Alternate base numeration systems

Émilie Charlier

joint work with Célia Cisternino, Karma Dajani, Savinien Kreczman, Zuzana Masáková and Edita Pelantová

Département de mathématiques, ULiège

DLT - WORDS, Umeå, Sweden
2023, June 13

Cantor real bases and alternate bases

A Cantor real base is a sequence $\boldsymbol{B}=\left(\beta_{n}\right)_{n \geq 0}$ of real numbers such that

- $\beta_{n}>1$ for all n
- $\prod_{n=0}^{\infty} \beta_{n}=\infty$.

A B-representation of a real number x is an infinite sequence $a=\left(a_{n}\right)_{n \geq 0}$ of integers such that

$$
x=\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\frac{a_{2}}{\beta_{0} \beta_{1} \beta_{2}}+\cdots
$$

In this case, we write $\operatorname{val}_{B}(a)=x$.
For $x \in[0,1]$, a distinguished B-representation

$$
d_{B}(x)=\left(\varepsilon_{n}\right)_{n \geq 0},
$$

called the B-expansion of x, is obtained from the greedy algorithm:

- We first set $r_{0}=x$.
- Then set $\varepsilon_{n}=\left\lfloor\beta_{n} r_{n}\right\rfloor$ and $r_{n+1}=\beta_{n} r_{n}-\varepsilon_{n}$ for $n \geq 0$.

An alternate base is a periodic Cantor base. In this case, we simply write $\boldsymbol{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ and we use the convention that $\beta_{n}=\beta_{n \bmod p}$ for all $n \geq 0$.

Motivation

When $\frac{U_{n+p}}{U_{n}} \rightarrow \beta$, there is a similar relationship with representations of real numbers via some alternate base $\boldsymbol{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$.

Let's look at a few examples

- The sequence $\boldsymbol{B}=\left(1+\frac{1}{2^{n+1}}\right)_{n \geq 0}$ is not a Cantor real base since $\prod_{n=0}^{\infty} \beta_{n}<\infty$. If we perform the greedy algorithm on $x=1$, we obtain the sequence of digits 10^{ω}, which is clearly not a \boldsymbol{B}-representation of 1 .
- The sequence $\boldsymbol{B}=\left(2+\frac{1}{2^{n+1}}\right)_{n \geq 0}$ is a Cantor real base since $\prod_{n=0}^{\infty} \beta_{n}=\infty$.
- Let $\alpha=\frac{1+\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{6}$.

Consider the alternate base $\boldsymbol{B}=(\alpha, \beta)$. Then $d_{\boldsymbol{B}}(1)=2010^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\alpha r_{0}\right\rfloor=\left\lfloor\frac{1+\sqrt{13}}{2}\right\rfloor=2$
$r_{1}=\alpha r_{0}-\varepsilon_{0}=\frac{-3+\sqrt{13}}{2}$	$\varepsilon_{1}=\left\lfloor\beta r_{1}\right\rfloor=\left\lfloor\frac{-1+\sqrt{13}}{6}\right\rfloor=0$
$r_{2}=\beta r_{1}-\varepsilon_{1}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{2}=\left\lfloor\alpha r_{2}\right\rfloor=\lfloor 1\rfloor=1$
$r_{3}=\alpha r_{2}-\varepsilon_{2}=0$	$\varepsilon_{3}=\left\lfloor\beta r_{3}\right\rfloor=\lfloor 0\rfloor=0$

- Let $\alpha=\frac{1+\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{6}$.

Let now $\boldsymbol{B}=\left(\beta_{n}\right)_{n \geq 0}=(\alpha, \beta, \beta, \alpha, \ldots)$ be the Thue-Morse sequence over $\{\alpha, \beta\}$:

$$
\beta_{n}= \begin{cases}\alpha & \text { if }\left|\operatorname{rep}_{2}(n)\right|_{1} \equiv 0 \quad(\bmod 2) \\ \beta & \text { otherwise }\end{cases}
$$

We compute $d_{B}(1)=20010110^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\alpha r_{0}\right\rfloor=\lfloor\alpha\rfloor=2$
$r_{1}=\alpha r_{0}-\varepsilon_{0}=\frac{-3+\sqrt{13}}{2}$	$\varepsilon_{1}=\left\lfloor\beta r_{1}\right\rfloor=\left\lfloor\frac{-1+\sqrt{13}}{6}\right\rfloor=0$
$r_{2}=\beta r_{1}-\varepsilon_{1}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{2}=\left\lfloor\beta r_{2}\right\rfloor=\left\lfloor\frac{2+\sqrt{13}}{9}\right\rfloor=0$
$r_{3}=\beta r_{2}-\varepsilon_{2}=\frac{2+\sqrt{13}}{9}$	$\varepsilon_{3}=\left\lfloor\alpha r_{3}\right\rfloor=\left\lfloor\frac{5+\sqrt{13}}{6}\right\rfloor=1$
$r_{4}=\alpha r_{3}-\varepsilon_{3}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{4}=\left\lfloor\beta r_{4}\right\rfloor=\left\lfloor\frac{2+\sqrt{13}}{9}\right\rfloor=0$
$r_{5}=\beta r_{4}-\varepsilon_{4}=\frac{2+\sqrt{13}}{9}$	$\varepsilon_{5}=\left\lfloor\alpha r_{5}\right\rfloor=\left\lfloor\frac{5+\sqrt{13}}{6}\right\rfloor=1$
$r_{6}=\alpha r_{5}-\varepsilon_{5}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{6}=\left\lfloor\alpha r_{6}\right\rfloor=\lfloor 1\rfloor=1$
$r_{7}=\alpha r_{6}-\varepsilon_{6}=0$	$\varepsilon_{7}=\left\lfloor\beta r_{7}\right\rfloor=\lfloor 0\rfloor=0$

- Consider the alternate base $\boldsymbol{B}=\left(\sqrt{6}, 3, \frac{2+\sqrt{6}}{3}\right)$. Then $d_{\boldsymbol{B}}(1)=2(10)^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\sqrt{6} r_{0}\right\rfloor=\lfloor\sqrt{6}\rfloor=2$
$r_{1}=\sqrt{6} r_{0}-\varepsilon_{0}=-2+\sqrt{6}$	$\varepsilon_{1}=\left\lfloor 3 r_{1}\right\rfloor=\lfloor-6-3 \sqrt{6}\rfloor=1$
$r_{2}=3 r_{1}-\varepsilon_{1}=-7+3 \sqrt{6}$	$\varepsilon_{2}=\left\lfloor\frac{2+\sqrt{6}}{3} r_{2}\right\rfloor=\left\lfloor\frac{4-\sqrt{6}}{3}\right\rfloor=0$
$r_{3}=\frac{2+\sqrt{6}}{3} r_{2}-\varepsilon_{2}=\frac{4-\sqrt{6}}{3}$	$\varepsilon_{3}=\left\lfloor\sqrt{6} r_{3}\right\rfloor=\left\lfloor\frac{-6+4 \sqrt{6}}{3}\right\rfloor=1$
$r_{4}=\sqrt{6} r_{3}-\varepsilon_{3}=\frac{-9+4 \sqrt{6}}{3}$	$\varepsilon_{4}=\left\lfloor 3 r_{4}\right\rfloor=\lfloor-9+4 \sqrt{6}\rfloor=0$
$r_{5}=3 r_{4}-\varepsilon_{4}=-9+4 \sqrt{6}$	$\varepsilon_{5}=\left\lfloor\frac{2+\sqrt{6}}{3} r_{5}\right\rfloor=\left\lfloor\frac{6-\sqrt{6}}{3}\right\rfloor=1$
$r_{6}=\frac{2+\sqrt{6}}{3} r_{5}-\varepsilon_{5}=\frac{3-\sqrt{6}}{3}$	$\varepsilon_{6}=\left\lfloor\sqrt{6} r_{6}\right\rfloor=\lfloor-2+\sqrt{6}\rfloor=0$
$r_{7}=\frac{2+\sqrt{6}}{3} r_{6}-\varepsilon_{6}=-2+\sqrt{6}$	$\varepsilon_{7}=\left\lfloor 3 r_{7}\right\rfloor=\lfloor-6-3 \sqrt{6}\rfloor=1$

Some references

- J. Caalim and S. Demegillo. Beta Cantor series expansion and admissible sequences. Acta Polytechnica 60, 2020, 214-224.
- É. Charlier and C. Cisternino. Expansions in Cantor real bases. Monatsh. Math. 195, 2021, 585-610.
- J. Galambos. Representations of real numbers by infinite series. Lecture Notes in Mathematics 502, Springer-Verlag, 1976.
- Y.-Q. Li. Expansions in multiple bases. Acta Math. Hungar. 163, 2021, 576-600.
- J. Neunhäuserer. Non-uniform expansions of real numbers. Mediterr. J. Math. 18, 2021, Paper No. 70, 8.
- Y. Zou, V. Komornik and J. Lu. Expansions in multiple bases over general alphabets. Acta Math. Hungar. 166, 2022, 481-506.

Parry's theorem

Theorem (Parry 1960)
Let $\beta>1$ be a real base. A sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers is the β-expansion of some $x \in[0,1)$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} d_{\beta}^{*}(1)$ for all n.

Here $d_{\beta}^{*}(1)$ is the quasi-greedy β-expansion of 1 :

$$
d_{\beta}^{*}(1)= \begin{cases}d_{\beta}(1) & \text { if } d_{\beta}(1) \text { is infinite } \\ \left(\varepsilon_{0} \cdots \varepsilon_{n-2}\left(\varepsilon_{n-1}-1\right)\right)^{\omega} & \text { if } d_{\beta}(1)=\varepsilon_{0} \cdots \varepsilon_{n-1} 0^{\omega} \text { with } \varepsilon_{n-1}>0\end{cases}
$$

Example

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then $\varphi^{2}=\varphi+1$, hence $1=\frac{1}{\varphi}+\frac{1}{\varphi^{2}}$. We obtain $d_{\varphi}(1)=110^{\omega}$ and $d_{\varphi}^{*}(1)=(10)^{\omega}$.

Parry's theorem for Cantor real bases

Theorem (Parry 1960)

Let $\beta>1$ be a real base. A sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers is the β-expansion of some $x \in[0,1)$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} d_{\beta}^{*}(1)$ for all n.

Theorem (Caalim \& Demegillo 2020, Charlier \& Cisternino 2021)
Let $\boldsymbol{B}=\left(\beta_{n}\right)_{n \geq 0}$ be a Cantor real base. A sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers is the B-expansion of some $x \in[0,1)$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\operatorname{lex}} d_{B^{(n)}}^{*}(1)$ for all n.

Here we use all shifted Cantor real bases

$$
\boldsymbol{B}^{(n)}=\left(\beta_{n}, \beta_{n+1}, \beta_{n+2}, \ldots\right)
$$

and the quasi-greedy B-expansion of 1 has a recursive definition:

$$
d_{\boldsymbol{B}}^{*}(1)= \begin{cases}d_{\boldsymbol{B}}(1) & \text { if } d_{\boldsymbol{B}}(1) \text { is infinite } \\ \varepsilon_{0} \cdots \varepsilon_{n-2}\left(\varepsilon_{n-1}-1\right) d_{\boldsymbol{B}^{(n)}}^{*}(1) & \text { if } d_{\boldsymbol{B}}(1)=\varepsilon_{0} \cdots \varepsilon_{n-1} 0^{\omega} \text { with } \varepsilon_{n-1}>0\end{cases}
$$

On an example

Consider the alternate base $\boldsymbol{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$.
Then

$$
d_{\boldsymbol{B}^{(0)}}(1)=2010^{\omega} \text { and } d_{\boldsymbol{B}^{(1)}}(1)=110^{\omega} .
$$

We can compute

$$
d_{B^{(0)}}^{*}(1)=200(10)^{\omega}=20(01)^{\omega} \text { and } d_{B^{(1)}}^{*}(1)=(10)^{\omega} .
$$

By the previous theorem, the infinite sequence

$$
20001101010020(001)^{\omega}
$$

is the B-expansion of some $x \in[0,1)$, whereas the infinite sequence

$$
2000110110020(001)^{\omega}
$$

isn't.

Combinatorial criteria for being the β-expansion of 1

As a consequence of his theorem, Parry obtained a combinatorial criteria for being the β-expansion of 1 :
Theorem (Parry 1960)
A β-representation $a_{0} a_{1} a_{2} \cdots$ of 1 is its β-expansion if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} a_{0} a_{1} a_{2} \cdots$ for all $n \geq 1$.

What we can deduce for Cantor real bases is:
Theorem (Charlier \& Cisternino 2021)
A B-representation $a_{0} a_{1} a_{2} \cdots$ of 1 is its B-expansion if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\operatorname{lex}} d_{B^{(n)}}^{*}(1)$ for all $n \geq 1$.

However, this result does not provide a purely combinatorial criteria for Cantor real bases, and this is true even for alternate bases.

A purely combinatorial condition for checking whether a \boldsymbol{B}-representation is greedy cannot exist

Given a sequence $a=a_{0} a_{1} a_{2} \cdots$, there may exist more than one alternate base \boldsymbol{B} such that $\operatorname{val}_{B}(a)=1$.

Among all of them, it may be that a is greedy for one and not greedy for another one:

- Consider $a=2(10)^{\omega}$.

Then $\operatorname{val}_{\boldsymbol{A}}(a)=\operatorname{val}_{\boldsymbol{B}}(a)=1$ for both $\boldsymbol{A}=(1+\varphi, 2)$ and $\boldsymbol{B}=\left(\frac{31}{10}, \frac{420}{341}\right)$.
We can check that $d_{A}(1)=a$, but $d_{B}(1) \neq a$ since the first digit of $d_{A}(1)$ is $\left\lfloor\frac{31}{10}\right\rfloor=3$.
A sequence a can be greedy for more than one alternate base:

- The sequence 110^{ω} is the \boldsymbol{B}-expansion of 1 w.r.t $\varphi,\left(\frac{5+\sqrt{13}}{6}, \frac{1+\sqrt{13}}{2}\right)$ and $\left(\frac{17}{10}, \frac{10}{7}\right)$.

At the opposite, it may happen that a sequence a is a representation of 1 for several alternate bases B but that none of these are such that a is greedy.

- The sequence $(10)^{\omega}$ is a \boldsymbol{B}-representation of 1 for the previous 3 alternate bases.

Being purely periodic, it cannot be the \boldsymbol{B}-expansion of 1 for any alternate base.

Alternate \boldsymbol{B}-shift

For $\beta>1$, the β-shift is defined as the topological closure of the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$. Theorem (Bertrand-Mathis 1986)
The β-shift is sofic if and only if $d_{\beta}^{*}(1)$ is ultimately periodic.

For an alternate base \boldsymbol{B}, the set $\left\{d_{B}(x): x \in[0,1)\right\}$ is not shift-invariant in general.
The B-shift is defined as the topological closure of the set

$$
\bigcup_{i=0}^{p-1}\left\{d_{B^{(i)}}(x): x \in[0,1)\right\}
$$

Theorem (Charlier \& Cisternino 2021)
The \boldsymbol{B}-shift is sofic if and only if $\boldsymbol{d}_{\boldsymbol{B}^{(i)}}^{*}(1)$ is ultimately periodic for all $i \in\{0, \ldots, p-1\}$.

In view of this result, we refer to such alternate bases as the Parry alternate bases.

Examples

For $\boldsymbol{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have $d_{\boldsymbol{B}^{(0)}}^{*}(1)=20(01)^{\omega}$ and $d_{\boldsymbol{B}^{(1)}}^{*}(1)=(10)^{\omega}$.
The following finite automaton accepts the set of factors of elements in the B-shift.

For $\boldsymbol{B}=\left(\sqrt{6}, 3, \frac{2+\sqrt{6}}{3}\right)$, we have

$$
d_{\boldsymbol{B}^{(0)}}^{*}(1)=2(10)^{\omega}, d_{\boldsymbol{B}^{(1)}}^{*}(1)=(211001)^{\omega}, d_{\boldsymbol{B}^{(2)}}^{*}(1)=(110012)^{\omega} .
$$

The following finite automaton accepts the set of factors of elements in the \boldsymbol{B}-shift.

Finite type?

A subshift S of $A^{\mathbb{N}}$ is said to be of finite type if its minimal set of forbidden factors is finite.

Theorem (Bertrand-Mathis 1986)

The β-shift is of finite type if and only if $d_{\beta}(1)$ is finite.

However, this result does not generalize to alternate bases of length $p \geq 2$.
Indeed, for the alternate base $\boldsymbol{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have

$$
d_{\boldsymbol{B}^{(0)}}(1)=2010^{\omega} \text { and } d_{\boldsymbol{B}^{(1)}}(1)=11^{\omega}
$$

Then

$$
d_{B^{(0)}}^{*}(1)=200(10)^{\omega} \text { and } d_{B^{(1)}}^{*}(1)=(10)^{\omega}
$$

and we see that all words in $2(00)^{*} 2$ are minimal forbidden factors, so the \boldsymbol{B}-shift is not of finite type.

Necessary conditions on \boldsymbol{B} to be a Parry alternate base

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If $\boldsymbol{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ is a Parry alternate base and $\delta=\beta_{0} \cdots \beta_{p-1}$, then

- δ is an algebraic integer
- $\beta_{i} \in \mathbb{Q}(\delta)$ for all $i \in\{0, \ldots, p-1\}$.

Let me give some intuition on an example.
Let $\boldsymbol{B}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ be a base such that the expansions of 1 are given by

$$
d_{B^{(0)}}(1)=30^{\omega}, \quad d_{B^{(1)}}(1)=110^{\omega}, \quad d_{B^{(2)}}(1)=1(110)^{\omega} .
$$

We derive that $\beta_{0}, \beta_{1}, \beta_{2}$ satisfy the following set of equations

$$
\frac{3}{\beta_{0}}=1, \quad \frac{1}{\beta_{1}}+\frac{1}{\beta_{1} \beta_{2}}=1, \quad \frac{1}{\beta_{2}}+\left(\frac{1}{\beta_{2} \beta_{0}}+\frac{1}{\delta}\right) \frac{\delta}{\delta-1}=1,
$$

where $\delta=\beta_{0} \beta_{1} \beta_{2}$.
Multiplying the first equation by δ, the second one by $\beta_{1} \beta_{2}$ and the third one by $(\delta-1) \beta_{2}$, we obtain the identities

$$
3 \beta_{1} \beta_{2}-\delta=0, \quad-\beta_{1} \beta_{2}+\beta_{2}+1=0, \quad \beta_{1} \beta_{2}+(2-\delta) \beta_{2}+\delta-1=0
$$

In a matrix formalism, we have

$$
\left(\begin{array}{ccc}
3 & 0 & -\delta \\
-1 & 1 & 1 \\
1 & 2-\delta & \delta-1
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \beta_{2} \\
\beta_{2} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The existence of a non-zero vector $\left(\beta_{1} \beta_{2}, \beta_{2}, 1\right)^{T}$ as a solution of this equation forces that the determinant of the coefficient matrix is zero:

$$
\delta^{2}-9 \delta+9=0
$$

Hence we must have $\delta=\frac{9+3 \sqrt{5}}{2}=3 \varphi^{2}$ where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
We then obtain

$$
\beta_{1} \beta_{2}=\frac{\delta}{3}=\varphi^{2} \text { and } \beta_{2}=\beta_{1} \beta_{2}-1=\varphi^{2}-1=\varphi .
$$

Consequently,

$$
\beta_{1}=\frac{\beta_{1} \beta_{2}}{\beta_{2}}=\frac{\varphi^{2}}{\varphi}=\varphi \text { and } \beta_{0}=\frac{\delta}{\beta_{1} \beta_{2}}=\frac{3 \varphi^{2}}{\varphi^{2}}=3
$$

Indeed, the triple $\boldsymbol{B}=(3, \varphi, \varphi)$ is an alternate base giving precisely the given expansions of 1 .

The same strategy can be applied to any Parry alternate base.

However, the product δ need not be a Parry number

One might think at first that the product $\delta=\beta_{0} \cdots \beta_{p-1}$ should be a Parry number since by grouping terms p by p in the sum

$$
\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\frac{a_{2}}{\beta_{0} \beta_{1} \beta_{2}}+\cdots
$$

we get an expansion of the kind

$$
\frac{c_{0}}{\delta}+\frac{c_{1}}{\delta^{2}}+\frac{c_{2}}{\delta^{3}}+\cdots
$$

But here, the numerators are no longer integers.

Consider again the Parry alternate base $\boldsymbol{B}=(3, \varphi, \varphi)$. Then the previous grouping for the expansions

$$
d_{\boldsymbol{B}^{(0)}}(1)=30^{\omega}, \quad d_{\boldsymbol{B}^{(1)}}(1)=110^{\omega}, \quad d_{\boldsymbol{B}^{(2)}}(1)=1(110)^{\omega}
$$

gives us

$$
1=\frac{3 \varphi^{2}}{\delta}, \quad 1=\frac{3 \varphi+3}{\delta}, \quad 1=\frac{3 \varphi+\varphi+1}{\delta}+\frac{\varphi+1}{\delta^{2}}+\frac{\varphi+1}{\delta^{3}}+\frac{\varphi+1}{\delta^{4}}+\cdots
$$

In fact, we can show that $\delta=3 \varphi^{2}$ is not a Parry number, and moreover, none of its powers $\delta^{n}=\left(3 \varphi^{2}\right)^{n}$ is.

A sufficient condition on \boldsymbol{B} to be a Parry alternate base

Let

- $\delta=\beta_{0} \cdots \beta_{p-1}$
- $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ be a p-tuple of alphabets of integers containing 0
- $\mathcal{D}=\left\{\sum_{i=0}^{p-1} a_{i} \beta_{i+1} \cdots \beta_{p-1}: a_{i} \in D_{i}\right\}$ be the corresponding set of numerators when grouping terms p by p
- $X^{\mathcal{D}}(\delta)=\left\{\sum_{i=0}^{\ell-1} c_{i} \delta^{\ell-1-i}: \ell \geq 0, c_{i} \in \mathcal{D}\right\}$ is called the alternate spectrum.

Proposition

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}.

Proposition

If $D_{i} \supseteq\left\{-\left\lfloor\beta_{i}\right\rfloor, \ldots,\left\lfloor\beta_{i}\right\rfloor\right\}$ for all $i \in\{0, \ldots, p-1\}$ and if the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}, then \boldsymbol{B} is a Parry alternate base.

As a consequence, we get
Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then \boldsymbol{B} is a Parry alternate base.

Some remarks

- The condition of δ being a Pisot number is neither sufficient nor necessary for \boldsymbol{B} to be a Parry alternate base.

1. Even for $p=1$, there exist Parry numbers which are not Pisot.
2. To see that it is not sufficient for $p \geq 2$, consider the alternate base $\boldsymbol{B}=(\sqrt{\beta}, \sqrt{\beta})$ where β is the smallest Pisot number. The product δ is the Pisot number β. However, the \boldsymbol{B}-expansion of 1 is equal to $d_{\sqrt{\beta}}(1)$, which is aperiodic. But of course, $\sqrt{\beta} \notin \mathbb{Q}(\beta)$.

- For the same non Pisot algebraic integer δ, there may exist a Parry alternate base $\boldsymbol{\alpha}=\left(\alpha_{0}, \cdots, \alpha_{p-1}\right)$ and a non-Parry alternate base $\boldsymbol{B}=\left(\beta_{0} \cdots \beta_{p-1}\right)$ such that $\prod_{i=0}^{p-1} \alpha_{i}=\prod_{i=0}^{p-1} \beta_{i}=\delta$ and $\alpha_{0}, \cdots, \alpha_{p-1}, \beta_{0} \cdots \beta_{p-1} \in \mathbb{Q}(\delta)$.
- The bases $\beta_{0}, \ldots, \beta_{p-1}$ need not be algebraic integers in order to have a Parry alternate base.

To see this, consider $\boldsymbol{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$. For this base, we have $d_{B^{(0)}}(1)=2010^{\omega}$ and $d_{B^{(1)}}(1)=110^{\omega}$. However, the minimal polynomial of $\frac{5+\sqrt{13}}{6}$ is $3 x^{2}-5 x+1$, hence it is not an algebraic integer.

Generalization of Schmidt's results

For $\beta>1$, define $\operatorname{Per}(\beta)=\left\{x \in[0,1): d_{\beta}(x)\right.$ is ultimately periodic $\}$.

Theorem (Schmidt 1980)

1. If $\mathbb{Q} \cap[0,1) \subseteq \operatorname{Per}(\beta)$ then β is either a Pisot number or a Salem number.
2. If β is a Pisot number then $\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap[0,1)$.

Define $\operatorname{Per}(\boldsymbol{B})=\left\{x \in[0,1): d_{\boldsymbol{B}}(x)\right.$ is ultimately periodic $\}$.

Theorem (Charlier, Cisternino \& Kreczman 2023)

1. If $\mathbb{Q} \cap[0,1) \subseteq \bigcap_{i=0}^{p-1} \operatorname{Per}\left(\boldsymbol{B}^{(i)}\right)$ then $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ and δ is either a Pisot number or a Salem number.
2. If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then $\operatorname{Per}(\boldsymbol{B})=\mathbb{Q}(\delta) \cap[0,1)$.

From this, we recover the previously mentioned result (not using properties of the spectrum):

Corollary

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then \boldsymbol{B} is a Parry alternate base.

Theorem (Schmidt 1980)
If β is an algebraic integer that is neither a Pisot number nor a Salem number then $\operatorname{Per}(\beta) \cap \mathbb{Q}$ is nowhere dense in $[0,1)$.

Theorem (Charlier, Cisternino \& Kreczman)
If δ is an algebraic integer that is neither a Pisot number nor a Salem number then $\operatorname{Per}(\boldsymbol{B}) \cap \mathbb{Q}$ is nowhere dense in $[0,1)$.

Open problems

- Understand the \boldsymbol{B}-shifts of finite type for alternate bases.
- Study of the \boldsymbol{B}-shift of well-chosen Cantor bases $\boldsymbol{B}=\left(\beta_{n}\right)_{n \geq 0}$.
- Could the B-shift be sofic for "automatic" Cantor bases?
- Refinement of our result concerning the alternate spectrum.
- ...

Thank you!

