Finite Orbits of Language Operations

Émilie Charlier¹ Mike Domaratzki² Tero Harju³ Jeffrey Shallit¹

 1 University of Waterloo 2 University of Manitoba 3 University of Turku

LATA 2011 Tarragona, May 27, 2011

Closure operations

Let $x: 2^{\Sigma^*} \to 2^{\Sigma^*}$ be an operation on languages. Suppose x satisfies the following three properties:

- 1. $L \subseteq x(L)$ (expanding);
- 2. If $L \subseteq M$ then $x(L) \subseteq x(M)$ (inclusion-preserving);
- 3. x(x(L)) = x(L) (idempotent).

Then we say that x is a closure operation.

Example

Kleene closure, positive closure, prefix, suffix, factor, subword.

Some notation and a first result

If x(L) = y(L) for all languages L, then we write $x \equiv y$.

We write $\epsilon(L) = L$ and $xy = x \circ y$, that is, xy(L) = x(y(L)).

Define c to be the complementation: $c(L) = \Sigma^* - L$. In particular, we have $cc \equiv \epsilon$.

Theorem

Let x, y be closure operations. Then $x c y c x c y \equiv x c y$.

Proof of the previous result

```
\forall L, \ xcycxcy(L) \subseteq xcy(L):
We have: \forall L, L \subseteq y(L).
Then: \forall L, cy(L) \subseteq c(L).
Then: \forall L, xcy(L) \subseteq xc(L).
Then: \forall L, xcy(cxcy(L)) \subseteq xc(cxcy(L)) = xcy(L).
\forall L, xcy(L) \subseteq xcycxcy(L):
We have: \forall L, L \subseteq x(L).
Then: \forall L, cy(L) \subseteq x(cy(L)).
Then: \forall L, cxcy(L) \subseteq ccy(L) = y(L).
Then: \forall L, ycxcy(L) \subseteq yy(L) = y(L).
Then: \forall L, c_{V}(L) \subseteq c_{V}(L).
Finally: \forall L, xcy(L) \subseteq xcycxcy(L).
```

Corollary (Peleg 1984, Brzozowski-Grant-Shallit 2009)

Let x be any closure operation and L be any language. If $S = \{x, c\}$, then the orbit $\mathcal{O}_S(L) = \{y(L) \colon y \in S^*\}$ contains at most 14 languages, which are given by the images of L under the 14 operations

$$\epsilon$$
, x, c, xc, cx, xcx, cxc, xcxc, cxcx, xcxcx, cxcxx, xcxcx, cxcxcx, xcxcxc, cxcxcx.

NB: This result is the analogous for languages of Kuratowski-14 sets-theorem for topological spaces.

Some notation and definitions

If t, x, y, z are words with t = xyz, we say

- x is a prefix of t;
- z is a suffix of t; and
- ▶ y is a factor of t.

If $t = x_1y_1x_2y_2\cdots x_ny_nx_{n+1}$ for some words x_i and y_j , we say

 \triangleright $y_1 \cdots y_n$ is a subword of t.

Thus a factor is a contiguous block, while a subword can be "scattered".

Further, x^R denotes the reverse of the word x.

8 natural operations on languages

```
\begin{array}{ll} k\colon L\mapsto L^* & s\colon L\to \mathrm{suff}(L) \\ e\colon L\mapsto L^+ & f\colon L\to \mathrm{fact}(L) \\ c\colon L\mapsto \overline{L}=\Sigma^*-L & w\colon L\to \mathrm{subw}(L) \\ p\colon L\mapsto \mathrm{pref}(L) & r\colon L\to L^R \end{array}
```

where

$$L^* = \bigcup_{n \ge 0} L^n \text{ and } L^+ = \bigcup_{n \ge 1} L^n$$

$$\operatorname{pref}(L) = \{ x \in \Sigma^* : x \text{ is a prefix of some } y \in L \}$$

$$\operatorname{suff}(L) = \{ x \in \Sigma^* : x \text{ is a suffix of some } y \in L \}$$

$$\operatorname{fact}(L) = \{ x \in \Sigma^* : x \text{ is a factor of some } y \in L \}$$

$$\operatorname{subw}(L) = \{ x \in \Sigma^* : x \text{ is a subword of some } y \in L \}$$

$$L^R = \{ x \in \Sigma^* : x^R \in L \}$$

Orbits of languages

Given a subset $S \subseteq \{k, e, c, p, s, f, w, r\}$, we consider the orbit of languages $\mathcal{O}_S(L) = \{x(L) : x \in S^*\}$ under the monoid of operations generated by S.

So compositions of operations in S are considered as "words over the alphabet S".

We are interested in the following questions: When is this monoid finite? Is the cardinality of $\mathcal{O}_S(L)$ bounded, independently of L?

Operations with infinite orbit

It is possible for the orbit under a single operation to be infinite even if the operation is expanding and inclusion-preserving.

Example

Consider the operation of fractional exponentiation, defined by

$$n(L) = \{x^{\alpha} : x \in L \text{ and } \alpha \ge 1 \text{ rational}\} = \bigcup_{x \in L} x^{+} p(\{x\}).$$

Let $M = \{ab\}$. Then the orbit

$$\mathcal{O}_{\{n\}}(M) = \{M, n(M), n^2(M), n^3(M), \ldots\}$$

is infinite, since we have

$$aba^i \in n^i(M)$$
 and $aba^i \notin n^j(M)$ for $j < i$.

Kuratowski identities

Let's come back to the set $S = \{k, e, c, p, s, f, w, r\}$.

Lemma

The 14 operations k, e, p, s, f, w, kp, ks, kf, kw, ep, es, ef, and ew are closure operations.

Theorem (mentioned above)

Let x, y be closure operations. Then $x c y c x c y \equiv x c y$.

Together, these two results thus give $196 = 14^2$ separate identities.

Further identities

Lemma

Let $a \in \{k, e\}$ and $b \in \{p, s, f, w\}$. Then $aba \equiv bab \equiv ab$.

In a similar fashion, we obtain many kinds of Kuratowski-style identities involving the operations $k,\ e,\ c,\ p,\ s,\ f,\ w,$ and r.

Proposition

Let $a \in \{k, e\}$ and $b \in \{p, s, f, w\}$. Then we have the following identities:

- abcacaca ≡ abca
- bcbcbcab ≡ bcab
- ▶ abcbcabcab ≡ abcab

Additional identities (I)

We obtain many additional identities connecting the operations $k,\ e,\ c,\ p,\ s,\ f,\ w,$ and r.

Proposition

We have the following identities:

- $ightharpoonup rp \equiv sr; rs \equiv pr$
- ▶ $rf \equiv fr$; $rw \equiv wr$; $rc \equiv cr$; $rk \equiv kr$
- $ightharpoonup ps \equiv sp \equiv pf \equiv fp \equiv sf \equiv fs \equiv f$
- $ightharpoonup pw \equiv wp \equiv sw \equiv ws \equiv fw \equiv wf \equiv w$
- $ightharpoonup rkw \equiv kw \equiv wk$
- ightharpoonup $ek \equiv ke \equiv k$
- $fks \equiv pks$; $fkp \equiv skp$
- $ightharpoonup rkf \equiv skf \equiv pkf \equiv fkf \equiv kf$

Additional identities (II)

Proposition

For all languages L, we have

- ▶ $pcs(L) = \Sigma^*$ or \emptyset .
- ► The same result holds for pcf, fcs, fcf, scp, scf, fcp, wcp, wcs, wcf, pcw, scw, fcw, and wcw.

Let's prove this for *pcs*:

If
$$s(L) = \Sigma^*$$
, then $cs(L) = \emptyset$ and $pcs(L) = \emptyset$.

Otherwise, s(L) omits some word w.

Then
$$s(L) \cap \Sigma^* w = \emptyset$$
.

Then
$$\Sigma^* w \subseteq cs(L)$$
.

Then
$$\Sigma^* = p(\Sigma^* w) \subseteq pcs(L)$$
, hence $pcs(L) = \Sigma^*$.

Additional identities (III)

Proposition

For all languages L, we have

- $sckp(L) = \Sigma^* \text{ or } \emptyset.$
- ► The same result holds for fckp, pcks, fcks, pckf, sckf, fckf, wckp, wcks, wckf, wckw, pckw, sckw, fckw.

Proposition

For all languages L, we have

- $scskp(L) = \Sigma^* \text{ or } \emptyset.$
- ► The same result holds for pcpks.

Additional identities (IV)

Proposition

For all languages L and for all $b \in \{p, s, f, w\}$, we have

- $kcb(L) = cb(L) \cup \{\epsilon\}$
- $kckb(L) = ckb(L) \cup \{\epsilon\}$
- $\qquad kckck(L) = ckck(L) \cup \{\epsilon\}$
- ▶ $kbcbckb(L) = bcbckb(L) \cup \{\epsilon\}.$

Let's prove $kcp(L) \subseteq cp(L) \cup \{\epsilon\}$:

Assume $x \in kcp(L)$ and $x \neq \epsilon$.

We have $x = x_1x_2 \cdots x_n$ for some $n \ge 1$, where each $x_i \in cp(L)$.

Then $x_1x_2\cdots x_n\not\in p(L)$, because if it were, then $x_1\in p(L)$.

Hence $x \in cp(L)$.

Main Result

Theorem (C-Domaratzki-Harju-Shallit 2011)

Let $S = \{k, e, c, p, f, s, w, r\}$. Then for every language L, the orbit $\mathcal{O}_S(L)$ contains at most 5676 distinct languages.

Sketch of the proof

We used breadth-first search to examine the set $S^* = \{k, e, c, p, f, s, w, r\}^*$ w.r.t. the radix order with k < e < c < p < f < s < w < r.

As each new word x is examined, we test it to see if any factor is of the form given by "certain identities".

If it is, then the corresponding language must be either Σ^* , \emptyset , $\{\epsilon\}$, or Σ^+ ; furthermore, each descendant language will be of this form. In this case the word x is discarded.

Otherwise, we use the remaining identities to try to reduce x to an equivalent word that we have previously encountered. If we succeed, then x is discarded.

Otherwise we append all the words in Sx to the end of the queue.

Sketch of the proof (cont'd)

If the process terminates, then $\mathcal{O}_{S}(L)$ is of finite cardinality.

For $S = \{k, e, c, p, f, s, w, r\}$, the process terminated with 5672 nodes that could not be simplified using our identities. We did not count $\emptyset, \{\epsilon\}, \Sigma^+$, and Σ^* . The total is thus 5676.

(The longest word examined was ckcpcpckpckpckpckpcpckckcr, of length 25, and the same word with p replaced by s.)

If we use two arbitrary closure operations a and b with no relation between them, then the monoid generated by $\{a,b\}$ is infinite, since any two finite prefixes of $ababab\cdots$ are distinct.

Example

Define the exponentiation operation

$$t(L) = \{x^i : x \in L \text{ and } i \text{ is an integer } \geq 1\}.$$

Then t is a closure operation.

Hence the orbits $\mathcal{O}_{\{p\}}(L)$ and $\mathcal{O}_{\{t\}}(L)$ are finite, for all L.

However, if $M = \{ab\}$, then the orbit $\mathcal{O}_{\{p,t\}}(M)$ is infinite, as

$$aba^i \in (pt)^i(M)$$
 and $aba^i \notin (pt)^j(M)$ for $j < i$.

4□ → 4□ → 4 = → 1 = →9 Q (P)

Prefix and complement

In this case at most 14 distinct languages can be generated. The bound of 14 can be achieved, e.g., by the regular language over $\Sigma = \{a, b, c, d\}$ accepted by the following DFA:

The following table gives the appropriate set of final states under the operations.

language	final states	language	final states	
L	3,7,8	pcpc(L)	1,5,6,7	
c(L)	1,2,4,5,6	cpcp(L)	2,3,6,7	
p(L)	1,2,3,5,6,7,8	cpcpc(L)	2,3,4,8	
pc(L)	1,2,3,4,5,6,8	pcpcp(L)	1,2,3,5,6,7	
cp(L)	4	pcpcpc(L)	1,2,3,4,5,8	
cpc(L)	7	cpcpcp(L)	4, 8	
pcp(L)	1,4,5,8	cpcpcpc(L)	6, 7	

Factor, Kleene star, complement

Here breadth-first search gives 78 languages, so our bound is 78+4=82. We can improve this bound by considering new kinds of arguments.

Lemma

There are at most 4 languages distinct from $\Sigma^*,\emptyset,\Sigma^+$, and $\{\epsilon\}$ in

$$\mathcal{O}_{\{k,f,kc,fc\}}(f(L)).$$

These languages are among f(L), kf(L), kckf(L), and kcf(L).

Lemma

There are at most 2 languages distinct from $\Sigma^*,\emptyset,\Sigma^+$, and $\{\epsilon\}$ in

$$\mathcal{O}_{\{k,f,kc,fc\}}(fk(L)) - \mathcal{O}_{\{k,f,kc,fc\}}(f(L)).$$

These languages are among fk(L) and kcfk(L).

Lemma

For all languages L, we have either $f(L) = \Sigma^*$ or $fc(L) = \Sigma^*$.

Theorem (C-Domaratzki-Harju-Shallit 2011)

Let L be an arbitrary language. Then 50 is a tight upper bound for the size of $\mathcal{O}_{\{k,c,f\}}(L)$.

Sketch of the proof

The languages in $\mathcal{O}_{\{k,c,f\}}(L)$ that may differ from $\Sigma^*,\emptyset,\Sigma^+$, and $\{\epsilon\}$ are among the images of L and c(L) under the 16 operations

the complements of these images, together with the 14 languages in $\mathcal{O}_{\{k,c\}}(L)$.

We show that there are at most 32 distinct languages among the $64 = 16 \cdot 4$ languages given by the images of L and c(L) under the 16 operations (1) and their complements.

Adding the 14 languages in $\mathcal{O}_{\{k,c\}}(L)$, and $\Sigma^*,\emptyset,\Sigma^+$, and $\{\epsilon\}$, we obtain that 50=32+14+4 is an upper bound for the size of the orbit of $\{k,c,f\}$.

Sketch of the proof (cont'd)

The DFA made of two copies of this DFA accepts a language L with orbit size 50 under operations k, c, and f.

Kleene star, prefix, suffix, factor

Here there are at most 13 distinct languages, given by the action of

$$\{\epsilon, \ k, \ p, \ s, \ f, \ kp, \ ks, \ kf, \ pk, \ sk, \ fk, \ pks, \ skp\}.$$

The bound of 13 is achieved, for example, by $L = \{abc\}$.

Summary of results

r	2	W	2	f	2
S	2	р	2	С	2
k	2	w, r	4	f, r	4
f, w	3	s, w	3	s, f	3
p, w	3	p, f	3	c, r	4
c, w	6 *	c, f	6 *	c,s	14
c, p	14	k, r	4	k, w	4
k, f	5	k,s	5	k, p	5
k, c	14	f, w, r	6	s, f, w	4
p, f, w	4	p, s, f	4	c, w, r	10 *
c, f, r	10 *	c, f, w	8*	c, s, w	16 *
c, s, f	16 *	c, p, w	16 *	c, p, f	16 *
k, w, r	7	k, f, r	9	k, f, w	6
k, s, w	7	k, s, f	9	k, p, w	7
k, p, f	9	k, c, r	28	k, c, w	38*
k, c, f	50 *	k, c, s	1070	k, c, p	1070

Summary of results (Cont'd)

p, s, f, r	8	p, s, f, w	5	c, f, w, r	12*
c, s, f, w	16 *	c, p, f, w	16 *	c, p, s, f	16 *
k, f, w, r	11	k, s, f, w	10	k, p, f, w	10
k, p, s, f	13	k, c, w, r	72*	k, c, f, r	84*
k, c, f, w	66*	k, c, s, w	1114	k, c, s, f	1450
k, c, p, w	1114	k, c, p, f	1450	p, s, f, w, r	10
c, p, s, f, r	30 *	c, p, s, f, w	16 *	k, p, s, f, r	25
k, p, s, f, w	14	k, c, f, w, r	120*	k, c, s, f, w	1474
k, c, p, f, w	1474	k, c, p, s, f	2818	c, p, s, f, w, r	30 *
k, p, s, f, w, r	27	k, c, p, s, f, r	5628	k, c, p, s, f, w	2842
k, c, p, s, f, w, r	5676				

Further work

We plan to continue to refine our estimates of the previous tables, and pursue the status of other sets of operations.

For example, if t is the exponentiation operation, then, using the identities $kt \equiv tk \equiv k$, and the inclusion $t \subseteq k$, we get the additional Kuratowski-style identities

- \blacktriangleright kctckck \equiv kck,
- \triangleright kckctck \equiv kck,
- \blacktriangleright kctctck \equiv kck,
- ightharpoonup tctctck \equiv tck,
- \triangleright kctctct \equiv kct.

This allows us to prove that $\mathcal{O}_{\{k,c,t\}}(L)$ is finite and of cardinality at most 126.