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The set 2N of even integers is F-recognizable or F-automatic,
i.e., the language repF(2N) = {ε, 10, 101, 1001, 10000, . . .} is
accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Fibonacci system, any F-recognizable set
can be considered as a “particularly simple” set of integers.

We get a similar definition for other numeration systems.



Numeration systems

◮ A numeration system is an increasing sequence of
integers U = (Un)n≥0 such that

◮ U0 = 1 and
◮ CU := sup

n≥0
⌈Un+1/Un⌉ < +∞.

◮ U is linear if it satisfies a linear recurrence relation over Z.

Example

Let (Fn)n≥0 be the Fibonacci sequence with F0 = 1 and F1 = 2.

◮ Let n ∈ N. A word w = wℓ−1 · · ·w0 over N represents n if

ℓ−1
∑

i=0

wi Ui = n.



Greedy representations

◮ A representation w = wℓ−1 · · ·w0 of an integer is greedy if

∀j,
j−1
∑

i=0

wi Ui < Uj.

◮ In that case, w ∈ {0, 1, . . . , CU − 1}∗.
◮ repU(n) is the greedy representation of n with wℓ−1 6= 0.

◮ X ⊆ N U-recognizable ∆⇔ repU(X) is accepted by a finite
automaton.

◮ repU(N) is the numeration language.



Motivations

• Cobham’s theorem for integer base systems (1969) shows
that recognizability depends on the choice of the base.
Only ultimately periodic sets are recognizable in all bases.

• Introduction of non-standard numeration systems and
study U-recognizable sets.

• If N is U-recognizable, then U is linear and any ultimately
periodic set is U-recognizable.

◮ V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and
p-recognizable sets of integers, BBMS 1 (1994).

◮ V. Bruyère, G. Hansel, Bertrand numeration systems and
recognizability, TCS 181 (1997).



Motivations
What is the “best automaton” we can get?
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DFAs accepting the binary representations of 4N + 3.

Question

The general algorithm doesn’t provide a minimal automaton.
What is the state complexity of 0∗ repU(pN + r)?



Background (I)

Theorem

If L accepted by an n-state DFA, then the minimal automaton
accepting the language of words of L indexed by the multiples
of m (w.r.t. the radix order) has at most nmn states.

◮ D. Krieger, A. Miller, N. Rampersad, B. Ravikumar, J. Shallit,
Decimations of languages and state complexity, TCS 410 (2009).

For x, y ∈ N, we have x < y ⇔ repU(x) <rad repU(y).

In particular, if repU(N) is accepted by an n-state DFA, then the
minimal automaton accepting repU(mN) has at most nmn states.



Background (II)

Alexeev’s result

Let b, m ≥ 2. Let N, M be such that bN < m ≤ bN+1 and

(m, 1) < (m, b) < · · · < (m, bM) = (m, bM+1) = (m, bM+2) = · · · .

The minimal automaton accepting the base b representations
of the multiples of m has exactly

m
(m, bN+1)

+

inf{N,M−1}
∑

t=0

bt

(m, bt)
states.

◮ B. Alexeev, Minimal DFA for testing divisibility, JCSS 69 (2004).



Background (III)

Honkala’s decision procedure

Given any finite automaton recognizing a set X of integers
written in base b, it is decidable whether X is ultimately periodic.

◮ J. Honkala, A decision method for the recognizability of sets
defined by number systems, Theor. Inform. Appl. 20 (1986).

◮ J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions,
and orbits of an automatic sequence, TCS 410 (2009).

◮ J. Bell, É. C., A. S. Fraenkel, M. Rigo, A decision problem for
ultimately periodic sets in non-standard numeration systems,
IJAC 19 (2009).



Information we are looking for

Consider a linear numeration system U such that N is
U-recognizable. How many states does the minimal automaton
recognizing 0∗ repU(mN) contain?

1. Give upper/lower bounds?

2. Study special cases, e.g., Fibonacci numeration system?

3. Get information on the minimal automaton AU recognizing
0∗ repU(N)?



The Hankel matrix

◮ Let U = (Un)n≥0 be a numeration system.
◮ For t ≥ 1 define

Ht :=











U0 U1 · · · Ut−1

U1 U2 · · · Ut
...

...
. . .

...
Ut−1 Ut · · · U2t−2











.

◮ For m ≥ 2, define kU,m to be the largest t such that
det Ht 6≡ 0 (mod m).



Calculating kU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ (Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

◮ (Un mod 2)n≥0 is constant and trivially satisfies the
recurrence relation Un+1 = Un with U0 = 1.

◮ Hence kU,2 = 1.
◮ Modulo 4 we find kU,4 = 2.



A system of linear congruences

◮ Let k = kU,m.
◮ Let x = (x1, . . . , xk).
◮ Let SU,m denote the number of k-tuples b in {0, . . . , m − 1}k

such that the system

Hk x ≡ b (mod m)

has at least one solution.



Calculating SU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ (Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

◮ Consider the system
{

1 x1 + 3 x2 ≡ b1 (mod 4)
3 x1 + 7 x2 ≡ b2 (mod 4)

◮ 2x1 ≡ b2 − b1 (mod 4)

◮ For each value of b1 there are at most 2 values for b2.
◮ Hence SU,4 = 8.



Properties of the automata we consider

(H.1) AU has a single strongly connected component CU.

(H.2) For all states p, q in CU with p 6= q, there exists a word xpq

such that δU(p, xpq) ∈ CU and δU(q, xpq) 6∈ CU, or vice-versa.



General state complexity result

Theorem

Let m ≥ 2 be an integer. Let U = (Un)n≥0 be a linear
numeration system such that

(a) N is U-recognizable and AU satisfies (H.1) and (H.2),

(b) (Un mod m)n≥0 is purely periodic.

The number of states of the trim minimal automaton accepting
0∗ repU(mN) from which infinitely many words are accepted is

|CU|SU,m.



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and AU is
strongly connected, then the number of states of the trim
minimal automaton accepting 0∗ repU(mN) is |CU|SU,m.



Result for the ℓ-bonacci system
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Corollary

For U the ℓ-bonacci numeration system, the number of states of
the trim minimal automaton accepting 0∗ repU(mN) is ℓmℓ.
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Structure of the minimal automaton AU

recognizing 0∗ repU(N)



The Fibonacci numeration system
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◮ Un+2 = Un+1 + Un (U0 = 1, U1 = 2)
◮ AU accepts all words that do not contain 11.



The ℓ-bonacci numeration system
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◮ Un+ℓ = Un+ℓ−1 + Un+ℓ−2 + · · · + Un

◮ Ui = 2i, i ∈ {0, . . . , ℓ − 1}
◮ AU accepts all words that do not contain 1ℓ.



First results

Theorem

Let U be a linear numeration system such that repU(N) is
regular.

(i) The automaton AU has a non-trivial strongly connected
component CU containing the initial state.

(ii) If p is a state in CU, then there exists N ∈ N such that
δU(p, 0n) = qU,0 for all n ≥ N. In particular, one cannot
leave CU by reading a 0.



Theorem (cont’d.)

(iii) If CU is the only non-trivial strongly connected component
of AU, then lim

n→+∞
Un+1 − Un = +∞.

(iv) If lim
n→+∞

Un+1 − Un = +∞, then δU(qU,0, 1) is in CU.



Dominant root condition

◮ U satisfies the dominant root condition if
lim

n→+∞
Un+1/Un = β for some real β > 1.

◮ β is the dominant root of the recurrence.
◮ E.g., Fibonacci: dominant root β = (1 +

√
5)/2

Theorem (cont’d.)

Suppose U has a dominant root β > 1.
◮ If AU has more than one non-trivial strongly connected

component, then any such component other than CU is a
cycle all of whose edges are labeled 0.

◮ If lim
n→+∞

Un+1/Un = β−, then there is only one non-trivial

strongly connected component.



An example with two components

◮ Let t ≥ 1.
◮ Let U0 = 1, Utn+1 = 2Utn + 1, and
◮ Utn+r = 2Utn+r−1, for 1 < r ≤ t.
◮ E.g., for t = 2 we have U = (1, 3, 6, 13, 26, 53, . . .).
◮ Then 0∗ repU(N) = {0, 1}∗ ∪ {0, 1}∗2(0t)∗.

◮ The second component is a cycle of t 0’s.

0, 1

2
0

0

0

0

0



If U is a linear numeration system has a dominant root β and if
repU(N) is regular, then β is a Parry number.

With any Parry number β is associated a canonical finite
automaton Aβ.

We will study the relationship between AU and Aβ.

◮ M. Hollander, Greedy numeration systems and regularity, Theory
Comput. Systems 31 (1998).



An example of the automaton Aβ

0, 1

2 0

0

◮ Let β be the largest root of X3 − 2X2 − 1.
◮ dβ(1) = 2010ω and d∗

β(1) = (200)ω .
◮ This automaton also accepts repU(N) for U defined by

Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7).
◮ AU = Aβ



Bertrand numeration systems

◮ Bertrand numeration system: w is in repU(N) if and only if
w0 is in repU(N).

◮ E.g., the ℓ-bonacci system is Bertrand.
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A non-Bertrand system
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◮ Un+2 = Un+1 + Un, (U0 = 1, U1 = 3)

◮ (Un)n≥0 = 1, 3, 4, 7, 11, 18, 29, 47, . . .

◮ 2 is a greedy representation but 20 is not.



Theorem (Bertrand)

A system U is Bertrand if and only if there is a β > 1 such that

0∗ repU(N) = Fact(Dβ).

Moreover, the system is derived from the β-development of 1.

◮ If β is a Parry number, the system is linear and we have a
minimal finite automaton Aβ accepting Fact(Dβ).

◮ Consequently, repU(N) is regular and AU = Aβ.



Applying our state complexity result to the Bertrand
systems

Proposition

Let U be the Bertrand numeration system associated with a
non-integer Parry number β > 1. The set N is U-recognizable
and the trim minimal automaton AU of 0∗ repU(N) fulfills
properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand
numeration systems.



Back to a previous example

0, 1

2 0

0

◮ Let β be the largest root of X3 − 2X2 − 1.
◮ dβ(1) = 2010ω and d∗

β(1) = (200)ω .
◮ This automaton accepts repU(N) for U defined by

Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7).
◮ AU = Aβ



Changing the initial conditions
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◮ Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7)

◮ We change the initial values to (U0, U1, U2) = (1, 5, 6).
◮ AU 6= Aβ



Relationship with Aβ

Theorem (cont’d.)

Suppose U has a dominant root β > 1. There is a morphism of
automata Φ from CU to Aβ.

Φ maps the states of CU onto the states of Aβ so that
◮ Φ(qU,0) = qβ,0,
◮ for all states q and all letters σ such that q and δU(q, σ) are

in CU, we have Φ(δU(q, σ)) = δβ(Φ(q), σ).
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Other results

◮ When U has a dominant root β > 1, we can say more.
◮ E.g., if AU has more than one non-trivial strongly

connected component, then dβ(1) is finite.
◮ We can also give sufficient conditions for AU to have more

than one non-trivial strongly connected component.
◮ In addition, we can give an upper bound on the number of

non-trivial strongly connected components.
◮ When U has no dominant root, the situation is more

complicated.



Further work

◮ Analyze the structure of AU for systems with no dominant
root.

◮ Remove the assumption that U is purely periodic in the
state complexity result.

◮ Big open problem: Given an automaton accepting repU(X),
is it decidable whether X is an ultimately periodic set?


