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Cantor real bases and alternate bases

A Cantor real base is a sequence B = (8n)n>0 of real numbers such that

» B, >1forall n
> H:ioﬁ”:oo'

A B-representation of a real number x is an infinite sequence a = (an)n>0 of integers such that

o a e
" Bo BB BoBiBe

In this case, we write valg(a) = x.

For x € [0,1], a distinguished B-representation

dB(X) = (5n)n207

called the B-expansion of x, is obtained from the greedy algorithm:
> We first set rp = x.

» Then set e, = |Bnrn]| and rpp1 = Bnrn — €n for n > 0.

An alternate base is a periodic Cantor base. In this case, we simply write B = (5o, ..., 8p—1)
and we use the convention that 8, = 8, mod p for all n > 0.



Motivation

Representing integers -
. . Representing real numbers
via an integer

via a real base 8

base sequence U

Bertrand-Mathis's work

Un+1
T, P

When [f” — 3, there is a similar relationship with representations of real numbers via some

n

alternate base B = (fq, ..., Bp—1)-



Let's look at a few examples

» The sequence B = (1 + 2n%),,zo is not a Cantor real base since H:io Bn < 0.
If we perform the greedy algorithm on x = 1, we obtain the sequence of digits 10%,

which is clearly not a B-representation of 1.
> 1 . . oo
The sequence B = (2 + W)HZO is a Cantor real base since Hn:O Bn = oo.

> LetOc:LE/E andﬁ:“iﬂ.
Consider the alternate base B = (a, 8). Then dg(1) = 2010%.

n=1 g0 = larn] = H;/E =2
n =ar —¢c = _3+2\/E e1=|Bn]| = _Hs\/EJ =0
rn=p8n—¢e = 71+6\/ﬁ €2 = \_OérQJ = I_]-J =1
rB=arn—c =20 e3=[Brs] =[0] =0




> Let a = 7”;/@ and B = 75+g/ﬁ.
Let now B = (Bn)n>0 = (@, 8,5, @, . ..) be the Thue-Morse sequence over {a, 5}

o if [repy(n)]1 =0 (mod 2)

[ otherwise.

ﬁn:

We compute dg(1) = 20010110%.

n=1 o = |lan] =la] =2
n=arn—ec = —3+2\/ﬁ e1=|Bn] = {_HT‘/EJ =0
r=[fn—-c = —1+6\/E g2 = [Br2] = H%;/EJ =0
r=pPrn—e = 2+§ﬂ e3=|an] = 5+%@ =1
rp=ar3 —e3 = —1+6\/ﬁ es = |fn]| = {H;/EJ =0
rs = frs —es = 2+5/E g5 = |ars| = 5+%/E =1
re = Qurs — €5 = _Hﬁm g6 = |ars] = L_lJ = 1_
rr=arg—ep =0 e7=|Br] =10] =0




> Consider the alternate base B = (/6, 3, 2'*"f) Then dg(1) = 2(10)~.
ro:]. E()—I)[I‘oJZL J 2
r1:\/6r0—60:—2+\/6 1 L3r1J = L 6 — 3\/6J =
r2:3r1751:f7+3\/6 £2 2+\[ 3\/6 =0
f3:7%3,\/6@—62:74_3\/é 83* \fra = { J =
rg = \[I’3 —€e3 = 79+4\[ €4 = L3r4J = L 9+ J =0
=3 —c4=-9+4V6 €5 = 2+\/6 = 673\/6 =1
re = —2*3‘/5@ —&5 = 73_3\/6 €6 = L\[raJ = L 2+ \/J
=2 o= 246 3rr] = -6 -3v6] =1
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Parry’s theorem

Theorem (Parry 1960)

Let 3 > 1 be a real base. A sequence apaiay --- of non-negative integers is the 3-expansion of
some x € [0,1) if and only if anapti1ant2 -+ <lex dg(l) for all n.

Here d’é(l) is the quasi-greedy [-expansion of 1:

d3(1) = ds(1) if dg(1) is infinite
! (80 cee 5,772(5"71 — 1))“’ if dﬁ(l) =¢€0 - €p—10¥ with e,_1 > 0.
Example

Let p = % Then p?> = @ +1, hence 1 =
d3(1) = (10)~.

i + ﬁ We obtain d,(1) = 110* and



Parry’s theorem for Cantor real bases

Theorem (Parry 1960)

Let B > 1 be a real base. A sequence apaiay --- of non-negative integers is the 3-expansion of
some x € [0,1) if and only if anapt1ant2 -+ <lex dg(l) for all n.

Theorem (Caalim & Demegillo 2020, Charlier & Cisternino 2021)

Let B = (Bn)n>0 be a Cantor real base. A sequence apaiax --- of non-negative integers is the
B-expansion of some x € [0,1) if and only if anant1an+2 -+ <lex d;(")(l) for all n.

Here we use all shifted Cantor real bases

B(") = (ﬁny Bn+1, B2, - - )

and the quasi-greedy B-expansion of 1 has a recursive definition:

dy(1) = ds(1) if dg(1) is infinite
B €0 en—2(gn—1 — l)d;(n)(l) if dg(1) = €0 - - - en—10% with £,_1 > 0.



On an example

Consider the alternate base B = (Lé/ﬁ, %)

Then
dB(o)(l) = 2010w and dB(l)(l) = 110w.

We can compute

d*

" 0 (1) = 200(10)* = 20(01)* and d%) (1) = (10)“.

By the previous theorem, the infinite sequence
20001101010020(001)*

is the B-expansion of some x € [0,1), whereas the infinite sequence
2000110110020(001)*

isn't.



Combinatorial criteria for being the 3-expansion of 1

As a consequence of his theorem, Parry obtained a combinatorial criteria for being the
[3-expansion of 1:

Theorem (Parry 1960)

A [B-representation apaiap - -+ of 1 is its 3-expansion if and only if
anant1ant+2 - <lex d0aiaz--- foralln>1.

What we can deduce for Cantor real bases is:

Theorem (Charlier & Cisternino 2021)

A B-representation agaiaz - -- of 1 is its B-expansion if and only if
anant+iant2 - <lex d;(n)(l) foralln> 1.

However, this result does not provide a purely combinatorial criteria for Cantor real bases, and
this is true even for alternate bases.



A purely combinatorial condition for checking whether a B-representation is
greedy cannot exist

Given a sequence a = 3paiay - - -, there may exist more than one alternate base B such that
valg(a) = 1.

Among all of them, it may be that a is greedy for one and not greedy for another one:

» Consider a = 2(10)%.
Then vala(a) = valg(a) =1 for both A= (1+ ¢,2) and B = (%, %).
We can check that da(1) = a, but dg(1) # a since the first digit of da(1) is L%J =3.

A sequence a can be greedy for more than one alternate base:

(52, 1283) and (17, 22).

P> The sequence 110 is the B-expansion of 1 w.r.t ¢, 007

At the opposite, it may happen that a sequence a is a representation of 1 for several alternate

bases B but that none of these are such that a is greedy.

»> The sequence (10)“ is a B-representation of 1 for the previous 3 alternate bases.
Being purely periodic, it cannot be the B-expansion of 1 for any alternate base.



Alternate B-shift

For 8 > 1, the (3-shift is defined as the topological closure of the set {dg(x): x € [0,1)}.

Theorem (Bertrand-Mathis 1986)
The B-shift is sofic if and only if dg(l) is ultimately periodic.

For an alternate base B, the set {dg(x): x € [0,1)} is not shift-invariant in general.

The B-shift is defined as the topological closure of the set

p—1
U{dB(,-) (x): x € [0,1)}.
i=0

Theorem (Charlier & Cisternino 2021)
The B-shift is sofic if and only if d;(,.)(l) is ultimately periodic for all i € {0,...,p —1}.

In view of this result, we refer to such alternate bases as the Parry alternate bases.



Examples

For B = (113, 55/13) we have d7 (1) = 20(01) and d%, (1) = (10)“.

The following finite automaton accepts the set of factors of elements in the B-shift.




For B = (\/5,3, 2+3\/6), we have

) (1) = 2(10)%, d2,) (1) = (211001)%, d7, (1) = (110012).

The following finite automaton accepts the set of factors of elements in the B-shift.




Finite type?

A subshift S of AY is said to be of finite type if its minimal set of forbidden factors is finite.

Theorem (Bertrand-Mathis 1986)
The B-shift is of finite type if and only if dg(1) is finite.

However, this result does not generalize to alternate bases of length p > 2.

Indeed, for the alternate base B = (%ﬂ, %) we have
dB(O)(l) = 2010 and dB(l)(l) =11%.

Then
d;(o)(l) = 200(10)“ and d;(l)(l) = (10)¥

and we see that all words in 2(00)*2 are minimal forbidden factors, so the B-shift is not of
finite type.



Necessary conditions on B to be a Parry alternate base
Theorem (Charlier, Cisternino, Masakova & Pelantova 2022)
If B=(Bo,...,Bp—1) is a Parry alternate base and § = By -- - Bp—1, then

» § is an algebraic integer

> B; € Q(6) forallie{0,...,p—1}.

Let me give some intuition on an example.
Let B = (o, 1, B2) be a base such that the expansions of 1 are given by

dgo)(1) =30%, dgw(1) =110%, dgr (1) = 1(110)*.
We derive that (g, 51, 82 satisfy the following set of equations
3 1 1 1 ( 1 1) )
—==1 —+-—==1 —+ +3) ===,
Bo B BBz B2 B2B0 6/ 6—1
where § = 5p5152.

Multiplying the first equation by §, the second one by 3132 and the third one by (§ — 1)32, we
obtain the identities

36182 —6=0, —P1f2+P2+1=0, Bif2+(2-6)B2+5-1=0.

In a matrix formalism, we have

(L) (%)= ()
-1 1 1 B ) =1(0].
1 2-56-1 1 0




The existence of a non-zero vector (81032, B2, l)T as a solution of this equation forces that the
determinant of the coefficient matrix is zero:

2 —-95+9=0.
Hence we must have § = &2‘/5 = 3?2 where p = 1'*'2\/5 is the golden ratio.

We then obtain 5
5152:51992 and o =B1fr —1=¢* —1=o.

Consequently,
2 5 3 2
O R N N S
P2 ® BBz

Indeed, the triple B = (3, ¢, ) is an alternate base giving precisely the given expansions of 1.

The same strategy can be applied to any Parry alternate base.



However, the product § need not be a Parry number

One might think at first that the product § = 3o - - - Bp—1 should be a Parry number since by
grouping terms p by p in the sum
a0 al a2

Bo * BoB1 * BoB1B2

4.
we get an expansion of the kind

c a c
é +52+53+ '

But here, the numerators are no longer integers.

Consider again the Parry alternate base B = (3, ¢, ¢). Then the previous grouping for the
expansions
dgo)(1) = 30%, dgu(l) =110¥, dgp (1) =1(110)“

gives us

2
1:3i’ 1 3p+3
d d

3 1 1 1 1
_ p+e+ +so+ +<,0+ +<p+ I

1
’ 0 52 53 54

In fact, we can show that § = 34,02 is not a Parry number, and moreover, none of its powers
5" = (3p%)" is.



A sufficient condition on B to be a Parry alternate base

Let
> 5=FoBp
» D = (Dy,...,Dp_1) be a p-tuple of alphabets of integers containing 0

> D= {Z,p:_ol aifis1---Bp—1:ai € D,-} be the corresponding set of numerators when
grouping terms p by p

> XP(§) = {Zf:_ol Got=1=1:4>0, ¢ € D} is called the alternate spectrum.

Proposition
If § is a Pisot number and o, ..., Bp—1 € Q(3) then the spectrum XP () has no
accumulation point in R.

Proposition
IfD; D {—|Bil,..-,|Bi|} forall i € {0,...,p — 1} and if the spectrum XP(5) has no
accumulation point in R, then B is a Parry alternate base.

As a consequence, we get

Theorem (Charlier, Cisternino, Masakova & Pelantova 2022)
If § is a Pisot number and fy, ..., Bp—1 € Q(6) then B is a Parry alternate base.



Some remarks

» The condition of § being a Pisot number is neither sufficient nor necessary for B to be a
Parry alternate base.

1. Even for p = 1, there exist Parry numbers which are not Pisot.

2. To see that it is not sufficient for p > 2, consider the alternate base B = (\/,E, \/E) where 3
is the smallest Pisot number. The product ¢ is the Pisot number 3. However, the B-expansion

of 1 is equal to dﬁ(l)' which is aperiodic. But of course, \/E ¢ Q(B).

> For the same non Pisot algebraic integer J, there may exist a Parry alternate base

a = (ag, - ,0p_1) and a non-Parry alternate base B = (89 - - - Bp—1) such that
p—1 p—1
i @ = [li—g Bi=0and ag,--ap_1,50- - Bp-1 € Q(6).
» The bases f,...,Bp—1 need not be algebraic integers in order to have a Parry alternate
base.

To see this, consider B = (HT‘/E, %) For this base, we have d)(1) = 2010 and

dB(l)(l) = 110“. However, the minimal polynomial of % is 3x2 — 5x + 1, hence it is not an
algebraic integer.



Generalization of Schmidt's results
For 8 > 1, define Per(8) = {x € [0,1) : dg(x) is ultimately periodic}.

Theorem (Schmidt 1980)

1. IfQN[0,1) C Per(B) then j3 is either a Pisot number or a Salem number.
2. If B is a Pisot number then Per(3) = Q(8) N[0, 1).

Define Per(B) = {x € [0,1) : dg(x) is ultimately periodic}.

Theorem (Charlier, Cisternino & Kreczman 2023)

1. IfQn[o0,1) C ﬂf:ol Per(B") then Bo,...,Bp—1 € Q(5) and § is either a Pisot number
or a Salem number.

2. If 6 is a Pisot number and fo, . .., Bp—1 € Q(J) then Per(B) = Q(5) N [0,1).

From this, we recover the previously mentioned result (not using properties of the spectrum):

Corollary
If § is a Pisot number and By, ..., Bp—1 € Q(6) then B is a Parry alternate base.



Theorem (Schmidt 1980)

If B is an algebraic integer that is neither a Pisot number nor a Salem number then
Per(3) N Q is nowhere dense in [0, 1).

Theorem (Charlier, Cisternino & Kreczman)

If § is an algebraic integer that is neither a Pisot number nor a Salem number then
Per(B) N Q is nowhere dense in [0,1).



Open problems

Understand the B-shifts of finite type for alternate bases.

Study of the B-shift of well-chosen Cantor bases B = (n)n>0-

>
>

> Could the B-shift be sofic for "automatic" Cantor bases?

» Refinement of our result concerning the alternate spectrum.
>



Thank you!



