Finite Orbits of Language Operations

Émilie Charlier ${ }^{1}$ Mike Domaratzki ${ }^{2}$ Tero Harju ${ }^{3}$ Jeffrey Shallit ${ }^{1}$
${ }^{1}$ University of Waterloo ${ }^{2}$ University of Manitoba ${ }^{3}$ University of Turku

LATA 2011
Tarragona, May 27, 2011

Closure operations

Let $x: 2^{\Sigma^{*}} \rightarrow 2^{\Sigma^{*}}$ be an operation on languages. Suppose x satisfies the following three properties:

1. $L \subseteq x(L)$ (expanding);
2. If $L \subseteq M$ then $x(L) \subseteq x(M)$ (inclusion-preserving);
3. $x(x(L))=x(L)$ (idempotent).

Then we say that x is a closure operation.

Example

Kleene closure, positive closure, prefix, suffix, factor, subword.

Some notation and a first result

If $x(L)=y(L)$ for all languages L, then we write $x \equiv y$.
We write $\epsilon(L)=L$ and $x y=x \circ y$, that is, $x y(L)=x(y(L))$.
Define c to be the complementation: $c(L)=\Sigma^{*}-L$. In particular, we have $c c \equiv \epsilon$.

Theorem
Let x, y be closure operations. Then xcycxcy $\equiv x c y$.

Proof of the previous result

$\forall L, \quad \operatorname{xycxcy}(L) \subseteq x c y(L):$
We have: $\forall L, L \subseteq y(L)$.
Then: $\forall L, c y(L) \subseteq c(L)$.
Then: $\forall L, x c y(L) \subseteq x c(L)$.
Then: $\forall L, x c y(c x c y(L)) \subseteq x c(c x c y(L))=x c y(L)$.
$\forall L, \quad x c y(L) \subseteq x c y c x c y(L)$:
We have: $\forall L, L \subseteq x(L)$.
Then: $\forall L, c y(L) \subseteq x(c y(L))$.
Then: $\forall L, c x c y(L) \subseteq c c y(L)=y(L)$.
Then: $\forall L, y c x c y(L) \subseteq y y(L)=y(L)$.
Then: $\forall L, c y(L) \subseteq c y c x c y(L)$.
Finally: $\forall L, x c y(L) \subseteq x c y c x c y(L)$.

Corollary (Peleg 1984, Brzozowski-Grant-Shallit 2009)

Let x be any closure operation and L be any language.
If $S=\{x, c\}$, then the orbit $\mathcal{O}_{S}(L)=\left\{y(L): y \in S^{*}\right\}$ contains at most 14 languages, which are given by the images of L under the 14 operations
$\epsilon, x, c, x c, c x, x c x, c x c, x c x c, c x c x$
xcxcx, cxcxc, xcxcxc, cxcxcx, cxcxcxc.

NB: This result is the analogous for languages of Kuratowski-14 sets-theorem for topological spaces.

Some notation and definitions

If t, x, y, z are words with $t=x y z$, we say

- x is a prefix of t;
- z is a suffix of t; and
- y is a factor of t.

If $t=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n} x_{n+1}$ for some words x_{i} and y_{j}, we say

- $y_{1} \cdots y_{n}$ is a subword of t.

Thus a factor is a contiguous block, while a subword can be "scattered".

Further, x^{R} denotes the reverse of the word x.

8 natural operations on languages

$$
\begin{array}{lc}
k: L \mapsto L^{*} & s: L \rightarrow \operatorname{suff}(L) \\
e: L \mapsto L^{+} & f: L \rightarrow \operatorname{fact}(L) \\
c: L \mapsto L=\Sigma^{*}-L & w: L \rightarrow \operatorname{subw}(L) \\
p: L \mapsto \operatorname{pref}(L) & r: L \rightarrow L^{R}
\end{array}
$$

where

$$
\begin{aligned}
L^{*} & =\cup_{n \geq 0} L^{n} \text { and } L^{+}=\cup_{n \geq 1} L^{n} \\
\operatorname{pref}(L) & =\left\{x \in \Sigma^{*}: x \text { is a prefix of some } y \in L\right\} \\
\operatorname{suff}(L) & =\left\{x \in \Sigma^{*}: x \text { is a suffix of some } y \in L\right\} \\
\operatorname{fact}(L) & =\left\{x \in \Sigma^{*}: x \text { is a factor of some } y \in L\right\} \\
\operatorname{subw}(L) & =\left\{x \in \Sigma^{*}: x \text { is a subword of some } y \in L\right\} \\
L^{R} & =\left\{x \in \Sigma^{*}: x^{R} \in L\right\}
\end{aligned}
$$

Orbits of languages

Given a subset $S \subseteq\{k, e, c, p, s, f, w, r\}$, we consider the orbit of languages $\mathcal{O}_{S}(L)=\left\{x(L): x \in S^{*}\right\}$ under the monoid of operations generated by S.

So compositions of operations in S are considered as "words over the alphabet $S^{\prime \prime}$.

We are interested in the following questions: When is this monoid finite? Is the cardinality of $\mathcal{O}_{S}(L)$ bounded, independently of L ?

Operations with infinite orbit

It is possible for the orbit under a single operation to be infinite even if the operation is expanding and inclusion-preserving.

Example

Consider the operation of fractional exponentiation, defined by

$$
n(L)=\left\{x^{\alpha}: x \in L \text { and } \alpha \geq 1 \text { rational }\right\}=\bigcup_{x \in L} x^{+} p(\{x\})
$$

Let $M=\{a b\}$. Then the orbit

$$
\mathcal{O}_{\{n\}}(M)=\left\{M, n(M), n^{2}(M), n^{3}(M), \ldots\right\}
$$

is infinite, since we have

$$
a b a^{i} \in n^{i}(M) \text { and } a b a^{i} \notin n^{j}(M) \text { for } j<i .
$$

Kuratowski identities

Let's come back to the set $S=\{k, e, c, p, s, f, w, r\}$.

Lemma

The 14 operations $k, e, p, s, f, w, k p, k s, k f, k w, e p, e s, e f$, and ew are closure operations.

Theorem (mentioned above)
Let x, y be closure operations. Then xcycxcy $\equiv x c y$.

Together, these two results thus give $196=14^{2}$ separate identities.

Further identities

Lemma
Let $a \in\{k, e\}$ and $b \in\{p, s, f, w\}$. Then $a b a \equiv b a b \equiv a b$.

In a similar fashion, we obtain many kinds of Kuratowski-style identities involving the operations k, e, c, p, s, f, w, and r.

Proposition

Let $a \in\{k, e\}$ and $b \in\{p, s, f, w\}$. Then we have the following identities:

- abcacaca $\equiv a b c a$
- bcbcbcab $\equiv b c a b$
- $a b c b c a b c a b \equiv a b c a b$

Additional identities (I)

We obtain many additional identities connecting the operations k, e, c, p, s, f, w, and r.

Proposition

We have the following identities:

- $r p \equiv s r ; r s \equiv p r$
- $r f \equiv f r ; r w \equiv w r ; r c \equiv c r ; r k \equiv k r$
- $p s \equiv s p \equiv p f \equiv f p \equiv s f \equiv f s \equiv f$
- $p w \equiv w p \equiv s w \equiv w s \equiv f w \equiv w f \equiv w$
- $r k w \equiv k w \equiv w k$
- ek $\equiv k e \equiv k$
- fks $\equiv p k s ; ~ f k p \equiv s k p$
- $r k f \equiv s k f \equiv p k f \equiv f k f \equiv k f$

Additional identities (II)

Proposition

For all languages L, we have

- $p c s(L)=\Sigma^{*}$ or \emptyset.
- The same result holds for pcf, fcs, fcf, scp, scf, $f c p, w c p, w c s, w c f, p c w, s c w, f c w$, and wcw.

Let's prove this for pcs:
If $s(L)=\Sigma^{*}$, then $c s(L)=\emptyset$ and $p c s(L)=\emptyset$.
Otherwise, $s(L)$ omits some word w.
Then $s(L) \cap \Sigma^{*} w=\emptyset$.
Then $\Sigma^{*} w \subseteq c s(L)$.
Then $\Sigma^{*}=p\left(\Sigma^{*} w\right) \subseteq p c s(L)$, hence $p c s(L)=\Sigma^{*}$.

Additional identities (III)

Proposition

For all languages L, we have

- $\operatorname{sckp}(L)=\Sigma^{*}$ or \emptyset.
- The same result holds for fckp, pcks, fcks, pckf, sckf, fckf, wckp, wcks, wckf, wckw, pckw, sckw, fckw.

Proposition

For all languages L, we have

- $\operatorname{scskp}(L)=\Sigma^{*}$ or \emptyset.
- The same result holds for pcpks.

Additional identities (IV)

Proposition

For all languages L and for all $b \in\{p, s, f, w\}$, we have

- $k c b(L)=c b(L) \cup\{\epsilon\}$
- $\operatorname{kckb}(L)=c k b(L) \cup\{\epsilon\}$
- $\operatorname{kckck}(L)=\operatorname{ckck}(L) \cup\{\epsilon\}$
- $k b c b c k b(L)=b c b c k b(L) \cup\{\epsilon\}$.

Let's prove $k c p(L) \subseteq c p(L) \cup\{\epsilon\}$:
Assume $x \in k c p(L)$ and $x \neq \epsilon$.
We have $x=x_{1} x_{2} \cdots x_{n}$ for some $n \geq 1$, where each $x_{i} \in c p(L)$.
Then $x_{1} x_{2} \cdots x_{n} \notin p(L)$, because if it were, then $x_{1} \in p(L)$. Hence $x \in c p(L)$.

Main Result

Theorem (C-Domaratzki-Harju-Shallit 2011)
Let $S=\{k, e, c, p, f, s, w, r\}$. Then for every language L, the orbit $\mathcal{O}_{S}(L)$ contains at most 5676 distinct languages.

Sketch of the proof

We used breadth-first search to examine the set $S^{*}=\{k, e, c, p, f, s, w, r\}^{*}$ w.r.t. the radix order with $k<e<c<p<f<s<w<r$.

As each new word x is examined, we test it to see if any factor is of the form given by "certain identities".

If it is, then the corresponding language must be either $\Sigma^{*}, \emptyset,\{\epsilon\}$, or Σ^{+}; furthermore, each descendant language will be of this form. In this case the word x is discarded.

Otherwise, we use the remaining identities to try to reduce x to an equivalent word that we have previously encountered. If we succeed, then x is discarded.

Otherwise we append all the words in $S x$ to the end of the queue.

Sketch of the proof (cont'd)

If the process terminates, then $\mathcal{O}_{S}(L)$ is of finite cardinality.
For $S=\{k, e, c, p, f, s, w, r\}$, the process terminated with 5672 nodes that could not be simplified using our identities. We did not count $\emptyset,\{\epsilon\}, \Sigma^{+}$, and Σ^{*}. The total is thus 5676 .
(The longest word examined was ckcpcpckpckpckpcpcpckckcr, of length 25 , and the same word with p replaced by s.)

If we use two arbitrary closure operations a and b with no relation between them, then the monoid generated by $\{a, b\}$ is infinite, since any two finite prefixes of $a b a b a b \cdots$ are distinct.

Example
Define the exponentiation operation

$$
t(L)=\left\{x^{i}: x \in L \text { and } i \text { is an integer } \geq 1\right\}
$$

Then t is a closure operation.
Hence the orbits $\mathcal{O}_{\{p\}}(L)$ and $\mathcal{O}_{\{t\}}(L)$ are finite, for all L.
However, if $M=\{a b\}$, then the orbit $\mathcal{O}_{\{p, t\}}(M)$ is infinite, as

$$
a b a^{i} \in(p t)^{i}(M) \text { and } a b a^{i} \notin(p t)^{j}(M) \text { for } j<i .
$$

Prefix and complement

In this case at most 14 distinct languages can be generated.
The bound of 14 can be achieved, e.g., by the regular language over $\Sigma=\{a, b, c, d\}$ accepted by the following DFA:

The following table gives the appropriate set of final states under the operations.

language	final states	language	final states
L	$3,7,8$	$p c p c(L)$	$1,5,6,7$
$c(L)$	$1,2,4,5,6$	$c p c p(L)$	$2,3,6,7$
$p(L)$	$1,2,3,5,6,7,8$	$c p c p c(L)$	$2,3,4,8$
$p c(L)$	$1,2,3,4,5,6,8$	$p c p c p(L)$	$1,2,3,5,6,7$
$c p(L)$	4	$p c p c p c(L)$	$1,2,3,4,5,8$
$c p c(L)$	7	$c p c p c p(L)$	4,8
$p c p(L)$	$1,4,5,8$	$c p c p c p c(L)$	6,7

Factor, Kleene star, complement

Here breadth-first search gives 78 languages, so our bound is $78+4=82$. We can improve this bound by considering new kinds of arguments.
Lemma
There are at most 4 languages distinct from $\Sigma^{*}, \emptyset, \Sigma^{+}$, and $\{\epsilon\}$ in

$$
\mathcal{O}_{\{k, f, k c, f c\}}(f(L)) .
$$

These languages are among $f(L), k f(L), k c k f(L)$, and $k c f(L)$.
Lemma
There are at most 2 languages distinct from $\Sigma^{*}, \emptyset, \Sigma^{+}$, and $\{\epsilon\}$ in

$$
\mathcal{O}_{\{k, f, k c, f c\}}(f k(L))-\mathcal{O}_{\{k, f, k c, f c\}}(f(L)) .
$$

These languages are among $f k(L)$ and $k c f k(L)$.

Lemma
For all languages L, we have either $f(L)=\Sigma^{*}$ or $f c(L)=\Sigma^{*}$.

Theorem (C-Domaratzki-Harju-Shallit 2011)
Let L be an arbitrary language. Then 50 is a tight upper bound for the size of $\mathcal{O}_{\{k, c, f\}}(L)$.

Sketch of the proof

The languages in $\mathcal{O}_{\{k, c, f\}}(L)$ that may differ from $\Sigma^{*}, \emptyset, \Sigma^{+}$, and $\{\epsilon\}$ are among the images of L and $c(L)$ under the 16 operations

$$
\begin{gather*}
f, k f, k c k f, k c f, f k, k c f k, f c k, k f c k, k c k f c k, k c f c k, \tag{1}\\
f k c k, k c f k c k, f c k c k, k f c k c k, k c k f c k c k, k c f c k c k,
\end{gather*}
$$

the complements of these images, together with the 14 languages in $\mathcal{O}_{\{k, c\}}(L)$.
We show that there are at most 32 distinct languages among the $64=16 \cdot 4$ languages given by the images of L and $c(L)$ under the 16 operations (1) and their complements.

Adding the 14 languages in $\mathcal{O}_{\{k, c\}}(L)$, and $\Sigma^{*}, \emptyset, \Sigma^{+}$, and $\{\epsilon\}$, we obtain that $50=32+14+4$ is an upper bound for the size of the orbit of $\{k, c, f\}$.

Sketch of the proof (cont'd)

The DFA made of two copies of this DFA accepts a language L with orbit size 50 under operations k, c, and f.

Kleene star, prefix, suffix, factor

Here there are at most 13 distinct languages, given by the action of

$$
\{\epsilon, k, p, s, f, k p, k s, k f, p k, s k, f k, p k s, s k p\}
$$

The bound of 13 is achieved, for example, by $L=\{a b c\}$.

Summary of results

r	$\mathbf{2}$	w	$\mathbf{2}$	f	$\mathbf{2}$
s	$\mathbf{2}$	p	$\mathbf{2}$	c	$\mathbf{2}$
k	$\mathbf{2}$	w, r	$\mathbf{4}$	f, r	$\mathbf{4}$
f, w	$\mathbf{3}$	s, w	$\mathbf{3}$	s, f	$\mathbf{3}$
p, w	$\mathbf{3}$	p, f	$\mathbf{3}$	c, r	$\mathbf{4}$
c, w	$\mathbf{6} *$	c, f	$\mathbf{6} *$	c, s	$\mathbf{1 4}$
c, p	$\mathbf{1 4}$	k, r	$\mathbf{4}$	k, w	$\mathbf{4}$
k, f	$\mathbf{5}$	k, s	$\mathbf{5}$	k, p	$\mathbf{5}$
k, c	$\mathbf{1 4}$	f, w, r	$\mathbf{6}$	s, f, w	$\mathbf{4}$
p, f, w	$\mathbf{4}$	p, s, f	$\mathbf{4}$	c, w, r	$\mathbf{1 0} *$
c, f, r	$\mathbf{1 0} *$	c, f, w	$\mathbf{8} *$	c, s, w	$\mathbf{1 6} *$
c, s, f	$\mathbf{1 6} *$	c, p, w	$\mathbf{1 6} *$	c, p, f	$\mathbf{1 6} *$
k, w, r	$\mathbf{7}$	k, f, r	$\mathbf{9}$	k, f, w	$\mathbf{6}$
k, s, w	$\mathbf{7}$	k, s, f	$\mathbf{9}$	k, p, w	$\mathbf{7}$
k, p, f	$\mathbf{9}$	k, c, r	$\mathbf{2 8}$	k, c, w	$\mathbf{3 8} *$
k, c, f	$\mathbf{5 0} *$	k, c, s	1070	k, c, p	1070

Summary of results (Cont'd)

p, s, f, r	$\mathbf{8}$	p, s, f, w	$\mathbf{5}$	c, f, w, r	$\mathbf{1 2 *}$
c, s, f, w	$\mathbf{1 6} *$	c, p, f, w	$\mathbf{1 6} *$	c, p, s, f	$\mathbf{1 6} *$
k, f, w, r	$\mathbf{1 1}$	k, s, f, w	$\mathbf{1 0}$	k, p, f, w	$\mathbf{1 0}$
k, p, s, f	$\mathbf{1 3}$	k, c, w, r	$72 *$	k, c, f, r	$\mathbf{8 4 *}$
k, c, f, w	$66 *$	k, c, s, w	1114	k, c, s, f	1450
k, c, p, w	1114	k, c, p, f	1450	p, s, f, w, r	$\mathbf{1 0}$
c, p, s, f, r	$\mathbf{3 0} *$	c, p, s, f, w	$\mathbf{1 6} *$	k, p, s, f, r	$\mathbf{2 5}$
k, p, s, f, w	$\mathbf{1 4}$	k, c, f, w, r	$120 *$	k, c, s, f, w	1474
k, c, p, f, w	1474	k, c, p, s, f	2818	c, p, s, f, w, r	$\mathbf{3 0} *$
k, p, s, f, w, r	$\mathbf{2 7}$	k, c, p, s, f, r	5628	k, c, p, s, f, w	2842
k, c, p, s, f, w, r	5676				

Further work

We plan to continue to refine our estimates of the previous tables, and pursue the status of other sets of operations.

For example, if t is the exponentiation operation, then, using the identities $k t \equiv t k \equiv k$, and the inclusion $t \subseteq k$, we get the additional Kuratowski-style identities

- kctckck $\equiv k c k$,
- kckctck \equiv kck,
- kctctck $\equiv k c k$,
- tctctck \equiv tck,
- kctctct $\equiv k c t$.

This allows us to prove that $\mathcal{O}_{\{k, c, t\}}(L)$ is finite and of cardinality at most 126 .

