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An example first
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The set 2N of even integers is F-recognizable or F-automatic,
i.e., the language repg(2N) = {¢, 10, 101, 1001, 10000, . . .} is
accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Fibonacci system, any F-recognizable set
can be considered as a “particularly simple” set of integers.

We get a similar definition for other numeration systems.



Numeration systems

» A numeration system is an increasing sequence of
integers U = (Uy)n>0 such that
» Up=1and
» Cy :=sup[Unt1/Un] < +oc.
n>0

» U is linear if it satisfies a linear recurrence relation over Z.

Let (Fn)n>0 be the Fibonacci sequence with Fo =1 and F; = 2.

» Letne N. Aword w=w,_1---Wp over N represents n if

(-1
ZWi U =n.
i=0



Greedy representations

v

A representation w = wy_1 - - - Wp Of an integer is greedy if

j—1

Vi, ) wiUi < Uj.
i=0

v

In that case, w e {0,1,...,Cy — 1}*.
repy (n) is the greedy representation of n with wy_, # 0.

v

» X C N U-recognizable a repy (X) is accepted by a finite
automaton.

repy (N) is the numeration language.

v



Motivations

e Cobham’s theorem for integer base systems (1969) shows
that recognizability depends on the choice of the base.
Only ultimately periodic sets are recognizable in all bases.

e Introduction of non-standard numeration systems and
study U-recognizable sets.

e If N is U-recognizable, then U is linear and any ultimately
periodic set is U-recognizable.

» V. Bruyére, G. Hansel, C. Michaux, R. Villemaire, Logic and
p-recognizable sets of integers, BBMS 1 (1994).

» V. Bruyéere, G. Hansel, Bertrand numeration systems and
recognizability, TCS 181 (1997).



Motivations
What is the “best automaton” we can get?

DFAs accepting the binary representations of 4N + 3.

The general algorithm doesn’t provide a minimal automaton.
What is the state complexity of 0* rep, (pN +r)?




Background (1)

Theorem

If L accepted by an n-state DFA, then the minimal automaton
accepting the language of words of L indexed by the multiples
of m (w.r.t. the radix order) has at most nm" states.

» D. Krieger, A. Miller, N. Rampersad, B. Ravikumar, J. Shallit,
Decimations of languages and state complexity, TCS 410 (2009).

For x,y € N, we have x <y < repy(X) <rad repy(y).

In particular, if rep, (N) is accepted by an n-state DFA, then the
minimal automaton accepting rep,(mN) has at most nm” states.



Background (I1)

Alexeev’s result

Letb,m > 2. Let N, M be such that bN < m < bN*! and

(m1) < (mb) <--- < (mb") = (mo") = (mpM2) =....

The minimal automaton accepting the base b representations
of the multiples of m has exactly

inf{NM—-1}

m
men T 2 mb

» B. Alexeev, Minimal DFA for testing divisibility, JCSS 69 (2004).



Background (111)

Honkala’s decision procedure

Given any finite automaton recognizing a set X of integers
written in base b, it is decidable whether X is ultimately periodic.

» J. Honkala, A decision method for the recognizability of sets
defined by number systems, Theor. Inform. Appl. 20 (1986).

» J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions,
and orbits of an automatic sequence, TCS 410 (2009).

» J.Bell, E. C., A. S. Fraenkel, M. Rigo, A decision problem for
ultimately periodic sets in non-standard numeration systems,
IJAC 19 (2009).



Information we are looking for

Consider a linear numeration system U such that N is
U-recognizable. How many states does the minimal automaton
recognizing 0* rep, (mN) contain?

1. Give upper/lower bounds?

2. Study special cases, e.g., Fibonacci numeration system?

3. Get information on the minimal automaton .4, recognizing
0" repy (N)?



The Hankel matrix

» Let U = (Up)n>0 be a numeration system.
» Fort > 1define

Up Up -+ Uz

Uy U, -~ U
Hi = ) . .

U1 Up - Uxo

» For m> 2, define ky , to be the largest t such that
detH; £ 0 (mod m).



Calculating ky m

> Un+2 = 2Un+1 + Up, (Uo, Ul) = (1, 3)

» (Un)n>o =1,3,7,17,41,99, 239, . ..

» (U, mod 2),>0 is constant and trivially satisfies the
recurrence relation Up1 = Uy with Ug = 1.

» Hence kyo = 1.

» Modulo 4 we find ky 4 = 2.



A system of linear congruences

> Letx = (Xg,...,%).

> Let Sy m denote the number of k-tuples b in {0,..., m— 1}
such that the system

Hkx=b (mod m)

has at least one solution.



Calculating Sy m

> Uni2 = 2Uns1 + Up, (Uo,U1) = (1,3)

» (Un)n>0=1,3,7,17,41,99,239, . ..

» Consider the system
11 +3x = by (mod 4)
3 +7% = by (mod 4)

v

2x1 = bp — by (mod 4)
For each value of b; there are at most 2 values for by.
Hence Sy 4 = 8.

v

v



Properties of the automata we consider

(H.1) Ay has a single strongly connected component Cy.

(H.2) For all states p,q in Cy with p # g, there exists a word Xy
such that oy (p, Xpq) € Cu and 6y (d, Xpq) & Cu, Or vice-versa.



General state complexity result

Theorem

Let m > 2 be an integer. Let U = (Up)n>0 be a linear
numeration system such that

(a) N is U-recognizable and Ay satisfies (H.1) and (H.2),
(b) (Un mod m),>g is purely periodic.

The number of states of the trim minimal automaton accepting
0* repy, (MN) from which infinitely many words are accepted is

|CU |&J,m-



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and Ay is
strongly connected, then the number of states of the trim
minimal automaton accepting 0* rep, (mN) is |Cy|Su,m.



Result for the /-bonacci system

Corollary

For U the /-bonacci numeration system, the number of states of
the trim minimal automaton accepting 0* rep,, (mN) is /m’.
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Structure of the minimal automaton Ay
recognizing 0" rep (N)



The Fibonacci numeration system

0

» Uppo=Upr1+Un(Uo=1, U =2)
» Ay accepts all words that do not contain 11.



The ¢-bonacci numeration system

» Upnyr = Unjr—1 +Upppo+ -+ Uy
»Ui=2,ic{0,...,0 -1}
» Ay accepts all words that do not contain 1¢.



First results

Let U be a linear numeration system such that rep,(N) is
regular.

(i) The automaton Ay has a non-trivial strongly connected
component Cy containing the initial state.

(ii) If pis a state in Cy, then there exists N € N such that

du(p,0") = quo for all n > N. In particular, one cannot
leave Cy by reading a 0.




Theorem (contd.)

(i) If Cy is the only non-trivial strongly connected component
of Ay, then n”T Unt1 — Up = +00.
— 100

(iv) If ] IiT Unt1 — Un = +o00, then éy(du,o, 1) is in Cy.



Dominant root condition

» U satisfies the dominant root condition if
lim Upy1/Un = 3 for some real 5 > 1.
n——+oo
» (is the dominant root of the recurrence.
» E.g., Fibonacci: dominant root 8 = (1+ v/5)/2

Theorem (contd.)

Suppose U has a dominant root g > 1.

» If Ay has more than one non-trivial strongly connected
component, then any such component other than Cy is a
cycle all of whose edges are labeled 0.

> If ”T Unt1/Un = 7, then there is only one non-trivial
N——+o00
strongly connected component.




An example with two components

Lett > 1.

Let Up = 1, Upy1 = 2Up + 1, and

Utnir = 2Upgr—1, forl <r <t.

E.g., fort =2we have U = (1,3,6,13,26,53,...).
Then 0* repy (N) = {0, 1}* U {0, 1}*2(0")*.

The second component is a cycle of t 0's.

vV v.v. v v Yy

0,1




If U is a linear numeration system has a dominant root 5 and if
repy (N) is regular, then g is a Parry number.

With any Parry number ( is associated a canonical finite
automaton Agz.

We will study the relationship between Ay and Ag.

» M. Hollander, Greedy numeration systems and regularity, Theory
Comput. Systems 31 (1998).



An example of the automaton Ag

0,1 0

RARS
» Let 3 be the largest root of X3 — 2X2 — 1.
> ds(1) = 2010° and d’(1) = (200)*.

» This automaton also accepts rep, (N) for U defined by
Un+3 = 2Uns2 + Un, (Uo, Uy, Uz) = (1,3, 7).

PAU:.Ag




Bertrand numeration systems

» Bertrand numeration system: wis in rep, (N) if and only if
wO is in repy (N).
» E.g., the ¢-bonacci system is Bertrand.




A non-Bertrand system

» Upyo = Unp1+ Up, (Up=1,U; = 3)
» (Un)nso = 1,3,4,7,11,18,29,47, ...
» 2is a greedy representation but 20 is not.



Theorem (Bertrand)

A system U is Bertrand if and only if there is a 5 > 1 such that
0" repy (N) = Fact(Dg).

Moreover, the system is derived from the 3-development of 1.

» If §is a Parry number, the system is linear and we have a
minimal finite automaton Ag accepting Fact(Dg).

» Consequently, rep, (N) is regular and Ay = Ag.



Applying our state complexity result to the Bertrand
systems

Proposition

Let U be the Bertrand numeration system associated with a
non-integer Parry number g > 1. The set N is U-recognizable
and the trim minimal automaton Ay of 0* rep, (N) fulfills
properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand
numeration systems.



Back to a previous example

0,1 0

. 2 ’ 0
» Let 3 be the largest root of X3 — 2X2 — 1.
> ds(1) = 2010~ and d’(1) = (200)*.

» This automaton accepts rep, (N) for U defined by
Un+3 = 2Uns2 + Un, (Uo, Uy, Uz) = (1,3, 7).

PAU:.Ag




Changing the initial conditions
3,4

> Unys = 2Uns2 + Un, (Ug,Ug, Uz) = (1,3,7)
» We change the initial values to (Ug, U1, Uz) = (1,5, 6).
» Au # Ag



Relationship with A

Theorem (contd.)

Suppose U has a dominant root § > 1. There is a morphism of
automata ¢ from Cy to Asg.

® maps the states of Cy onto the states of A3 so that

> ®(quo) = s,
» for all states g and all letters o such that g and dy(q, o) are
in Cy, we have ®(dy(g,0)) = d3(®(q),0).






Other results

» When U has a dominant root 3 > 1, we can say more.

» E.g., if Ay has more than one non-trivial strongly
connected component, then dg(1) is finite.

» We can also give sufficient conditions for Ay to have more
than one non-trivial strongly connected component.

» In addition, we can give an upper bound on the number of
non-trivial strongly connected components.

» When U has no dominant root, the situation is more
complicated.



Further work

» Analyze the structure of Ay for systems with no dominant
root.

» Remove the assumption that U is purely periodic in the
state complexity result.

» Big open problem: Given an automaton accepting rep (X),
is it decidable whether X is an ultimately periodic set?



