Complexité syntaxique et numérations

Émilie Charlier

JMC 2012, Rouen, 13 juin

An example first

The set $2 \mathbb{N}$ of even integers is F-recognizable or F-automatic, i.e., the language $\operatorname{rep}_{F}(2 \mathbb{N})=\{\varepsilon, 10,101,1001,10000, \ldots\}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)
With respect to the Zeckendorf system, any F-recognizable set can be considered as a "particularly simple" set of integers.

We get a similar definition for other numeration systems.

Numeration systems

- A numeration system (NS) is an increasing sequence of integers $U=\left(U_{n}\right)_{n \geq 0}$ such that
- $U_{0}=1$ and
- $C_{U}:=\sup _{n \geq 0}\left\lceil U_{n+1} / U_{n}\right\rceil<+\infty$.
- U is linear if it satisfies a linear recurrence relation over \mathbb{Z}.
- Let $n \in \mathbb{N}$. A word $w=w_{\ell-1} \cdots w_{0}$ over \mathbb{N} represents n if

$$
\sum_{i=0}^{\ell-1} w_{i} U_{i}=n
$$

- In this case, we write $\operatorname{val}_{U}(w)=n$.

Greedy representations

- A representation $w=w_{\ell-1} \cdots w_{0}$ of an integer is greedy if

$$
\forall j, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j}
$$

- In that case, $w \in\left\{0,1, \ldots, C_{U}-1\right\}^{*}$.
- $\operatorname{rep}_{U}(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.
- $X \subseteq \mathbb{N}$ is U-recognizable $\stackrel{\Delta}{\Leftrightarrow} \operatorname{rep}_{U}(X)$ is accepted by a finite automaton.
- $\operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.

Zeckendorf (or Fibonacci) numeration system

- $F_{n+2}=F_{n+1}+F_{n}$
- $F_{0}=1, F_{1}=2$
- \mathcal{A}_{F} accepts all words that do not contain 11 .

The ℓ-bonacci numeration system

- $U_{n+\ell}=U_{n+\ell-1}+U_{n+\ell-2}+\cdots+U_{n}$
- $U_{i}=2^{i}, i \in\{0, \ldots, \ell-1\}$
- \mathcal{A}_{U} accepts all words that do not contain 1^{ℓ}.

U-recognizability of arithmetic progressions

Theorem
Let $U=\left(U_{i}\right)_{i \geq 0}$ be a $N S$ such that \mathbb{N} is U-recognizable.
Then $m \mathbb{N}+r$ is U-recognizable for all $m, r \in \mathbb{N}$, and, given a DFA accepting $\operatorname{rep}_{U}(\mathbb{N})$, a DFA accepting $\operatorname{rep}_{U}(m \mathbb{N}+r)$ can be obtained effectively.
Consequently, any ultimately periodic set is U-recognizable.

Theorem
Let U be a PNS. If \mathbb{N} is U-recognizable, then U is linear, i.e., it satisfies a linear recurrence relation over \mathbb{Z}.

Motivations

What is the "best automaton" we can get?

DFAs accepting the binary representations of $4 \mathbb{N}+3$.

Question

The general algorithm doesn't provide a minimal automaton. What is the state complexity of $\operatorname{rep}_{U}(m \mathbb{N}+r)$?

Related questions

Suppose that $\operatorname{rep}_{U}(\mathbb{N})$ is regular and let \mathcal{A}_{U} be the trim minimal automaton recognizing \mathbb{N}.

- What does \mathcal{A}_{U} look like?

Suppose we are interested in a certain property \mathcal{P} on sets of integers (like being ultimately periodic) that is U-recognizable.

- Describe the state complexity of a set $X \in \mathcal{P}$ w.r.t U.
- Describe the syntactic complexity of a set $X \in \mathcal{P}$ w.r.t U.

Honkala's decision procedure 1986

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

Main ideas for an automata-resolution of this problem:

- If $X \subseteq \mathbb{N}$ is ultimately periodic, then the state complexity of the associated minimal DFA should grow with the period and preperiod of X.
- Analyse the inner structure of DFAs accepting the U-representations of $m \mathbb{N}+r$.

Information we are looking for

Consider a NS U such that \mathbb{N} is U-recognizable.
How many states does the trim minimal automaton $\mathcal{A}_{U, m}$ recognizing $m \mathbb{N}$ contain?

1. Give upper/lower bounds?
2. Study special cases, e.g., Zeckendorf numeration system.

All these questions could be reformulated using the syntactic monoid instead of the minimal automaton.

State complexity

A general upper bound

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010)
Let $m, r \in \mathbb{N}$ with $m \geq 2$ and $r<m$.
If $\mathrm{rep}_{U}(\mathbb{N})$ is accepted by a n-state DFA, then the minimal automaton of $\operatorname{rep}_{U}(m \mathbb{N}+r)$ has at most $n m^{n}$ states.

NB: This result remains true for the larger class of abstract numeration systems.

An exact result for the integer bases

Theorem (Alexeev 2004)
Let $b, m \geq 2$. Let N, M be such that $b^{N}<m \leq b^{N+1}$ and $(m, 1)<(m, b)<\cdots<\left(m, b^{M}\right)=\left(m, b^{M+1}\right)$.
The minimal automaton recognizing $m \mathbb{N}$ in base b has exactly

$$
\frac{m}{\left(m, b^{N+1}\right)}+\sum_{t=0}^{\min \{N, M-1\}} \frac{b^{t}}{\left(m, b^{t}\right)} \text { states. }
$$

In particular, if m and b are coprime, then this number is just m.
Further, if $m=b^{n}$, then this number is $n+1$.

A lower bound

Theorem (C-Rampersad-Rigo-Waxweiler 2011)
Let U be any numeration system (not necessarily linear). The number of states of $\mathcal{A}_{U, m}$ is at least $\left|\operatorname{rep}_{U}(m)\right|$.

The Hankel matrix

- Let $U=\left(U_{n}\right)_{n \geq 0}$ be a linear numeration system.
- Let $k=k_{U, m}$ be the length of the shortest linear recurrence relation satisfied by $\left(U_{i} \bmod m\right)_{i \geq 0}$.
- For $t \geq 1$ define

$$
H_{t}:=\left(\begin{array}{cccc}
U_{0} & U_{1} & \cdots & U_{t-1} \\
U_{1} & U_{2} & \cdots & U_{t} \\
\vdots & \vdots & \ddots & \vdots \\
U_{t-1} & U_{t} & \cdots & U_{2 t-2}
\end{array}\right)
$$

- For $m \geq 2, k_{U, m}$ is also the largest t such that $\operatorname{det} H_{t} \not \equiv 0$ $(\bmod m)$.

A system of linear congruences

- Let $S_{U, m}$ denote the number of k-tuples \mathbf{b} in $\{0, \ldots, m-1\}^{k}$ such that the system

$$
H_{k} \mathbf{x} \equiv \mathbf{b} \quad(\bmod m)
$$

has at least one solution $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$.

- $S_{U, m} \leq m^{k}$.

Calculating $S_{U, m}$

- $U_{n+2}=2 U_{n+1}+U_{n},\left(U_{0}, U_{1}\right)=(1,3)$
- $\left(U_{n}\right)_{n \geq 0}=1,3,7,17,41,99,239, \ldots$
- Consider the system

$$
\left\{\begin{array}{rlr}
1 x_{1}+3 x_{2} & \equiv b_{1} & (\bmod 4) \\
3 x_{1}+7 x_{2} & \equiv b_{2} & (\bmod 4)
\end{array}\right.
$$

- $2 x_{1} \equiv b_{2}-b_{1}(\bmod 4)$
- For each value of b_{1} there are at most 2 values for b_{2}.
- Hence $S_{U, 4}=8$.

General state complexity result

Theorem
Let $m \geq 2$ and let $U=\left(U_{n}\right)_{n \geq 0}$ be a numeration system s.t.
(a) \mathbb{N} is U-recognizable;
(b) \mathcal{A}_{U} has a single strongly connected component \mathcal{C}_{U};
(c) for all states p, q in \mathcal{C}_{U} with $p \neq q$, there exists a word $x_{p q}$ such that $p \cdot x_{p q} \in \mathcal{C}_{U}$ and $q \cdot x_{p q} \notin \mathcal{C}_{U}$, or vice-versa;
(d) $\left(U_{n} \bmod m\right)_{n \geq 0}$ is purely periodic.

Then the number of states of $\mathcal{A}_{U, m}$ from which infinitely many words are accepted is

$$
\left|\mathcal{C}_{U}\right| S_{U, m} .
$$

Idea of the proof

Let L be a language over the alphabet Σ.
The Myhill-Nerode equivalence relation for $L: u \sim_{L} v$ means that for all $y \in \Sigma^{*}, u y \in L \Leftrightarrow v y \in L$.

The number of states of $\mathcal{A}_{U, m}$ from which infinitely many words are accepted is the number of sets $u^{-1} 0^{*} \operatorname{rep}_{U}(m \mathbb{N})$ where u is s.t. $q_{0} \cdot u$ belongs to \mathcal{C}_{U} (where q_{0} is the initial state of \mathcal{A}_{U}).

For all $u, v \in A_{U}^{*}$ s.t. $q_{0} \cdot u$ and $q_{0} \cdot v$ belong to \mathcal{C}_{U}, we have $u \sim_{0^{*} \operatorname{rep}_{U}(m \mathbb{N})} v$ iff

$$
\left\{\begin{array}{l}
u \sim_{0^{*}} \operatorname{rep}_{U}(\mathbb{N}) v \quad \text { and } \\
\forall i \in\{0, \ldots, k-1\}, \operatorname{val}_{U}\left(u 0^{i}\right) \equiv \operatorname{val}_{U}\left(v 0^{i}\right) \quad(\bmod m)
\end{array}\right.
$$

Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathcal{A}_{U} is strongly connected, then the number of states of $\mathcal{A}_{U, m}$ is

$$
\left|\mathcal{A}_{U}\right| S_{U, m}
$$

Further, we get an automatic procedure to obtain directly the minimal automaton $\mathcal{A}_{U, m}$ of $0^{*} \operatorname{rep}_{U}(m \mathbb{N})$.

Bertrand numeration systems

- Bertrand numeration system: w is in $\operatorname{rep}_{U}(\mathbb{N})$ if and only if $w 0$ is in $\operatorname{rep}_{U}(\mathbb{N})$.
- E.g., the ℓ-bonacci system is Bertrand.

A non-Bertrand system

- $U_{n+2}=U_{n+1}+U_{n}, U_{0}=1, U_{1}=3$
- $\left(U_{n}\right)_{n \geq 0}=1,3,4,7,11,18,29,47, \ldots$
- 2 is a greedy representation but 20 is not.

Theorem (Bertrand)

A numeration system U is Bertrand iff there is a $\beta>1$ s.t.

$$
0^{*} \operatorname{rep}_{U}(\mathbb{N})=L(\beta)
$$

In that case, if $d_{\beta}^{*}(1)=\left(t_{i}\right)_{i \geq 1}$, then

$$
U_{n}=t_{1} U_{n-1}+\cdots+t_{n} U_{0}+1
$$

- If β is a Parry number, the system is linear and we have a finite trim minimal automaton \mathcal{A}_{β} accepting $L(\beta)$.
- Consequently, $\operatorname{rep}_{U}(\mathbb{N})$ is regular and $\mathcal{A}_{U}=\mathcal{A}_{\beta}$.

Applying our state complexity result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a non-integral Parry number $\beta>1$. The set \mathbb{N} is U-recognizable and the trim minimal automaton \mathcal{A}_{U} of $0^{*} \operatorname{rep}_{U}(\mathbb{N})$ fulfills the hypotheses of the theorem.

Consequently the previous state complexity result applies to the class of Bertrand numeration systems.

Result for the ℓ-bonacci system

Corollary

For U the ℓ-bonacci system, the number of states of $\mathcal{A}_{U, m}$ is ℓm^{ℓ}.

13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12
						\vdots

Further work for state complexity

- Analyze the structure of \mathcal{A}_{U} for systems with no dominant root.
- Remove the assumption that $\left(U_{n} \bmod m\right)_{n \geq 0}$ is purely periodic in the state complexity result.
- Look at any arithmetic progressions $X=m \mathbb{N}+r$.

Transition to syntactic complexity

Transition to syntactic complexity

Let $N_{U}(m) \in\{1, \ldots, m\}$ denote the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Zeckendorf system)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$, so $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$, so $N_{F}(11)=7$.
Theorem (C-Rigo 2008)
Let $U=\left(U_{i}\right)_{i \geq 0}$ be a $N S$ s.t. $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$.
If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p, then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least $N_{U}(p)$ states.

- If $N_{U}(m) \rightarrow+\infty$ as $m \rightarrow+\infty$, then we obtain a decision procedure to the periodicity problem.
- If U satisfies

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0, \text { with } a_{k}= \pm 1
$$

then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

- Works for the Zeckendorf system.
- Not true for integer base b: $N\left(b^{n}\right)=1$ for all $n \geq 0$.
- The formula for the state complexity of $m \mathbb{N}$ for the Zeckendorf system is much simpler than the formula for integer base b systems.
- In this point of view, state complexity is not completely satisfying.
- Hope: Find a complexity that would handle all these systems in a kind of uniform way.

Syntactic complexity

Syntactic complexity

- Let L be a language over the alphabet Σ.
- Myhill-Nerode equivalence relation for $L: u \sim_{L} v$ means that for all $y \in \Sigma^{*}, u y \in L \Leftrightarrow v y \in L$.
- Leads to the minimal automaton of $L:\left|\mathcal{A}_{L}\right|=\left|\Sigma^{*} / \sim_{L}\right|$ is the state complexity of L.
- Syntactic congruence for $L: u \equiv_{L} v$ means that for all $x, y \in \Sigma^{*}, x u y \in L \Leftrightarrow x v y \in L$.
- Leads to the syntactic monoid of $L:\left(\Sigma^{*} / \equiv_{L}, \circ\right)$ where $[u] \circ[v]=[u v]$.
- $\left|\Sigma^{*} / \equiv_{L}\right|$ is the syntactic complexity of L.

Theorem
A language L is regular iff Σ^{*} / \equiv_{L} is finite.
Theorem
Let L be a language over Σ. Two words $u, v \in \Sigma^{*}$ are s.t. $u \equiv_{L} v$ iff they perform the same transformation on the set of states of the minimal automaton $\mathcal{A}_{L}: q \cdot u=q \cdot v$ for all states q.

An example: $L=a^{*} b^{*}$

Minimal automaton:

Representation of the syntactic monoid:

An example: $L=a^{*} b^{*}$

Minimal automaton:

Representation of the syntactic monoid:

Syntactic complexity for integer bases

The syntactic complexity of $X \subseteq \mathbb{N}$ is the syntactic complexity of the language $0^{*} \operatorname{rep}_{U}(X)$.

For x, y coprime, $\operatorname{ord}_{y}(x)=\min \left\{j \in \mathbb{N}_{0}: x^{j} \equiv 1(\bmod y)\right\}$.
Theorem (Rigo-Vandomme 2011)

- Let $m, b \geq 2$ be coprime integers. If $X \subseteq \mathbb{N}$ is periodic of minimal period m, then the syntactic complexity of X is equal to $m \operatorname{ord}_{m}(b)$.

Main idea: For all $u, v \in A_{U}^{*}$, we have $u \equiv_{0^{*} \operatorname{rep}_{b}(X)} v$ iff

$$
\left\{\begin{array}{l}
|u| \equiv|v| \quad\left(\bmod \operatorname{ord}_{m}(b)\right) \quad \text { and } \\
\operatorname{val}_{b}(u) \equiv \operatorname{val}_{b}(v) \quad(\bmod m)
\end{array}\right.
$$

Theorem (continued)

- Let $b \geq 2$ and $m=b^{n}$ with $n \geq 1$.
(a) The syntactic complexity of $m \mathbb{N}$ is equal to $2 n+1$.
(b) If $X \subseteq \mathbb{N}$ is periodic of minimal period m, then the syntactic complexity of X is $\geq n+1$.
- Let $b \geq 2$ and $m=b^{n} q$ with $n \geq 1$ and $(b, q)=1$.

Then the syntactic complexity of $m \mathbb{N}$ is equal to $(n+1) q \operatorname{ord}_{q}(b)+n$.

A general lower bound for the integer base case

Theorem (Lacroix-Rampersad-Rigo-Vandomme 2012)
Let $b \geq 2$ and $m=d b^{n} q$ with $n \geq 1$ and $(b, q)=1$ and where n and q are chosen to be maximal.
If $X \subseteq \mathbb{N}$ is periodic of minimal period m, then the syntactic complexity of X is

$$
\geq \max \left(q \operatorname{ord}_{q}(b), \frac{\gamma+1}{q \operatorname{ord}_{q}(b)}\right)
$$

where $\gamma \rightarrow+\infty$ as n or $d \rightarrow+\infty$.

Zeckendorf numeration system and further work

Theorem
The syntactic complexity of $m \mathbb{N}$ is

$$
4 m^{2} p_{F}(m)+2
$$

where $p_{F}(m)$ is the minimal period of $\left(F_{i} \bmod m\right)_{i \geq 0}$.

So far, we can show that this result extends to the Bertrand systems s.t. $\left(U_{n} \bmod m\right)_{n \geq 0}$ is purely periodic.

Further work and conclusion

Further work for syntactic complexity:

- Try to estimate the syntactic complexity of periodic sets for a larger class of numeration systems.

Conclusion

Syntactic complexity seems to allow us to handle integer bases and the Zeckendorf system at once.

