Alternate Bases: combinatorial, ergodic and algebraic properties

Émilie Charlier

joint work with Célia Cisternino, Karma Dajani, Savinien Kreczman, Zuzana Masáková and Edita Pelantová

Département de mathématiques, ULiège

Journées du GT SDA2, Toulouse, France
2023, March 29-31

Cantor real bases and alternate bases

A Cantor real base is a sequence $\mathcal{B}=\left(\beta_{n}\right)_{n \geq 0}$ of real numbers such that

- $\beta_{n}>1$ for all n
- $\prod_{n=0}^{\infty} \beta_{n}=\infty$.

A \mathcal{B}-representation of a real number x is an infinite sequence $a=\left(a_{n}\right)_{n \geq 0}$ of integers such that

$$
x=\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\frac{a_{2}}{\beta_{0} \beta_{1} \beta_{2}}+\cdots
$$

In this case, we write $\operatorname{val}_{\mathcal{B}}(a)=x$.
For $x \in[0,1]$, a distinguished \mathcal{B}-representation

$$
d_{\mathcal{B}}(x)=\left(\varepsilon_{n}\right)_{n \geq 0}
$$

called the \mathcal{B}-expansion of x, is obtained from the greedy algorithm:

- We first set $r_{0}=x$.
- Then set $\varepsilon_{n}=\left\lfloor\beta_{n} r_{n}\right\rfloor$ and $r_{n+1}=\beta_{n} r_{n}-\varepsilon_{n}$ for $n \geq 0$.

An alternate base is a periodic Cantor base. In this case, we simply write $\mathcal{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ and we use the convention that $\beta_{n}=\beta_{n \bmod p}$ for all $n \geq 0$.

Motivation

When $\frac{U_{n+p}}{U_{n}} \rightarrow \beta$, there is a similar relationship with representations of real numbers via some alternate base $\mathcal{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$.

Let's look at a few examples

- The sequence $\mathcal{B}=\left(1+\frac{1}{2^{n+1}}\right)_{n \geq 0}$ is not a Cantor real base since $\prod_{n=0}^{\infty} \alpha_{n}<\infty$. If we perform the greedy algorithm on $x=1$, we obtain the sequence of digits 10^{ω}, which is clearly not a \mathcal{B}-representation of 1 .
- The sequence $\mathcal{B}=\left(2+\frac{1}{2^{n+1}}\right)_{n \geq 0}$ is a Cantor real base since $\prod_{n=0}^{\infty} \alpha_{n}=\infty$.
- Let $\alpha=\frac{1+\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{6}$.

Consider the alternate base $\mathcal{B}=(\alpha, \beta)$. Then $d_{\mathcal{B}}(1)=2010^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\alpha r_{0}\right\rfloor=\left\lfloor\frac{1+\sqrt{13}}{2}\right\rfloor=2$
$r_{1}=\alpha r_{0}-\varepsilon_{0}=\frac{-3+\sqrt{13}}{2}$	$\varepsilon_{1}=\left\lfloor\beta r_{1}\right\rfloor=\left\lfloor\frac{-1+\sqrt{13}}{6}\right\rfloor=0$
$r_{2}=\beta r_{1}-\varepsilon_{1}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{2}=\left\lfloor\alpha r_{2}\right\rfloor=\lfloor 1\rfloor=1$
$r_{3}=\alpha r_{2}-\varepsilon_{2}=0$	$\varepsilon_{3}=\left\lfloor\beta r_{3}\right\rfloor=\lfloor 0\rfloor=0$

- Let $\alpha=\frac{1+\sqrt{13}}{2}$ and $\beta=\frac{5+\sqrt{13}}{6}$.

Let now $\mathcal{B}=\left(\beta_{n}\right)_{n \geq 0}=(\alpha, \beta, \beta, \alpha, \ldots)$ be the Thue-Morse sequence over $\{\alpha, \beta\}$:

$$
\beta_{n}= \begin{cases}\alpha & \text { if }\left|\operatorname{rep}_{2}(n)\right|_{1} \equiv 0 \quad(\bmod 2) \\ \beta & \text { otherwise }\end{cases}
$$

We compute $d_{\mathcal{B}}(1)=20010110^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\alpha r_{0}\right\rfloor=\lfloor\alpha\rfloor=2$
$r_{1}=\alpha r_{0}-\varepsilon_{0}=\frac{-3+\sqrt{13}}{2}$	$\varepsilon_{1}=\left\lfloor\beta r_{1}\right\rfloor=\left\lfloor\frac{-1+\sqrt{13}}{6}\right\rfloor=0$
$r_{2}=\beta r_{1}-\varepsilon_{1}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{2}=\left\lfloor\beta r_{2}\right\rfloor=\left\lfloor\frac{2+\sqrt{13}}{9}\right\rfloor=0$
$r_{3}=\beta r_{2}-\varepsilon_{2}=\frac{2+\sqrt{13}}{9}$	$\varepsilon_{3}=\left\lfloor\alpha r_{3}\right\rfloor=\left\lfloor\frac{5+\sqrt{13}}{6}\right\rfloor=1$
$r_{4}=\alpha r_{3}-\varepsilon_{3}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{4}=\left\lfloor\beta r_{4}\right\rfloor=\left\lfloor\frac{2+\sqrt{13}}{9}\right\rfloor=0$
$r_{5}=\beta r_{4}-\varepsilon_{4}=\frac{2+\sqrt{13}}{9}$	$\varepsilon_{5}=\left\lfloor\alpha r_{5}\right\rfloor=\left\lfloor\frac{5+\sqrt{13}}{6}\right\rfloor=1$
$r_{6}=\alpha r_{5}-\varepsilon_{5}=\frac{-1+\sqrt{13}}{6}$	$\varepsilon_{6}=\left\lfloor\alpha r_{6}\right\rfloor=\lfloor 1\rfloor=1$
$r_{7}=\alpha r_{6}-\varepsilon_{6}=0$	$\varepsilon_{7}=\left\lfloor\beta r_{7}\right\rfloor=\lfloor 0\rfloor=0$

- Consider the alternate base $\mathcal{B}=\left(\sqrt{6}, 3, \frac{2+\sqrt{6}}{3}\right)$. Then $d_{\mathcal{B}}(1)=2(10)^{\omega}$.

$r_{0}=1$	$\varepsilon_{0}=\left\lfloor\sqrt{6} r_{0}\right\rfloor=\lfloor\sqrt{6}\rfloor=2$
$r_{1}=\sqrt{6} r_{0}-\varepsilon_{0}=-2+\sqrt{6}$	$\varepsilon_{1}=\left\lfloor 3 r_{1}\right\rfloor=\lfloor-6-3 \sqrt{6}\rfloor=1$
$r_{2}=3 r_{1}-\varepsilon_{1}=-7+3 \sqrt{6}$	$\varepsilon_{2}=\left\lfloor\frac{2+\sqrt{6}}{3} r_{2}\right\rfloor=\left\lfloor\frac{4-\sqrt{6}}{3}\right\rfloor=0$
$r_{3}=\frac{2+\sqrt{6}}{3} r_{2}-\varepsilon_{2}=\frac{4-\sqrt{6}}{3}$	$\varepsilon_{3}=\left\lfloor\sqrt{6} r_{3}\right\rfloor=\left\lfloor\frac{-6+4 \sqrt{6}}{3}\right\rfloor=1$
$r_{4}=\sqrt{6} r_{3}-\varepsilon_{3}=\frac{-9+4 \sqrt{6}}{3}$	$\varepsilon_{4}=\left\lfloor 3 r_{4}\right\rfloor=\lfloor-9+4 \sqrt{6}\rfloor=0$
$r_{5}=3 r_{4}-\varepsilon_{4}=-9+4 \sqrt{6}$	$\varepsilon_{5}=\left\lfloor\frac{2+\sqrt{6}}{3} r_{5}\right\rfloor=\left\lfloor\frac{6-\sqrt{6}}{3}\right\rfloor=1$
$r_{6}=\frac{2+\sqrt{6}}{3} r_{5}-\varepsilon_{5}=\frac{3-\sqrt{6}}{3}$	$\varepsilon_{6}=\left\lfloor\sqrt{6} r_{6}\right\rfloor=\lfloor-2+\sqrt{6}\rfloor=0$
$r_{7}=\frac{2+\sqrt{6}}{3} r_{6}-\varepsilon_{6}=-2+\sqrt{6}$	$\varepsilon_{7}=\left\lfloor 3 r_{7}\right\rfloor=\lfloor-6-3 \sqrt{6}\rfloor=1$

Parry's theorem for Cantor real bases

Recall Parry's theorem for real bases $\beta>1$:
Theorem (Parry 1960)
A sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers is the β-expansion of some $x \in[0,1)$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} d_{\beta}^{*}(1)$ for all n.
Here $d_{\beta}^{*}(1)$ is the quasi-greedy β-expansion of 1 :

$$
d_{\beta}^{*}(1)=\lim _{x \rightarrow 1^{-}} d_{\beta}(x)
$$

Theorem (Charlier \& Cisternino 2021)
A sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers is the \mathcal{B}-expansion of some $x \in[0,1)$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} d_{\mathcal{B}^{(n)}}^{*}(1)$ for all n.

Here we use all shifted Cantor real bases

$$
\mathcal{B}^{(n)}=\left(\beta_{n}, \beta_{n+1}, \beta_{n+2}, \ldots\right)
$$

and the quasi-greedy \mathcal{B}-expansions of 1 are defined by

$$
d_{\mathcal{B}}^{*}(1)=\lim _{x \rightarrow 1^{-}} d_{\mathcal{B}}(x)
$$

Quasi-greedy expansions of 1

For real bases β, the quasi-greedy \mathcal{B}-expansion of 1 is given by the formula

$$
d_{\beta}^{*}(1)= \begin{cases}d_{\mathcal{B}}(1) & \text { if } d_{\beta}(1) \text { is infinite } \\ \left(\varepsilon_{0} \cdots \varepsilon_{n-2}\left(\varepsilon_{n-1}-1\right)\right)^{\omega} & \text { if } d_{\beta}(1)=\varepsilon_{0} \cdots \varepsilon_{n-1} 0^{\omega} \text { with } \varepsilon_{n-1}>0\end{cases}
$$

For Cantor real base \mathcal{B}, we have the following recursive way to compute the quasi-greedy \mathcal{B}-expansion of 1 :

$$
d_{\mathcal{B}}^{*}(1)= \begin{cases}d_{\mathcal{B}}(1) & \text { if } d_{\mathcal{B}}(1) \text { is infinite } \\ \varepsilon_{0} \cdots \varepsilon_{n-2}\left(\varepsilon_{n-1}-1\right) d_{\mathcal{B}^{(n)}}^{*}(1) & \text { if } d_{\mathcal{B}}(1)=\varepsilon_{0} \cdots \varepsilon_{n-1} 0^{\omega} \text { with } \varepsilon_{n-1}>0\end{cases}
$$

On an example

Consider the alternate base $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$.
Then

$$
d_{\mathcal{B}^{(0)}}(1)=2010^{\omega} \text { and } d_{\mathcal{B}^{(1)}}(1)=110^{\omega} .
$$

We can compute

$$
d_{\mathcal{B}^{(0)}}^{*}(1)=200(10)^{\omega}=20(01)^{\omega} \text { and } d_{\mathcal{B}^{(1)}}^{*}(1)=(10)^{\omega} .
$$

By the previous theorem, the infinite sequence

$$
20001001010020(001)^{\omega}
$$

is the \mathcal{B}-expansion of some $x \in[0,1)$, whereas the infinite sequence

$$
2000100110020(001)^{\omega}
$$

isn't.

Combinatorial criteria for being the β-expansion of 1

As a consequence of his theorem, Parry obtained a combinatorial criteria for being the β-expansion of 1 :
Theorem (Parry 1960)
A β-representation $a_{0} a_{1} a_{2} \cdots$ of 1 is its β-expansion if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\text {lex }} a_{0} a_{1} a_{2} \cdots$ for all $n \geq 1$.

What we can deduce for Cantor real bases is:
Theorem (Charlier \& Cisternino 2021)
A \mathcal{B}-representation $a_{0} a_{1} a_{2} \cdots$ of 1 is its \mathcal{B}-expansion if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\operatorname{lex}} d_{\mathcal{B}^{(n)}}^{*}(1)$ for all $n \geq 1$.

However, this result does not provide a purely combinatorial criteria for Cantor real bases, and this is true even for alternate bases.

A purely combinatorial condition for checking whether a \mathcal{B}-representation is greedy cannot exist

Given a sequence $a=a_{0} a_{1} a_{2} \cdots$, there may exist more than one alternate base \mathcal{B} such that $\operatorname{val}_{\mathcal{B}}(a)=1$.

Among all of them, it may be that a is greedy for one and not greedy for another one:

- Consider $a=2(10)^{\omega}$.

Then $\operatorname{val}_{\mathcal{A}}(a)=\operatorname{val}_{\mathcal{B}}(a)=1$ for both $\mathcal{A}=(1+\varphi, 2)$ and $\mathcal{B}=\left(\frac{31}{10}, \frac{420}{341}\right)$.
We can check that $d_{\mathcal{A}}(1)=a$, but $d_{\mathcal{B}}(1) \neq$ a since the first digit of $d_{\mathcal{A}}(1)$ is $\left\lfloor\frac{31}{10}\right\rfloor=3$.
A sequence a can be greedy for more than one alternate base:

- The sequence 110^{ω} is the \mathcal{B}-expansion of 1 w.r.t $\varphi,\left(\frac{5+\sqrt{13}}{6}, \frac{1+\sqrt{13}}{2}\right)$ and $\left(\frac{17}{10}, \frac{10}{7}\right)$.

At the opposite, it may happen that a sequence a is a representation of 1 for several alternate bases \mathcal{B} but that none of these are such that a is greedy.

- The sequence $(10)^{\omega}$ is a \mathcal{B}-representation of 1 for the previous 3 alternate bases.

Being periodic, it cannot be the \mathcal{B}-expansion of 1 for any alternate base.

Alternate \mathcal{B}-shift

For $\beta>1$, the β-shift is defined as the topological closure of the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$. Theorem (Bertrand-Mathis 1986)
The β-shift is sofic if and only if $d_{\beta}^{*}(1)$ is ultimately periodic.

For an alternate base \mathcal{B}, the set $\left\{d_{\mathcal{B}}(x): x \in[0,1)\right\}$ is not shift-invariant in general.
The \mathcal{B}-shift is defined as the topological closure of the set

$$
\bigcup_{i=0}^{p-1}\left\{d_{\mathcal{B}^{(i)}}(x): x \in[0,1)\right\}
$$

Theorem (Charlier \& Cisternino 2021)
The \mathcal{B}-shift is sofic if and only if $d_{\mathcal{B}^{(i)}}^{*}(1)$ is ultimately periodic for all $i \in\{0, \ldots, p-1\}$.
In view of this result, we refer to such alternate bases as the Parry alternate bases.

Examples

For $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have $d_{\mathcal{B}^{(0)}}^{*}(1)=20(01)^{\omega}$ and $d_{\mathcal{B}^{(1)}}^{*}(1)=(10)^{\omega}$.
The following finite automaton accepts the set of factors of elements in the \mathcal{B}-shift.

For $\mathcal{B}=\left(\sqrt{6}, 3, \frac{2+\sqrt{6}}{3}\right)$, we have

$$
d_{\mathcal{B}^{(0)}}^{*}(1)=2(10)^{\omega}, d_{\mathcal{B}^{(1)}}^{*}(1)=(211001)^{\omega}, d_{\mathcal{B}^{(2)}}^{*}(1)=(110012)^{\omega} .
$$

The following finite automaton accepts the set of factors of elements in the \mathcal{B}-shift.

Finite type?

A subshift S of $A^{\mathbb{N}}$ is said to be of finite type if its minimal set of forbidden factors is finite.

Theorem (Bertrand-Mathis 1986)

The β-shift is of finite type if and only if $d_{\beta}(1)$ is finite

However, this result does not generalize to alternate bases of length $p \geq 2$. Indeed, for the alternate base $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have

$$
d_{\mathcal{B}^{(0)}}(1)=2010^{\omega} \text { and } d_{\mathcal{B}^{(1)}}(1)=11^{\omega} .
$$

Then

$$
d_{\mathcal{B}^{(0)}}^{*}(1)=200(10)^{\omega} \text { and } d_{\mathcal{B}^{(1)}}^{*}(1)=(10)^{\omega}
$$

and we see that all words in $2(00)^{*} 2$ are minimal forbidden factors, so the \mathcal{B}-shift is not of finite type.

Necessary conditions on \mathcal{B} to be a Parry alternate base

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If $\mathcal{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ is a Parry alternate base and $\delta=\beta_{0} \cdots \beta_{p-1}$, then

- δ is an algebraic integer
- $\beta_{i} \in \mathbb{Q}(\delta)$ for all $i \in\{0, \ldots, p-1\}$.

Let me give some intuition on an example.
Let $\mathcal{B}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ be a base such that the expansions of 1 are given by

$$
d_{\mathcal{B}^{(0)}}(1)=30^{\omega}, \quad d_{\mathcal{B}^{(1)}}(1)=110^{\omega}, \quad d_{\mathcal{B}^{(2)}}(1)=1(110)^{\omega} .
$$

We derive that $\beta_{0}, \beta_{1}, \beta_{2}$ satisfy the following set of equations

$$
\frac{3}{\beta_{0}}=1, \quad \frac{1}{\beta_{1}}+\frac{1}{\beta_{1} \beta_{2}}=1, \quad \frac{1}{\beta_{2}}+\left(\frac{1}{\beta_{2} \beta_{0}}+\frac{1}{\delta}\right) \frac{\delta}{\delta-1}=1,
$$

where $\delta=\beta_{0} \beta_{1} \beta_{2}$.
Multiplying the first equation by δ, the second one by $\beta_{1} \beta_{2}$ and the third one by $(\delta-1) \beta_{2}$, we obtain the identities

$$
3 \beta_{1} \beta_{2}-\delta=0, \quad-\beta_{1} \beta_{2}+\beta_{2}+1=0, \quad \beta_{1} \beta_{2}+(2-\delta) \beta_{2}+\delta-1=0
$$

In a matrix formalism, we have

$$
\left(\begin{array}{ccc}
3 & 0 & -\delta \\
-1 & 1 & 1 \\
1 & 2-\delta & \delta-1
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \beta_{2} \\
\beta_{2} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The existence of a non-zero vector $\left(\beta_{1} \beta_{2}, \beta_{2}, 1\right)^{T}$ as a solution of this equation forces that the determinant of the coefficient matrix is zero:

$$
\delta^{2}-9 \delta+9=0
$$

Hence we must have $\delta=\frac{9+3 \sqrt{5}}{2}=3 \varphi^{2}$ where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
We then obtain

$$
\beta_{1} \beta_{2}=\frac{\delta}{3}=\varphi^{2} \text { and } \beta_{2}=\beta_{1} \beta_{2}-1=\varphi^{2}-1=\varphi .
$$

Consequently,

$$
\beta_{1}=\frac{\beta_{1} \beta_{2}}{\beta_{2}}=\frac{\varphi^{2}}{\varphi}=\varphi \text { and } \beta_{0}=\frac{\delta}{\beta_{1} \beta_{2}}=\frac{3 \varphi^{2}}{\varphi^{2}}=3
$$

Indeed, the triple $\mathcal{B}=(3, \varphi, \varphi)$ is an alternate base giving precisely the given expansions of 1 .

The same strategy can be applied to any Parry alternate base.

However, the product δ need not be a Parry number

One might think at first that the product $\delta=\beta_{0} \cdots \beta_{p-1}$ should be a Parry number since by grouping terms p by p in the sum

$$
\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\frac{a_{2}}{\beta_{0} \beta_{1} \beta_{2}}+\cdots
$$

we get an expansion of the kind

$$
\frac{c_{0}}{\delta}+\frac{c_{1}}{\delta^{2}}+\frac{c_{2}}{\delta^{3}}+\cdots
$$

But here, the numerators are no longer integers.

Consider again the Parry alternate base $\mathcal{B}=(3, \varphi, \varphi)$. Then the previous grouping for the expansions

$$
d_{\mathcal{B}^{(0)}}(1)=30^{\omega}, \quad d_{\mathcal{B}^{(1)}}(1)=110^{\omega}, \quad d_{\mathcal{B}^{(2)}}(1)=1(110)^{\omega}
$$

gives us

$$
1=\frac{3 \varphi^{2}}{\delta}, \quad 1=\frac{3 \varphi+3}{\delta}, \quad 1=\frac{3 \varphi+\varphi+1}{\delta}+\frac{\varphi+1}{\delta^{2}}+\frac{\varphi+1}{\delta^{3}}+\frac{\varphi+1}{\delta^{4}}+\cdots
$$

In fact, we can show that $\delta=3 \varphi^{2}$ is not a Parry number, and moreover, none of its powers $\delta^{n}=\left(3 \varphi^{2}\right)^{n}$ is.

A sufficient condition on \mathcal{B} to be a Parry alternate base

Let

- $\delta=\beta_{0} \cdots \beta_{p-1}$
- $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ be a p-tuple of alphabets of integers containing 0
- $\mathcal{D}=\left\{\sum_{i=0}^{p-1} a_{i} \beta_{i+1} \cdots \beta_{p-1}: a_{i} \in D_{i}\right\}$ be the corresponding set of numerators when grouping terms p by p
- $X^{\mathcal{D}}(\delta)=\left\{\sum_{i=0}^{\ell-1} c_{i} \delta^{\ell-1-i}: \ell \in \mathbb{N}, c_{i} \in \mathcal{D}\right\}$ be the associated complex spectrum.

Proposition

If $D_{i} \supseteq\left\{-\left\lfloor\beta_{i}\right\rfloor, \ldots,\left\lfloor\beta_{i}\right\rfloor\right\}$ for all $i \in\{0, \ldots, p-1\}$ and if the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}, then \mathcal{B} is a Parry alternate base.

Proposition

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}.

As a consequence, we get
Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then \mathcal{B} is a Parry alternate base.

Some remarks

- The condition of δ being a Pisot number is neither sufficient nor necessary for \mathcal{B} to be a Parry alternate base.

1. Even for $p=1$, there exist Parry numbers which are not Pisot.
2. To see that it is not sufficient for $p \geq 2$, consider the alternate base $\mathcal{B}=(\sqrt{\beta}, \sqrt{\beta})$ where β is the smallest Pisot number. The product δ is the P isot number β. However, the \mathcal{B}-expansion of 1 is equal to $d_{\sqrt{\beta}}(1)$, which is aperiodic.

- The bases $\beta_{0}, \ldots, \beta_{p-1}$ need not be algebraic integers in order to have a Parry alternate base.

To see this, consider $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$. For this base, we have $d_{\mathcal{B}}(0)(1)=2010^{\omega}$ and $d_{\mathcal{B}^{(1)}}(1)=110^{\omega}$. However, the minimal polynomial of $\frac{5+\sqrt{13}}{6}$ is $3 x^{2}-5 x+1$, hence it is not an algebraic integer.

- For the same non Pisot algebraic integer δ, there may exist a Parry alternate base $\boldsymbol{\alpha}=\left(\alpha_{0}, \cdots, \alpha_{p-1}\right)$ and a non-Parry alternate base $\mathcal{B}=\left(\beta_{0} \cdots \beta_{p-1}\right)$ such that $\prod_{i=0}^{p-1} \alpha_{i}=\prod_{i=0}^{p-1} \beta_{i}=\delta$.

Generalization of Schmidt's results

For $\beta>1$, define $\operatorname{Per}(\beta)=\left\{x \in[0,1): d_{\beta}(x)\right.$ is ultimately periodic $\}$.

Theorem (Schmidt 1980)

1. If $\mathbb{Q} \cap[0,1) \subseteq \operatorname{Per}(\beta)$ then β is either a Pisot number or a Salem number.
2. If β is a Pisot number then $\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap[0,1)$.

Define $\operatorname{Per}(\mathcal{B})=\left\{x \in[0,1): d_{\mathcal{B}}(x)\right.$ is ultimately periodic $\}$.

Theorem (Charlier, Cisternino \& Kreczman)

1. If $\mathbb{Q} \cap[0,1) \subseteq \bigcap_{i=0}^{p-1} \operatorname{Per}\left(\mathcal{B}^{(i)}\right)$ then $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ and δ is either a Pisot number or a Salem number.
2. If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then $\operatorname{Per}(\mathcal{B})=\mathbb{Q}(\delta) \cap[0,1)$.

From this, we recover the previously mentioned result (not using properties of the spectrum):

Corollary

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then \mathcal{B} is a Parry alternate base.

Theorem (Schmidt 1980)
If β is an algebraic integer that is neither a Pisot number nor a Salem number then $\operatorname{Per}(\beta) \cap \mathbb{Q}$ is nowhere dense in $[0,1)$.

Theorem (Charlier, Cisternino \& Kreczman)
If δ is an algebraic integer that is neither a Pisot number nor a Salem number then $\operatorname{Per}(\mathcal{B}) \cap \mathbb{Q}$ is nowhere dense in $[0,1)$.

Alternate zero automaton

For an alternate base $\mathcal{B}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ and a p-tuple of alphabets $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$, we can define a Büchi automaton $\mathcal{Z}(\mathcal{B}, \boldsymbol{D})$ accepting the set

$$
Z(\mathcal{B}, \boldsymbol{D})=\left\{a_{0} a_{1} a_{2} \cdots \in \prod_{n=0}^{+\infty} D_{n}: \sum_{n=0}^{+\infty} \frac{a_{n}}{\prod_{k=0}^{n} \beta_{k}}=0\right\}
$$

Here, we have set $D_{n}=D_{n \bmod p}$ and $\beta_{n}=\beta_{n} \bmod p$.

An example

Consider the alternate base $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$ and $\boldsymbol{D}=(\{-2,-1,0,1,2\},\{-1,0,1\})$.
Then the zero automaton $\mathcal{Z}(\mathcal{B}, \boldsymbol{D})$ is:

For instance, the infinite words $1(\overline{1} 0)^{\omega}$ and $(0 \overline{1} 21 \overline{21})^{\omega}$ have value 0 in base \mathcal{B} (where $\overline{1}$ and $\overline{2}$ designate the digits -1 and -2 respectively).

Alternate bases whose set of zero representations is accepted by a finite Büchi automaton

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2023)
The following assertions are equivalent.

1. The zero automaton $\mathcal{Z}(\mathcal{B}, \boldsymbol{D})$ is finite for all $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$.
2. The zero automaton $\mathcal{Z}(\mathcal{B}, \boldsymbol{D})$ is finite for one $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ such that

- $D_{i} \supseteq\left\{-\left\lfloor\beta_{i}\right\rfloor, \ldots,\left\lfloor\beta_{i}\right\rfloor\right\}$ for all i
- $\left\lfloor\beta_{i}\right\rfloor \geq\lceil\delta\rceil-1$ for at least one i.

3. The product δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.

Normalization in alternate base

The normalization function is the partial function $\nu_{\mathcal{B}, D}$ mapping any \mathcal{B}-representation $a \in \prod_{n \in \mathbb{N}} D_{n}$ of a real number $x \in[0,1)$ to the \mathcal{B}-expansion of x.

We say that $\nu_{\mathcal{B}, \boldsymbol{D}}$ is computable by a finite automaton if there exists a finite Büchi automaton accepting the set

$$
\left\{(u, v) \in \prod_{n \in \mathbb{N}}\left(D_{n} \times\left\{0, \ldots,\left\lceil\beta_{n}\right\rceil-1\right\}\right): \operatorname{val}_{\mathcal{B}}(u)=\operatorname{val}_{\mathcal{B}}(v) \text { and } \exists x \in[0,1), v=d_{\mathcal{B}}(x)\right\}
$$

First ingredient.

Consider two p-tuples of alphabets $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ and $\boldsymbol{D}^{\prime}=\left(D_{0}^{\prime}, \ldots, D_{p-1}^{\prime}\right)$.
We set $\boldsymbol{D}-\boldsymbol{D}^{\prime}=\left(D_{0}-D_{0}^{\prime}, \ldots, D_{p-1}-D_{p-1}^{\prime}\right)$.
From the zero automaton $\mathcal{Z}\left(\mathcal{B}, \boldsymbol{D}-\boldsymbol{D}^{\prime}\right)$, we define a converter $\mathcal{C}_{\mathcal{B}, \boldsymbol{D}, \boldsymbol{D}^{\prime}}$ from \boldsymbol{D} to \boldsymbol{D}^{\prime}, that is, a Büchi automaton accepting the set

$$
\left\{(u, v) \in \prod_{n \in \mathbb{N}}\left(D_{n} \times D_{n}^{\prime}\right): \operatorname{val}_{\mathcal{B}}(u)=\operatorname{val}_{\mathcal{B}}(v)\right\}
$$

Second ingredient.
In the case where \mathcal{B} is a Parry alternate base, we can define a Büchi automaton accepting the set $\left\{d_{\mathcal{B}}(x): x \in[0,1)\right\}$.

For $\mathcal{B}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have seen that $d_{\mathcal{B}^{(0)}}^{*}(1)=20(01)^{\omega}$ and $d_{\mathcal{B}^{(1)}}^{*}(1)=(10)^{\omega}$.

Combining these two automata, we obtain the following result.
Theorem (Charlier, Cisternino, Masáková \& Pelantová 2023)
If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the normalization function $\nu_{\mathcal{B}, \boldsymbol{D}}$ is computable by a finite Büchi automaton.

Ergodic properties of alternate base expansions

We can express the greedy digits a_{n} thanks to the β_{n}-transformations.
If $x \in[0,1)$ and $d_{\mathcal{B}}(x)=a_{0} a_{1} a_{2} \cdots$ then

$$
a_{n}=\left\lfloor\beta_{n}\left(T_{\beta_{n-1}} \circ \cdots \circ T_{\beta_{0}}(x)\right)\right\rfloor
$$

where for $\beta>1$, the map

$$
T_{\beta}:[0,1) \rightarrow[0,1), x \mapsto \beta x-\lfloor\beta x\rfloor
$$

is the so-called β-transformation.
A fundamental dynamical result of real base expansions is the following.
Theorem (Renyi 1957, Parry 1960, Rohlin 1961)
There exists a unique T_{β}-invariant absolutely continuous probability measure μ_{β} on $\mathcal{B}([0,1))$.
Furthermore, the measure μ_{β} is equivalent to the Lebesgue measure on $\mathcal{B}([0,1))$ and the dynamical system $\left([0,1), \mathcal{B}([0,1)), \mu_{\beta}, \boldsymbol{T}_{\beta}\right)$ is ergodic and has entropy $\log (\beta)$.

The alternate \mathcal{B}-transformation

Let $\boldsymbol{\mathcal { B }}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ be an alternate base.
Then the \mathcal{B}-transformation is the map
$T_{\mathcal{B}}:\{0, \ldots, p-1\} \times[0,1) \rightarrow\{0, \ldots, p-1\} \times[0,1),(i, x) \mapsto\left((i+1) \bmod p, T_{\beta_{i}}(x)\right)$.
If $x \in[0,1)$ and $d_{\mathcal{B}}(x)=a_{0} a_{1} a_{2} \cdots$ then

$$
a_{n}=\left\lfloor\beta_{n} \pi_{2}\left(T_{\mathcal{B}}^{n}(0, x)\right)\right\rfloor
$$

for all $n \geq 0$, where π_{2} is the projection on the second component.

The following proposition provides us with the main tool for the construction of a $T_{\mathcal{B}}$-invariant measure.

Proposition (Charlier, Cisternino \& Dajani 2023)

For all $n \geq 1$ and all $\beta_{0}, \ldots, \beta_{n-1}>1$, there exists a unique ($T_{\beta_{n-1}} \circ \cdots \circ T_{\beta_{0}}$)-invariant absolutely continuous probability measure μ on $\mathcal{B}([0,1))$. Furthermore, the measure μ is equivalent to the Lebesgue measure on $\mathcal{B}([0,1))$, and the associated dynamical system is exact and has entropy $\log \left(\beta_{n-1} \cdots \beta_{0}\right)$.

The probability measure $\mu_{\mathcal{B}}$

For each $i \in\{0, \ldots, p-1\}$, we let $\mu_{\mathcal{B}, i}$ denote the unique ($T_{\beta_{i+p-1}} \circ \cdots \circ T_{\beta_{i}}$)-invariant absolutely continuous probability measure.

We define a probability measure $\mu_{\mathcal{B}}$ on the σ-algebra

$$
\mathcal{T}_{p}=\left\{\bigcup_{i=0}^{p-1}\left(\{i\} \times B_{i}\right): \forall i \in\{0, \ldots, p-1\}, B_{i} \in \mathcal{B}([0,1))\right\}
$$

over $\{0, \ldots, p-1\} \times[0,1)$ as follows.
For all $B_{0}, \ldots, B_{p-1} \in \mathcal{B}([0,1))$, we set

$$
\mu_{\mathcal{B}}\left(\bigcup_{i=0}^{p-1}\left(\{i\} \times B_{i}\right)\right)=\frac{1}{p} \sum_{i=0}^{p-1} \mu_{\mathcal{B}, i}\left(B_{i}\right) .
$$

We define a new measure λ_{p} over the σ-algebra \mathcal{T}_{p}.
For all $B_{0}, \ldots, B_{p-1} \in \mathcal{B}([0,1))$, we set

$$
\lambda_{p}\left(\bigcup_{i=0}^{p-1}\left(\{i\} \times B_{i}\right)\right)=\frac{1}{p} \sum_{i=0}^{p-1} \lambda\left(B_{i}\right)
$$

We call this measure the p-Lebesgue measure on \mathcal{T}_{p}.

Theorem (Charlier, Cisternino \& Dajani 2023)

The measure $\mu_{\mathcal{B}}$ is the unique $T_{\mathcal{B}}$-invariant probability measure on \mathcal{T}_{p} that is absolutely continuous with respect to λ_{p}. Furthermore, $\mu_{\mathcal{B}}$ is equivalent to λ_{p} on \mathcal{T}_{p} and the dynamical system $\left(\{0, \ldots, p-1\} \times[0,1), \mathcal{T}_{p}, \mu_{\mathcal{B}}, T_{\mathcal{B}}\right)$ is ergodic and has entropy $\frac{1}{p} \log \left(\beta_{0} \cdots \beta_{p-1}\right)$.

Note that, however, the dynamical system $\left(\{0, \ldots, p-1\} \times[0,1), \mathcal{T}_{p}, \mu_{\mathcal{B}}, T_{\mathcal{B}}^{p}\right)$ is not ergodic for $p>1$.

Indeed, we have $T_{\mathcal{B}}^{-p}(\{0\} \times[0,1))=\{0\} \times[0,1)$ whereas $\mu_{\mathcal{B}}(\{0\} \times[0,1))=\frac{1}{p}$.

Frequencies of the digits

The frequency of a digit d occurring in the \mathcal{B}-expansion $a_{0} a_{1} a_{2} \cdots$ of a real number x in $[0,1)$ is equal to

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq k<n: a_{k}=d\right\}
$$

provided that this limit exists.

Proposition (Charlier, Cisternino \& Dajani 2023)

For λ-almost all $x \in[0,1$), the frequency of any digit d occurring in the greedy \mathcal{B}-expansion of x exists and is equal to

$$
\frac{1}{p} \sum_{i=0}^{p-1} \mu_{\mathcal{B}, i}\left(\left[\frac{d}{\beta_{i}}, \frac{d+1}{\beta_{i}}\right) \cap[0,1)\right) .
$$

Open problems

- Understand the \mathcal{B}-shifts of finite type for alternate base.
- Study of the \mathcal{B}-shift of well-chosen Cantor bases $\mathcal{B}=\left(\beta_{n}\right)_{n \geq 0}$.
- Could the \mathcal{B}-shift be sofic for "automatic" Cantor bases?
- Refinement of our result concerning the alternate spectrum.
- Compute the topological entropy.

Thank you!

