Structure of the minimal automaton of a numeration language

State complexity of testing divisibility

É. Charlier N. Rampersad M. Rigo L. Waxweiler

Département de mathématiques
Université de Liège
Journées montoises d'informatique théorique 2010 Amiens, September 6

An example first

13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12

The set $2 \mathbb{N}$ of even integers is F-recognizable or F-automatic, i.e., the language $\operatorname{rep}_{F}(2 \mathbb{N})=\{\varepsilon, 10,101,1001,10000, \ldots\}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Fibonacci system, any F-recognizable set can be considered as a "particularly simple" set of integers.

We get a similar definition for other numeration systems.

Numeration systems

- A numeration system is an increasing sequence of integers $U=\left(U_{n}\right)_{n \geq 0}$ such that
- $U_{0}=1$ and
- $C_{U}:=\sup _{n \geq 0}\left\lceil U_{n+1} / U_{n}\right\rceil<+\infty$.
- U is linear if it satisfies a linear recurrence relation over \mathbb{Z}.

Example

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence with $F_{0}=1$ and $F_{1}=2$.

- Let $n \in \mathbb{N}$. A word $w=w_{\ell-1} \cdots w_{0}$ over \mathbb{N} represents n if

$$
\sum_{i=0}^{\ell-1} w_{i} U_{i}=n
$$

Greedy representations

- A representation $w=w_{\ell-1} \cdots w_{0}$ of an integer is greedy if

$$
\forall j, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j}
$$

- In that case, $w \in\left\{0,1, \ldots, C_{U}-1\right\}^{*}$.
- $\operatorname{rep}_{U}(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.
- $X \subseteq \mathbb{N} U$-recognizable $\stackrel{\Delta}{\Leftrightarrow} \operatorname{rep}_{U}(X)$ is accepted by a finite automaton.
- $\operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.

Motivations

- Cobham's theorem for integer base systems (1969) shows that recognizability depends on the choice of the base. Only ultimately periodic sets are recognizable in all bases.
- Introduction of non-standard numeration systems and study U-recognizable sets.
- If \mathbb{N} is U-recognizable, then U is linear and any ultimately periodic set is U-recognizable.
- V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS 1 (1994).
- V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, TCS 181 (1997).

Motivations

What is the "best automaton" we can get?

DFAs accepting the binary representations of $4 \mathbb{N}+3$.

Question

The general algorithm doesn't provide a minimal automaton. What is the state complexity of $0^{*} \operatorname{rep}_{U}(p \mathbb{N}+r)$?

Background (I)

Theorem

If L accepted by an n-state DFA, then the minimal automaton accepting the language of words of L indexed by the multiples of m (w.r.t. the radix order) has at most $n m^{n}$ states.

- D. Krieger, A. Miller, N. Rampersad, B. Ravikumar, J. Shallit, Decimations of languages and state complexity, TCS 410 (2009).

For $x, y \in \mathbb{N}$, we have $x<y \Leftrightarrow \operatorname{rep}_{U}(x)<_{\text {rad }} \operatorname{rep}_{U}(y)$.
In particular, if $\operatorname{rep}_{U}(\mathbb{N})$ is accepted by an n-state DFA, then the minimal automaton accepting $\operatorname{rep}_{U}(m \mathbb{N})$ has at most $n m^{n}$ states.

Background (II)

Alexeev's result

Let $b, m \geq 2$. Let N, M be such that $b^{N}<m \leq b^{N+1}$ and

$$
(m, 1)<(m, b)<\cdots<\left(m, b^{M}\right)=\left(m, b^{M+1}\right)=\left(m, b^{M+2}\right)=\cdots .
$$

The minimal automaton accepting the base b representations of the multiples of m has exactly

$$
\frac{m}{\left(m, b^{N+1}\right)}+\sum_{t=0}^{\inf \{N, M-1\}} \frac{b^{t}}{\left(m, b^{t}\right)} \text { states. }
$$

- B. Alexeev, Minimal DFA for testing divisibility, JCSS 69 (2004).

Background (III)

Honkala's decision procedure

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

- J. Honkala, A decision method for the recognizability of sets defined by number systems, Theor. Inform. Appl. 20 (1986).
- J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits of an automatic sequence, TCS 410 (2009).
- J. Bell, É. C., A. S. Fraenkel, M. Rigo, A decision problem for ultimately periodic sets in non-standard numeration systems, IJAC 19 (2009).

Information we are looking for

Consider a linear numeration system U such that \mathbb{N} is U-recognizable. How many states does the minimal automaton recognizing $0^{*} \operatorname{rep}_{U}(m \mathbb{N})$ contain?

1. Give upper/lower bounds?
2. Study special cases, e.g., Fibonacci numeration system?
3. Get information on the minimal automaton \mathcal{A}_{U} recognizing $0^{*} \operatorname{rep}_{U}(\mathbb{N})$?

The Hankel matrix

- Let $U=\left(U_{n}\right)_{n \geq 0}$ be a numeration system.
- For $t \geq 1$ define

$$
H_{t}:=\left(\begin{array}{cccc}
U_{0} & U_{1} & \cdots & U_{t-1} \\
U_{1} & U_{2} & \cdots & U_{t} \\
\vdots & \vdots & \ddots & \vdots \\
U_{t-1} & U_{t} & \cdots & U_{2 t-2}
\end{array}\right)
$$

- For $m \geq 2$, define $k_{U, m}$ to be the largest t such that $\operatorname{det} H_{t} \not \equiv 0(\bmod m)$.

Calculating $k_{U, m}$

- $U_{n+2}=2 U_{n+1}+U_{n},\left(U_{0}, U_{1}\right)=(1,3)$
- $\left(U_{n}\right)_{n \geq 0}=1,3,7,17,41,99,239, \ldots$
- $\left(U_{n} \bmod 2\right)_{n \geq 0}$ is constant and trivially satisfies the recurrence relation $U_{n+1}=U_{n}$ with $U_{0}=1$.
- Hence $k_{U, 2}=1$.
- Modulo 4 we find $k_{U, 4}=2$.

A system of linear congruences

- Let $k=k_{U, m}$.
- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$.
- Let $S_{U, m}$ denote the number of k-tuples \mathbf{b} in $\{0, \ldots, m-1\}^{k}$ such that the system

$$
H_{k} \mathbf{x} \equiv \mathbf{b} \quad(\bmod m)
$$

has at least one solution.

Calculating $S_{U, m}$

- $U_{n+2}=2 U_{n+1}+U_{n},\left(U_{0}, U_{1}\right)=(1,3)$
- $\left(U_{n}\right)_{n \geq 0}=1,3,7,17,41,99,239, \ldots$
- Consider the system

$$
\left\{\begin{array}{lll}
1 x_{1}+3 x_{2} & \equiv b_{1} & (\bmod 4) \\
3 x_{1}+7 x_{2} & \equiv b_{2} & (\bmod 4)
\end{array}\right.
$$

- $2 x_{1} \equiv b_{2}-b_{1}(\bmod 4)$
- For each value of b_{1} there are at most 2 values for b_{2}.
- Hence $S_{U, 4}=8$.

Properties of the automata we consider

(H.1) \mathcal{A}_{U} has a single strongly connected component \mathcal{C}_{U}.
(H.2) For all states p, q in \mathcal{C}_{U} with $p \neq q$, there exists a word $x_{p q}$ such that $\delta_{U}\left(p, x_{p q}\right) \in \mathcal{C}_{U}$ and $\delta_{U}\left(q, x_{p q}\right) \notin \mathcal{C}_{U}$, or vice-versa.

General state complexity result

Theorem

Let $m \geq 2$ be an integer. Let $U=\left(U_{n}\right)_{n \geq 0}$ be a linear numeration system such that
(a) \mathbb{N} is U-recognizable and \mathcal{A}_{U} satisfies (H.1) and (H.2),
(b) $\left(U_{n} \bmod m\right)_{n \geq 0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^{*} \operatorname{rep}_{U}(m \mathbb{N})$ from which infinitely many words are accepted is

$$
\left|\mathcal{C}_{U}\right| S_{U, m}
$$

Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathcal{A}_{U} is strongly connected, then the number of states of the trim minimal automaton accepting $0^{*} \operatorname{rep}_{U}(m \mathbb{N})$ is $\left|\mathcal{C}_{U}\right| S_{U, m}$.

Result for the ℓ-bonacci system

Corollary

For U the ℓ-bonacci numeration system, the number of states of the trim minimal automaton accepting $0^{*} \operatorname{rep}_{U}(m \mathbb{N})$ is ℓm.

13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12
						\vdots

Structure of the minimal automaton \mathcal{A}_{U} recognizing $0^{*} \operatorname{rep}_{U}(\mathbb{N})$

The Fibonacci numeration system

- $U_{n+2}=U_{n+1}+U_{n}\left(U_{0}=1, U_{1}=2\right)$
- \mathcal{A}_{U} accepts all words that do not contain 11 .

The ℓ-bonacci numeration system

- $U_{n+\ell}=U_{n+\ell-1}+U_{n+\ell-2}+\cdots+U_{n}$
- $U_{i}=2^{i}, i \in\{0, \ldots, \ell-1\}$
- \mathcal{A}_{U} accepts all words that do not contain 1^{ℓ}.

First results

Theorem

Let U be a linear numeration system such that $\operatorname{rep}_{U}(\mathbb{N})$ is regular.
(i) The automaton \mathcal{A}_{U} has a non-trivial strongly connected component \mathcal{C}_{U} containing the initial state.
(ii) If p is a state in \mathcal{C}_{U}, then there exists $N \in \mathbb{N}$ such that $\delta_{U}\left(p, 0^{n}\right)=q_{U, 0}$ for all $n \geq N$. In particular, one cannot leave \mathcal{C}_{U} by reading a 0 .

Theorem (cont'd.)

(iii) If \mathcal{C}_{U} is the only non-trivial strongly connected component of \mathcal{A}_{U}, then $\lim _{n \rightarrow+\infty} U_{n+1}-U_{n}=+\infty$.
(iv) If $\lim _{n \rightarrow+\infty} U_{n+1}-U_{n}=+\infty$, then $\delta_{U}\left(q_{U, 0}, 1\right)$ is in \mathcal{C}_{U}.

Dominant root condition

- U satisfies the dominant root condition if

$$
\lim _{n \rightarrow+\infty} U_{n+1} / U_{n}=\beta \text { for some real } \beta>1
$$

- β is the dominant root of the recurrence.
- E.g., Fibonacci: dominant root $\beta=(1+\sqrt{5}) / 2$

Theorem (cont'd.)

Suppose U has a dominant root $\beta>1$.

- If \mathcal{A}_{U} has more than one non-trivial strongly connected component, then any such component other than \mathcal{C}_{U} is a cycle all of whose edges are labeled 0 .
- If $\lim _{n \rightarrow+\infty} U_{n+1} / U_{n}=\beta^{-}$, then there is only one non-trivial strongly connected component.

An example with two components

- Let $t \geq 1$.
- Let $U_{0}=1, U_{t n+1}=2 U_{t n}+1$, and
- $U_{t n+r}=2 U_{t n+r-1}$, for $1<r \leq t$.
- E.g., for $t=2$ we have $U=(1,3,6,13,26,53, \ldots)$.
- Then $0^{*} \operatorname{rep}_{U}(\mathbb{N})=\{0,1\}^{*} \cup\{0,1\}^{*} 2\left(0^{t}\right)^{*}$.
- The second component is a cycle of $t 0$'s.

If U is a linear numeration system has a dominant root β and if $\operatorname{rep}_{U}(\mathbb{N})$ is regular, then β is a Parry number.

With any Parry number β is associated a canonical finite automaton \mathcal{A}_{β}.

We will study the relationship between \mathcal{A}_{U} and \mathcal{A}_{β}.

- M. Hollander, Greedy numeration systems and regularity, Theory Comput. Systems 31 (1998).

An example of the automaton \mathcal{A}_{β}

- Let β be the largest root of $X^{3}-2 X^{2}-1$.
- $\mathrm{d}_{\beta}(1)=2010^{\omega}$ and $\mathrm{d}_{\beta}^{*}(1)=(200)^{\omega}$.
- This automaton also accepts $\operatorname{rep}_{U}(\mathbb{N})$ for U defined by $U_{n+3}=2 U_{n+2}+U_{n},\left(U_{0}, U_{1}, U_{2}\right)=(1,3,7)$.
- $\mathcal{A}_{U}=\mathcal{A}_{\beta}$

Bertrand numeration systems

- Bertrand numeration system: w is in $\operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0$ is in $\operatorname{rep}_{U}(\mathbb{N})$.
- E.g., the ℓ-bonacci system is Bertrand.

A non-Bertrand system

- $U_{n+2}=U_{n+1}+U_{n},\left(U_{0}=1, U_{1}=3\right)$
- $\left(U_{n}\right)_{n \geq 0}=1,3,4,7,11,18,29,47, \ldots$
- 2 is a greedy representation but 20 is not.

Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta>1$ such that

$$
0^{*} \operatorname{rep}_{U}(\mathbb{N})=\operatorname{Fact}\left(D_{\beta}\right)
$$

Moreover, the system is derived from the β-development of 1 .

- If β is a Parry number, the system is linear and we have a minimal finite automaton \mathcal{A}_{β} accepting $\operatorname{Fact}\left(D_{\beta}\right)$.
- Consequently, $\operatorname{rep}_{U}(\mathbb{N})$ is regular and $\mathcal{A}_{U}=\mathcal{A}_{\beta}$.

Applying our state complexity result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a non-integer Parry number $\beta>1$. The set \mathbb{N} is U-recognizable and the trim minimal automaton \mathcal{A}_{U} of $0^{*} \operatorname{rep}_{U}(\mathbb{N})$ fulfills properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand numeration systems.

Back to a previous example

- Let β be the largest root of $X^{3}-2 X^{2}-1$.
- $\mathrm{d}_{\beta}(1)=2010^{\omega}$ and $\mathrm{d}_{\beta}^{*}(1)=(200)^{\omega}$.
- This automaton accepts $\operatorname{rep}_{U}(\mathbb{N})$ for U defined by

$$
U_{n+3}=2 U_{n+2}+U_{n},\left(U_{0}, U_{1}, U_{2}\right)=(1,3,7)
$$

- $\mathcal{A}_{U}=\mathcal{A}_{\beta}$

Changing the initial conditions

- $U_{n+3}=2 U_{n+2}+U_{n},\left(U_{0}, U_{1}, U_{2}\right)=(1,3,7)$
- We change the initial values to $\left(U_{0}, U_{1}, U_{2}\right)=(1,5,6)$.
- $\mathcal{A}_{U} \neq \mathcal{A}_{\beta}$

Relationship with \mathcal{A}_{β}

Theorem (cont'd.)

Suppose U has a dominant root $\beta>1$. There is a morphism of automata Φ from \mathcal{C}_{U} to \mathcal{A}_{β}.
Φ maps the states of \mathcal{C}_{U} onto the states of \mathcal{A}_{β} so that

- $\Phi\left(q_{U, 0}\right)=q_{\beta, 0}$,
- for all states q and all letters σ such that q and $\delta_{U}(q, \sigma)$ are in \mathcal{C}_{U}, we have $\Phi\left(\delta_{U}(q, \sigma)\right)=\delta_{\beta}(\Phi(q), \sigma)$.

Other results

- When U has a dominant root $\beta>1$, we can say more.
- E.g., if \mathcal{A}_{U} has more than one non-trivial strongly connected component, then $\mathrm{d}_{\beta}(1)$ is finite.
- We can also give sufficient conditions for \mathcal{A}_{U} to have more than one non-trivial strongly connected component.
- In addition, we can give an upper bound on the number of non-trivial strongly connected components.
- When U has no dominant root, the situation is more complicated.

Further work

- Analyze the structure of \mathcal{A}_{U} for systems with no dominant root.
- Remove the assumption that U is purely periodic in the state complexity result.
- Big open problem: Given an automaton $\operatorname{accepting~}^{\operatorname{rep}_{U}(X),}$ is it decidable whether X is an ultimately periodic set?

