regular sequence.

Palindrome complexity

The following result generalizes a result of Allouche, Baake, Cassaigne and Damanik (2003).
Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)
Let \mathbf{x} be a k-automatic word. Let z_{n} be the number of (distinct) palindromes of length n in \mathbf{x}. Then $\left(z_{n}\right)_{n \geq 0}$ is a k-regular sequence.

Some more enumeration results

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} and \mathbf{y} be k-automatic words. Then the following are k-regular:
(a) the number of (distinct) square factors in \mathbf{x} of length n;
(b) the number of squares in \mathbf{x} beginning at (centered at, ending at) position n;
(c) the length of the longest square in \mathbf{x} beginning at (centered at, ending at) position n;
(d) the number of palindromes in \mathbf{x} beginning at (centered at, ending at) position n;
(e) the length of the longest palindrome in \mathbf{x} beginning at (centered at, ending at) position n;

Theorem (cont'd)
(f) the length of the longest fractional power in \mathbf{x} beginning at (ending at) position n;
(g) the number of (distinct) recurrent factors in \mathbf{x} of length n;
(h) the number of factors of length n that occur in \mathbf{x} but not in \mathbf{y}.
(i) the number of factors of length n that occur in both \mathbf{x} and \mathbf{y}.

Brown, Rampersad, Shallit, and Vasiga proved results (b)-(c) for the Thue-Morse word.

Positional numeration systems

A positional numeration system is an increasing sequence of integers $U=\left(U_{n}\right)_{n \geq 0}$ such that

- $U_{0}=1$
- $\left(U_{i+1} / U_{i}\right)_{i \geq 0}$ is bounded $\quad \rightarrow C_{U}=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$

It is linear if it satisfies a linear recurrence over \mathbb{Z}.
The greedy U-representation of a positive integer n is the unique word $(n)_{U}=c_{\ell-1} \cdots c_{0}$ over $\Sigma_{U}=\left\{0, \ldots, C_{U}-1\right\}$ satisfying

$$
n=\sum_{i=0}^{\ell-1} c_{i} U_{i}, c_{\ell-1} \neq 0 \text { and } \forall t \sum_{i=0}^{t} c_{i} U_{i}<U_{t+1}
$$

U-automatic words

An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is U-automatic if it is computable by a finite automaton taking as input the U-representation of n, and having x_{n} as the output associated with the last state encountered.

Example

Let $F=(1,2,3,5,8,13, \ldots)$ be the sequence of Fibonacci numbers. Greedy F-representations do not contain 11.
The Fibonacci word

$0100101001001010010100100101001 \ldots$

generated by the morphism $0 \mapsto 01,1 \mapsto 0$ is F-automatic. The $(n+1)$-th letter is 1 exactly when the F-representation of n ends with a 1.

Pisot systems

A Pisot number is an algebraic integer >1 such that all of its algebraic conjugates have absolute value <1.

A Pisot system is a linear numeration system whose characteristic polynomial is the minimal polynomial of a Pisot number.

An equivalent logical formulation

Let $V_{U}(n)$ be the smallest term U_{i} occurring in $(n)_{U}$ with a nonzero coefficient.

An infinite word $\mathbf{x}=\left(x_{n}\right)_{n \geq 0}$ is U-definable if, for each letter a, there exists a FO formula φ_{a} of $\left\langle\mathbb{N},+, V_{U}\right\rangle$ s.t.
$\varphi_{a}(n)$ is true if and only if $x_{n}=a$.

Theorem (Bruyère-Hansel 1997)
Let U be a Pisot system. A infinite word is U-automatic iff it is U-definable.

Passing to this more general setting

By virtue of these results, all of our previous reasoning applies to U -automatic sequences when U is a Pisot system.

Hence, there exist algorithms to decide periodicity, recurrence, etc. for sequences defined in such systems as well.

What we can't do so far

k-automatic words are also generated by uniform morphisms (with some possible recoding of the alphabet).

The general case consists of morphic sequences: those generated by possibly non-uniform morphisms (again with a final recoding of the alphabet).

Some partial results are known (typically for purely morphic sequences and for U-automatic words).

Finding decision procedures for periodicity, etc. in the general setting remains an open problem.

