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Freeness problem

> Let S be a semigroup.
» X C Sisacodeif

forall mn>1and x1,...,Xm, ¥1,...,¥n € X,

X1X2 .- Xm = Y1Y2---Vn

|

m=nand Vi, x; = y;.

» Decide if a given finite subset of S is a code.



Reformulating the problem

» Let S be a semigroup.

» Y designates an alphabet (that is, a finite nonempty set).
» Decide if a given morphism p: ¥t — S is injective.

» In fact:

w is injective (on X T)

T

w1(X) is a code and p is injective on X



Case of matrix semigroups

v

Let R be a semiring and let k > 1 be an integer.

The sets R¥*k and Rllfstf are monoids.

v

Decide if a given morphism 1 : ¥* — R¥*K is injective.

v

» Most cases of this problem are undecidable.



Undecidability results

» Klarner, Birget, Satterfield (1991):
The freeness problem over N3*3 is undecidable.
» Cassaigne, Harju, Karhumaki (1999):

The problem remains undecidable for N7 3.

» Both results use the Post correspondence problem.



Case of 2 x 2 matrices

» The freeness problem for Q%*2 is still open.

2x2
uptr-

» Partial decidability/undecidability results by Bell, Blondel,
Cassaigne, Gawrychowski, Gutan, Harju, Honkala, Kisielewicz,
Nicolas, Karhumaki, Potapov.

» Actually: still open even for Q



Our contribution

» A language L C X* is called bounded if there are s € N and
words wy,...,ws € * such that
LCwiws...w,.

kxk

» Decide if a given morphism 1 : =% — Q¢

certain bounded languages.

is injective on

» This approach is inspired by the well-known fact that many
language theoretic problems which are undecidable in general
become decidable when restricted to bounded languages.



Main results

First result: We can decide the injectivity of a given morphism

. * 2x2
/u"{x7217"'72t+1} — uptr

on the language
21X zox 23 ... Zex Ze 41

(for any t > 1), provided that the matrices

w(z;) are nonsingular for 1 </ <t+1.



Main results

Second result: If we consider large enough matrices the problem
becomes undecidable even if restricted to certain very special
bounded languages.

» Hence, contrary to the common situation in language theory,
the restriction of the freeness problem over bounded languages
remains undecidable.

» We use a reduction to Hilbert’s 10th problem (as for example
in [1] and [2]).

[1] Kuich-Salomaa (1986): Semirings, Automata, Languages.
[2] Bell-Halava-Harju-Karhumaki (2007): Matrix equations and Hilbert’s 10th

problem.



Precise statements

Theorem 1 (C-Honkala 2014)

Let t be a positive integer. It is decidable whether a given morphism

2%2
M- {Xazh ce 7zl'+1}* - Qu;tr
such that u(z;) is nonsingular for i =1,..., t+ 1, is injective on

* * *
21X 29X z3 - ZgX T Zpy .

Theorem 2 (C-Honkala 2014)

There exist two positive integers k and t such that there is no
algorithm to decide whether a given morphism

. kxk
M {Xa)/7zl7z2}* — Zuptr

is injective on z; (x*y ) 1x* 2.



Some more comments on our results

» The languages

7 (X*y)tflx*

are the simplest bounded languages for which we are able to
show undecidability while the languages

22

21X 2px¥z3 - Zex¥ zp 41

are the most general ones for which we can show decidability.

» While bounded languages have a simple structure the induced
matrix products can be used to represent very general sets.

» Our proof gives a method to compute the integers k and t in
the second theorem.



Some examples

Example (t = 2)
Let

0=(39) = (3 1)
Then

. am+n m
u(xMzpx") = < 2 30 2 ) for all m,n e N.

Hence 1 is injective on zy1x*zox*z3.
2 ) 1X 22X Z3

Recall that u(z1) and p(z3) are nonsingular.



Example (t = 1)
Let
b
,u(x):c( 0 1 ) where b,c € Q and ¢ # 0.

Then

u(x”)zc”(é n1b> for all n € N.

It follows that there exist different m, n € N such that

if and only if
ce{-1,1} and b=0.

Hence p is injective on zix*z iff ¢ ¢ {—1,1} or b # 0.



Example (t = 2)
Let
,u(x)zc( é [1) ) where b, c € Q and ¢ # 0,
and
A B
)= (5 ¢ ) e

Then, for all m,n € N,

A Cbm+ Abn+ B )

u(x"zpx") = Cm+n< 0 C

Hence p is injective on z1x*zpx*z3 iff ¢ & {—1,1} and Ab # Cb.



Example (¢t > 3)
1 b
Let,u(x):c(o 1)where b,ceQ and c #0,

and uz) = (¢ )one) = (g ¢ )€U

Then, forall £,m,n € N,

1(x zoxMz3x™)
_ Cg+m+,,( AD CFbl + AFbm + ADbn + AE + BF )
0 CF

Then we can find different (¢, m, n), (¢',m’,n’) € N® such that

(l+m+n = V+m+n, and
CFl+ AFm+ ADn = CFV + AFm' + ADn'.

This implies that p is not injective on zyx*zox™* - -+ zx*zp4 1.



From matrices to representations of rational numbers

» For any m € QQ, we introduce a corresponding letter .

» We regard the elements of the set Q; = {m | m € Q} as
digits.
» For any r € Q\{0}, we define

n—1
val,(wp—1 ---wamp) = E w; r'
i=0

where the w;'s belong to Q;.



A decidability method for Theorem 1

To prove Theorem 1 we study representations of rational numbers
in a rational base.

Lemma
Let s € N\{0}, /ethc( 3 [1) ) with a, b, c € Q and,
. A; B;
fori=1,...,5+1, /etN,-:< OI C:- ) EQﬁ;tzr
Then we can compute di,d>, q1,...,9s+1,P1,---,Ps € Q such that

for all my, ..., mg € N\{0},

NiM™ Ny - - NgM™ Ngq
s—1

:Czi_lm,-<d1a27—1’”f valo(@pi @ Gshs qs+1)>
0 d ‘



Comparison of the representations
If ¥ is an alphabet, we let 3 be the alphabet defined by

i:{[gl]:al,@GZ}.

For convenience, we write
e )= [
Oj Oj Oj 0j10jp " 0jy

Lemma
Let S C Q be a finite nonempty set, let S; = {s: s € S} and let
X =51. Let r ¢ Q\{—1,0,1}. Then the language

L= {[ " } e X" : val,(w) ZVa|r(W2)}

W2

is effectively regular.



Sketch of the proof of Theorem 2

Main idea: use the undecidability of Hilbert’s 10th problem
combined with the following result.

Lemma
Let t be any positive integer and p(xi,...,x;) be any polynomial
with integer coefficients. Then there effectively exists a positive
integer k and matrices A, M,N,B € Zﬁ;tl; such that
0 --- 0 p(ai,...,ar)
ay ap ap 0 cte O 0
AM "NM*N..-NM B = .
0 0 0

for all a1,...,a; € N.



Strong version of the undecidability of Hilbert's 10th
problem

Theorem 3.20 in [3]

There exists a polynomial P(xq,x2, ..., xm) with integer coefficients
such that no algorithm exists for the following problem:

Given a € N\{0}, decide if there exist by, ..., by € N such that

P(a,bg,...,bm) =0.

[3] Rozenberg-Salomaa (1994): Cornerstones of undecidability.



