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Cantor real bases and alternate bases

A Cantor real base is a sequence B = (βn)n≥0 of real numbers such that
I βn > 1 for all n
I
∏∞

n=0 βn =∞.

A B-representation of a real number x is an infinite sequence a = (an)n≥0 of integers such that

x =
a0
β0

+
a1
β0β1

+
a2

β0β1β2
+ · · ·

In this case, we write valB(a) = x .

For x ∈ [0, 1], a distinguished B-representation

dB(x) = (εn)n≥0,

called the B-expansion of x , is obtained from the greedy algorithm:
I We first set r0 = x .
I Then set εn = bβnrnc and rn+1 = βnrn − εn for n ≥ 0.

An alternate base is a periodic Cantor base. In this case, we simply write B = (β0, . . . , βp−1)
and we use the convention that βn = βn mod p for all n ≥ 0.



Motivation

Representing integers
via an integer

base sequence U

Representing real numbers
via a real base β

Bertrand-Mathis’s work
Un+1
Un
→ β

When Un+p
Un
→ β, there is a similar relationship with representations of real numbers via some

alternate base B = (β0, . . . , βp−1).



Let’s look at a few examples

I The sequence B = (1 + 1
2n+1 )n≥0 is not a Cantor real base since

∏∞
n=0 αn <∞.

If we perform the greedy algorithm on x = 1, we obtain the sequence of digits 10ω ,
which is clearly not a B-representation of 1.

I The sequence B = (2 + 1
2n+1 )n≥0 is a Cantor real base since

∏∞
n=0 αn =∞.

I Let α = 1+
√
13

2 and β = 5+
√
13

6 .
Consider the alternate base B = (α, β). Then dB(1) = 2010ω .

r0 = 1 ε0 = bαr0c =
⌊

1+
√
13

2

⌋
= 2

r1 = αr0 − ε0 = −3+
√
13

2 ε1 = bβr1c =
⌊
−1+
√
13

6

⌋
= 0

r2 = βr1 − ε1 = −1+
√
13

6 ε2 = bαr2c = b1c = 1

r3 = αr2 − ε2 = 0 ε3 = bβr3c = b0c = 0



I Let α = 1+
√
13

2 and β = 5+
√
13

6 .
Let now B = (βn)n≥0 = (α, β, β, α, . . .) be the Thue-Morse sequence over {α, β}:

βn =

{
α if |rep2(n)|1 ≡ 0 (mod 2)
β otherwise.

We compute dB(1) = 20010110ω .

r0 = 1 ε0 = bαr0c = bαc = 2

r1 = αr0 − ε0 = −3+
√
13

2 ε1 = bβr1c =
⌊
−1+
√
13

6

⌋
= 0

r2 = βr1 − ε1 = −1+
√
13

6 ε2 = bβr2c =
⌊

2+
√
13

9

⌋
= 0

r3 = βr2 − ε2 = 2+
√
13

9 ε3 = bαr3c =
⌊

5+
√
13

6

⌋
= 1

r4 = αr3 − ε3 = −1+
√
13

6 ε4 = bβr4c =
⌊

2+
√
13

9

⌋
= 0

r5 = βr4 − ε4 = 2+
√
13

9 ε5 = bαr5c =
⌊

5+
√
13

6

⌋
= 1

r6 = αr5 − ε5 = −1+
√
13

6 ε6 = bαr6c = b1c = 1

r7 = αr6 − ε6 = 0 ε7 = bβr7c = b0c = 0



I Consider the alternate base B = (
√
6, 3, 2+

√
6

3 ). Then dB(1) = 2(10)ω .

r0 = 1 ε0 =
⌊√

6r0
⌋

=
⌊√

6
⌋

= 2

r1 =
√
6r0 − ε0 = −2 +

√
6 ε1 = b3r1c =

⌊
−6− 3

√
6
⌋

= 1

r2 = 3r1 − ε1 = −7 + 3
√
6 ε2 =

⌊
2+
√
6

3 r2
⌋

=
⌊

4−
√
6

3

⌋
= 0

r3 = 2+
√
6

3 r2 − ε2 = 4−
√
6

3 ε3 =
⌊√

6r3
⌋

=
⌊
−6+4

√
6

3

⌋
= 1

r4 =
√
6r3 − ε3 = −9+4

√
6

3 ε4 = b3r4c =
⌊
−9 + 4

√
6
⌋

= 0

r5 = 3r4 − ε4 = −9 + 4
√
6 ε5 =

⌊
2+
√
6

3 r5
⌋

=
⌊

6−
√
6

3

⌋
= 1

r6 = 2+
√
6

3 r5 − ε5 = 3−
√
6

3 ε6 =
⌊√

6r6
⌋

=
⌊
−2 +

√
6
⌋

= 0

r7 = 2+
√
6

3 r6 − ε6 = −2 +
√
6 ε7 = b3r7c =

⌊
−6− 3

√
6
⌋

= 1



Parry’s theorem for Cantor real bases
Recall Parry’s theorem for real bases β > 1:

Theorem (Parry 1960)
A sequence a0a1a2 · · · of non-negative integers is the β-expansion of some x ∈ [0, 1)
if and only if anan+1an+2 · · · <lex d∗β(1) for all n.

Here d∗β(1) is the quasi-greedy β-expansion of 1:

d∗β(1) = lim
x→1−

dβ(x).

Theorem (Charlier & Cisternino 2021)
A sequence a0a1a2 · · · of non-negative integers is the B-expansion of some x ∈ [0, 1)
if and only if anan+1an+2 · · · <lex d∗

B(n) (1) for all n.

Here we use all shifted Cantor real bases

B(n) = (βn, βn+1, βn+2, . . .)

and the quasi-greedy B-expansions of 1 are defined by

d∗B(1) = lim
x→1−

dB(x).



Quasi-greedy expansions of 1

For real bases β, the quasi-greedy B-expansion of 1 is given by the formula

d∗β(1) =

{
dB(1) if dβ(1) is infinite
(ε0 · · · εn−2(εn−1 − 1))ω if dβ(1) = ε0 · · · εn−10ω with εn−1 > 0.

For Cantor real base B, we have the following recursive way to compute the quasi-greedy
B-expansion of 1:

d∗B(1) =

{
dB(1) if dB(1) is infinite
ε0 · · · εn−2(εn−1 − 1)d∗

B(n) (1) if dB(1) = ε0 · · · εn−10ω with εn−1 > 0.



On an example

Consider the alternate base B =
(

1+
√
13

2 , 5+
√
13

6

)
.

Then
dB(0) (1) = 2010ω and dB(1) (1) = 110ω .

We can compute

d∗B(0) (1) = 200(10)ω = 20(01)ω and d∗B(1) (1) = (10)ω .

By the previous theorem, the infinite sequence

20001001010020(001)ω

is the B-expansion of some x ∈ [0, 1), whereas the infinite sequence

2000100110020(001)ω

isn’t.



Combinatorial criteria for being the β-expansion of 1

As a consequence of his theorem, Parry obtained a combinatorial criteria for being the
β-expansion of 1:

Theorem (Parry 1960)
A β-representation a0a1a2 · · · of 1 is its β-expansion if and only if
anan+1an+2 · · · <lex a0a1a2 · · · for all n ≥ 1.

What we can deduce for Cantor real bases is:

Theorem (Charlier & Cisternino 2021)
A B-representation a0a1a2 · · · of 1 is its B-expansion if and only if
anan+1an+2 · · · <lex d∗

B(n) (1) for all n ≥ 1.

However, this result does not provide a purely combinatorial criteria for Cantor real bases, and
this is true even for alternate bases.



A purely combinatorial condition for checking whether a B-representation is
greedy cannot exist

Given a sequence a = a0a1a2 · · · , there may exist more than one alternate base B such that
valB(a) = 1.

Among all of them, it may be that a is greedy for one and not greedy for another one:
I Consider a = 2(10)ω .

Then valA(a) = valB(a) = 1 for both A = (1 + ϕ, 2) and B = ( 3110 ,
420
341 ).

We can check that dA(1) = a, but dB(1) 6= a since the first digit of dA(1) is
⌊
31
10

⌋
= 3.

A sequence a can be greedy for more than one alternate base:
I The sequence 110ω is the B-expansion of 1 w.r.t ϕ, ( 5+

√
13

6 , 1+
√
13

2 ) and ( 1710 ,
10
7 ).

At the opposite, it may happen that a sequence a is a representation of 1 for several alternate
bases B but that none of these are such that a is greedy.
I The sequence (10)ω is a B-representation of 1 for the previous 3 alternate bases.

Being periodic, it cannot be the B-expansion of 1 for any alternate base.



Alternate B-shift

For β > 1, the β-shift is defined as the topological closure of the set {dβ(x) : x ∈ [0, 1)}.

Theorem (Bertrand-Mathis 1986)
The β-shift is sofic if and only if d∗β(1) is ultimately periodic.

For an alternate base B, the set {dB(x) : x ∈ [0, 1)} is not shift-invariant in general.

The B-shift is defined as the topological closure of the set

p−1⋃
i=0

{dB(i) (x) : x ∈ [0, 1)}.

Theorem (Charlier & Cisternino 2021)
The B-shift is sofic if and only if d∗

B(i) (1) is ultimately periodic for all i ∈ {0, . . . , p − 1}.

In view of this result, we refer to such alternate bases as the Parry alternate bases.



Examples

For B = ( 1+
√
13

2 , 5+
√
13

6 ), we have d∗
B(0) (1) = 20(01)ω and d∗

B(1) (1) = (10)ω .

The following finite automaton accepts the set of factors of elements in the B-shift.

0 1 0 1

1 0

2

0, 1

0
0

1

0

1

0

0



For B = (
√
6, 3, 2+

√
6

3 ), we have

d∗B(0) (1) = 2(10)ω , d∗B(1) (1) = (211001)ω , d∗B(2) (1) = (110012)ω .

The following finite automaton accepts the set of factors of elements in the B-shift.

0 1 2 0 1 2 0

1 2 0 1 2 0

2

0, 1

1

0

0 1

0

0 1

0 0

0, 1, 2 1

0

1

0

0 0

0, 1



Finite type?

A subshift S of AN is said to be of finite type if its minimal set of forbidden factors is finite.

Theorem (Bertrand-Mathis 1986)
The β-shift is of finite type if and only if dβ(1) is finite

However, this result does not generalize to alternate bases of length p ≥ 2.

Indeed, for the alternate base B = ( 1+
√
13

2 , 5+
√
13

6 ), we have

dB(0) (1) = 2010ω and dB(1) (1) = 11ω .

Then
d∗B(0) (1) = 200(10)ω and d∗B(1) (1) = (10)ω

and we see that all words in 2(00)∗2 are minimal forbidden factors, so the B-shift is not of
finite type.



Necessary conditions on B to be a Parry alternate base
Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
If B = (β0, . . . , βp−1) is a Parry alternate base and δ = β0 · · ·βp−1, then
I δ is an algebraic integer
I βi ∈ Q(δ) for all i ∈ {0, . . . , p − 1}.

Let me give some intuition on an example.
Let B = (β0, β1, β2) be a base such that the expansions of 1 are given by

dB(0) (1) = 30ω , dB(1) (1) = 110ω , dB(2) (1) = 1(110)ω .

We derive that β0, β1, β2 satisfy the following set of equations
3
β0

= 1,
1
β1

+
1

β1β2
= 1,

1
β2

+
( 1
β2β0

+
1
δ

)
δ

δ − 1
= 1,

where δ = β0β1β2.

Multiplying the first equation by δ, the second one by β1β2 and the third one by (δ − 1)β2, we
obtain the identities

3β1β2 − δ = 0, −β1β2 + β2 + 1 = 0, β1β2 + (2− δ)β2 + δ − 1 = 0.

In a matrix formalism, we have( 3 0 −δ
−1 1 1
1 2−δ δ−1

)(
β1β2
β2
1

)
=
(

0
0
0

)
.



The existence of a non-zero vector (β1β2, β2, 1)T as a solution of this equation forces that the
determinant of the coefficient matrix is zero:

δ2 − 9δ + 9 = 0.

Hence we must have δ = 9+3
√
5

2 = 3ϕ2 where ϕ = 1+
√
5

2 is the golden ratio.

We then obtain
β1β2 =

δ

3
= ϕ2 and β2 = β1β2 − 1 = ϕ2 − 1 = ϕ.

Consequently,

β1 =
β1β2
β2

=
ϕ2

ϕ
= ϕ and β0 =

δ

β1β2
=

3ϕ2

ϕ2 = 3.

Indeed, the triple B = (3, ϕ, ϕ) is an alternate base giving precisely the given expansions of 1.

The same strategy can be applied to any Parry alternate base.



However, the product δ need not be a Parry number

One might think at first that the product δ = β0 · · ·βp−1 should be a Parry number since by
grouping terms p by p in the sum

a0
β0

+
a1
β0β1

+
a2

β0β1β2
+ · · ·

we get an expansion of the kind
c0
δ

+
c1
δ2

+
c2
δ3

+ · · · .

But here, the numerators are no longer integers.

Consider again the Parry alternate base B = (3, ϕ, ϕ). Then the previous grouping for the
expansions

dB(0) (1) = 30ω , dB(1) (1) = 110ω , dB(2) (1) = 1(110)ω

gives us

1 =
3ϕ2

δ
, 1 =

3ϕ+ 3
δ

, 1 =
3ϕ+ ϕ+ 1

δ
+
ϕ+ 1
δ2

+
ϕ+ 1
δ3

+
ϕ+ 1
δ4

+ · · ·

In fact, we can show that δ = 3ϕ2 is not a Parry number, and moreover, none of its powers
δn = (3ϕ2)n is.



A sufficient condition on B to be a Parry alternate base
Let
I δ = β0 · · ·βp−1
I D = (D0, . . . ,Dp−1) be a p-tuple of alphabets of integers containing 0
I D =

{∑p−1
i=0 aiβi+1 · · ·βp−1 : ai ∈ Di

}
be the corresponding set of numerators when

grouping terms p by p

I XD(δ) =
{∑`−1

i=0 ciδ`−1−i : ` ∈ N, ci ∈ D
}

be the associated complex spectrum.

Proposition
If Di ⊇ {−bβic , . . . , bβic} for all i ∈ {0, . . . , p − 1} and if the spectrum XD(δ) has no
accumulation point in R, then B is a Parry alternate base.

Proposition
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then the spectrum XD(δ) has no
accumulation point in R.

As a consequence, we get

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then B is a Parry alternate base.



Some remarks

I The condition of δ being a Pisot number is neither sufficient nor necessary for B to be a
Parry alternate base.
1. Even for p = 1, there exist Parry numbers which are not Pisot.
2. To see that it is not sufficient for p ≥ 2, consider the alternate base B = (

√
β,
√
β) where β

is the smallest Pisot number. The product δ is the Pisot number β. However, the B-expansion
of 1 is equal to d√

β
(1), which is aperiodic.

I The bases β0, . . . , βp−1 need not be algebraic integers in order to have a Parry alternate
base.

To see this, consider B = ( 1+
√

13
2 , 5+

√
13

6 ). For this base, we have dB(0) (1) = 2010ω and
dB(1) (1) = 110ω . However, the minimal polynomial of 5+

√
13

6 is 3x2 − 5x + 1, hence it is not an
algebraic integer.

I For the same non Pisot algebraic integer δ, there may exist a Parry alternate base
α = (α0, · · · , αp−1) and a non-Parry alternate base B = (β0 · · ·βp−1) such that∏p−1

i=0 αi =
∏p−1

i=0 βi = δ.



Generalization of Schmidt’s results

For β > 1, define Per(β) = {x ∈ [0, 1) : dβ(x) is ultimately periodic}.

Theorem (Schmidt 1980)
1. If Q ∩ [0, 1) ⊆ Per(β) then β is either a Pisot number or a Salem number.

2. If β is a Pisot number then Per(β) = Q(β) ∩ [0, 1).

Define Per(B) = {x ∈ [0, 1) : dB(x) is ultimately periodic}.

Theorem (Charlier, Cisternino & Kreczman)
1. If Q ∩ [0, 1) ⊆

⋂p−1
i=0 Per(B(i)) then β0, . . . , βp−1 ∈ Q(δ) and δ is either a Pisot number

or a Salem number.

2. If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then Per(B) = Q(δ) ∩ [0, 1).

From this, we recover the previously mentioned result (not using properties of the spectrum):

Corollary
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then B is a Parry alternate base.



Theorem (Schmidt 1980)
If β is an algebraic integer that is neither a Pisot number nor a Salem number then
Per(β) ∩ Q is nowhere dense in [0, 1).

Theorem (Charlier, Cisternino & Kreczman)
If δ is an algebraic integer that is neither a Pisot number nor a Salem number then
Per(B) ∩ Q is nowhere dense in [0, 1).



Alternate zero automaton

For an alternate base B = (β0, . . . , βp−1) and a p-tuple of alphabets D = (D0, . . . ,Dp−1), we
can define a Büchi automaton Z(B,D) accepting the set

Z(B,D) =

{
a0a1a2 · · · ∈

+∞∏
n=0

Dn :
+∞∑
n=0

an∏n
k=0 βk

= 0

}
.

Here, we have set Dn = Dn mod p and βn = βn mod p .



An example

Consider the alternate base B = ( 1+
√
13

2 , 5+
√
13

6 ) and D = ({−2,−1, 0, 1, 2}, {−1, 0, 1}).

Then the zero automaton Z(B,D) is:

0, 0

0, 10,−1

0,−β1 0, β1 0, β1−10,−β1+1

0, 2β1−20,−2β1+2 0, β1−20,−β1+2

1, 0

1, 11,−1

1, β0−11,−β0+1 1, β0−21,−β0+2

1, β0−3 1,−β0+3

2 −2

1

0 −1

For instance, the infinite words 1(10)ω and (012121)ω have value 0 in base B (where 1 and 2
designate the digits −1 and −2 respectively).



Alternate bases whose set of zero representations is accepted by a finite
Büchi automaton

Theorem (Charlier, Cisternino, Masáková & Pelantová 2023)
The following assertions are equivalent.

1. The zero automaton Z(B,D) is finite for all D = (D0, . . . ,Dp−1).
2. The zero automaton Z(B,D) is finite for one D = (D0, . . . ,Dp−1) such that

I Di ⊇ {−bβic , . . . , bβic} for all i
I bβic ≥ dδe − 1 for at least one i.

3. The product δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ).



Normalization in alternate base

The normalization function is the partial function νB,D mapping any B-representation
a ∈
∏

n∈N Dn of a real number x ∈ [0, 1) to the B-expansion of x .

We say that νB,D is computable by a finite automaton if there exists a finite Büchi automaton
accepting the set{

(u, v) ∈
∏
n∈N

(Dn × {0, . . . , dβne − 1}) : valB(u) = valB(v) and ∃x ∈ [0, 1), v = dB(x)
}
.

First ingredient.
Consider two p-tuples of alphabets D = (D0, . . . ,Dp−1) and D′ = (D′0, . . . ,D′p−1).
We set D −D′ = (D0 − D′0, . . . ,Dp−1 − D′p−1).

From the zero automaton Z(B,D −D′), we define a converter CB,D,D′ from D to D′, that is,
a Büchi automaton accepting the set

{(u, v) ∈
∏
n∈N

(Dn × D′n) : valB(u) = valB(v)}.



Second ingredient.
In the case where B is a Parry alternate base, we can define a Büchi automaton accepting the
set {dB(x) : x ∈ [0, 1)}.

For B = ( 1+
√
13

2 , 5+
√
13

6 ), we have seen that d∗
B(0) (1) = 20(01)ω and d∗

B(1) (1) = (10)ω .

0 1 0 1

1 0 1

2

0, 1

0
0

1

0

1

0

0

1

0

Combining these two automata, we obtain the following result.

Theorem (Charlier, Cisternino, Masáková & Pelantová 2023)
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ), then the normalization function νB,D is
computable by a finite Büchi automaton.



Ergodic properties of alternate base expansions

We can express the greedy digits an thanks to the βn-transformations.

If x ∈ [0, 1) and dB(x) = a0a1a2 · · · then

an =
⌊
βn
(
Tβn−1 ◦ · · · ◦ Tβ0 (x)

)⌋
where for β > 1, the map

Tβ : [0, 1)→ [0, 1), x 7→ βx − bβxc .

is the so-called β-transformation.

A fundamental dynamical result of real base expansions is the following.

Theorem (Renyi 1957, Parry 1960, Rohlin 1961)
There exists a unique Tβ-invariant absolutely continuous probability measure µβ on B([0, 1)).
Furthermore, the measure µβ is equivalent to the Lebesgue measure on B([0, 1)) and the
dynamical system ([0, 1),B([0, 1)), µβ ,Tβ) is ergodic and has entropy log(β).



The alternate B-transformation

Let B = (β0, . . . , βp−1) be an alternate base.

Then the B-transformation is the map

TB : {0, . . . , p − 1} × [0, 1)→ {0, . . . , p − 1} × [0, 1), (i , x) 7→
(

(i + 1) mod p,Tβi (x)
)
.

If x ∈ [0, 1) and dB(x) = a0a1a2 · · · then

an = bβnπ2 (T n
B(0, x))c

for all n ≥ 0, where π2 is the projection on the second component.



The following proposition provides us with the main tool for the construction of a
TB-invariant measure.

Proposition (Charlier, Cisternino & Dajani 2023)
For all n ≥ 1 and all β0, . . . , βn−1 > 1, there exists a unique (Tβn−1 ◦ · · · ◦ Tβ0 )-invariant
absolutely continuous probability measure µ on B([0, 1)). Furthermore, the measure µ is
equivalent to the Lebesgue measure on B([0, 1)), and the associated dynamical system is
exact and has entropy log(βn−1 · · ·β0).



The probability measure µB

For each i ∈ {0, . . . , p − 1}, we let µB,i denote the unique (Tβi+p−1 ◦ · · · ◦ Tβi )-invariant
absolutely continuous probability measure.

We define a probability measure µB on the σ-algebra

Tp =
{ p−1⋃

i=0

({i} × Bi ) : ∀i ∈ {0, . . . , p − 1}, Bi ∈ B([0, 1))
}

over {0, . . . , p − 1} × [0, 1) as follows.

For all B0, . . . ,Bp−1 ∈ B([0, 1)), we set

µB

( p−1⋃
i=0

({i} × Bi )
)

=
1
p

p−1∑
i=0

µB,i (Bi ).



We define a new measure λp over the σ-algebra Tp .

For all B0, . . . ,Bp−1 ∈ B([0, 1)), we set

λp

( p−1⋃
i=0

({i} × Bi )
)

=
1
p

p−1∑
i=0

λ(Bi ).

We call this measure the p-Lebesgue measure on Tp .

Theorem (Charlier, Cisternino & Dajani 2023)
The measure µB is the unique TB-invariant probability measure on Tp that is absolutely
continuous with respect to λp . Furthermore, µB is equivalent to λp on Tp and the dynamical
system ({0, . . . , p − 1} × [0, 1), Tp , µB,TB) is ergodic and has entropy 1

p log(β0 · · ·βp−1).

Note that, however, the dynamical system ({0, . . . , p − 1} × [0, 1), Tp , µB,T p
B) is not ergodic

for p > 1.

Indeed, we have T−pB ({0} × [0, 1)) = {0} × [0, 1) whereas µB({0} × [0, 1)) = 1
p .



Frequencies of the digits

The frequency of a digit d occurring in the B-expansion a0a1a2 · · · of a real number x in [0, 1)
is equal to

lim
n→∞

1
n

#{0 ≤ k < n : ak = d},

provided that this limit exists.

Proposition (Charlier, Cisternino & Dajani 2023)
For λ-almost all x ∈ [0, 1), the frequency of any digit d occurring in the greedy B-expansion
of x exists and is equal to

1
p

p−1∑
i=0

µB,i
([

d
βi
, d+1
βi

)
∩ [0, 1)

)
.



Open problems

I Understand the B-shifts of finite type for alternate base.
I Study of the B-shift of well-chosen Cantor bases B = (βn)n≥0.
I Could the B-shift be sofic for "automatic" Cantor bases?
I Refinement of our result concerning the alternate spectrum.
I Compute the topological entropy.
I · · ·



Thank you!


