Complexité syntaxique et numérations

Émilie Charlier

JMC 2012, Rouen, 13 juin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An example first

	1	2	3	5	8	13
2	0	1				
4	1	0	1			
6	1	0	0	1		
8	0	0	0	0	1	
10	0	1	0	0	1	
12	1	0	1	0	1	

The set $2\mathbb{N}$ of even integers is *F*-recognizable or *F*-automatic, i.e., the language $\operatorname{rep}_F(2\mathbb{N}) = \{\varepsilon, 10, 101, 1001, 10000, \ldots\}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Zeckendorf system, any F-recognizable set can be considered as a "particularly simple" set of integers.

We get a similar definition for other numeration systems.

Numeration systems

- A numeration system (NS) is an increasing sequence of integers U = (U_n)_{n≥0} such that
 - ▶ $U_0 = 1$ and

$$C_U := \sup_{n \ge 0} \left[U_{n+1} / U_n \right] < +\infty.$$

- ▶ U is linear if it satisfies a linear recurrence relation over \mathbb{Z} .
- ▶ Let $n \in \mathbb{N}$. A word $w = w_{\ell-1} \cdots w_0$ over \mathbb{N} represents n if

$$\sum_{i=0}^{\ell-1} w_i U_i = n$$

• In this case, we write $\operatorname{val}_{U}(w) = n$.

Greedy representations

▶ A representation $w = w_{\ell-1} \cdots w_0$ of an integer is *greedy* if

$$\forall j, \ \sum_{i=0}^{j-1} w_i U_i < U_j.$$

- In that case, $w \in \{0, 1, \dots, C_U 1\}^*$.
- ▶ $\operatorname{rep}_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.
- ▶ $X \subseteq \mathbb{N}$ is *U*-recognizable \Leftrightarrow rep_{*U*}(*X*) is accepted by a finite automaton.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $\operatorname{rep}_U(\mathbb{N})$ is the numeration language.

Zeckendorf (or Fibonacci) numeration system

<ロ> (四) (四) (三) (三) (三) (三)

$$\blacktriangleright F_{n+2} = F_{n+1} + F_n$$

•
$$F_0 = 1, F_1 = 2$$

• \mathcal{A}_F accepts all words that do not contain 11.

The ℓ -bonacci numeration system

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

æ

•
$$U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$$

•
$$U_i = 2^i, i \in \{0, \dots, \ell - 1\}$$

• \mathcal{A}_U accepts all words that do not contain 1^{ℓ} .

U-recognizability of arithmetic progressions

Theorem

Let $U = (U_i)_{i \ge 0}$ be a NS such that \mathbb{N} is U-recognizable. Then $m \mathbb{N} + r$ is U-recognizable for all $m, r \in \mathbb{N}$, and, given a DFA accepting $\operatorname{rep}_U(\mathbb{N})$, a DFA accepting $\operatorname{rep}_U(m \mathbb{N} + r)$ can be obtained effectively.

Consequently, any ultimately periodic set is U-recognizable.

Theorem

Let U be a PNS. If \mathbb{N} is U-recognizable, then U is linear, i.e., it satisfies a linear recurrence relation over \mathbb{Z} .

Motivations

What is the "best automaton" we can get?

DFAs accepting the binary representations of $4\mathbb{N}+3$.

Question

The general algorithm doesn't provide a minimal automaton. What is the state complexity of $\operatorname{rep}_U(m\mathbb{N}+r)$?

Suppose that $\operatorname{rep}_U(\mathbb{N})$ is regular and let \mathcal{A}_U be the trim minimal automaton recognizing \mathbb{N} .

• What does \mathcal{A}_U look like?

Suppose we are interested in a certain property \mathcal{P} on sets of integers (like being ultimately periodic) that is U-recognizable.

- Describe the state complexity of a set $X \in \mathcal{P}$ w.r.t U.
- Describe the syntactic complexity of a set $X \in \mathcal{P}$ w.r.t U.

ション ふゆ く ビット キロ・ ト きょうめん

Honkala's decision procedure 1986

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

Main ideas for an automata-resolution of this problem:

If X ⊆ N is ultimately periodic, then the state complexity of the associated minimal DFA should grow with the period and preperiod of X.

ション ふゆ く ビット キロ・ ト きょうめん

• Analyse the inner structure of DFAs accepting the U-representations of $m \mathbb{N} + r$.

Consider a NS U such that \mathbb{N} is U-recognizable.

How many states does the trim minimal automaton $\mathcal{A}_{U,m}$ recognizing $m \mathbb{N}$ contain?

- 1. Give upper/lower bounds?
- 2. Study special cases, e.g., Zeckendorf numeration system.

All these questions could be reformulated using the syntactic monoid instead of the minimal automaton.

State complexity

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010) Let $m, r \in \mathbb{N}$ with $m \ge 2$ and r < m. If $\operatorname{rep}_U(\mathbb{N})$ is accepted by a *n*-state DFA, then the minimal automaton of $\operatorname{rep}_U(m\mathbb{N} + r)$ has at most $n m^n$ states.

NB: This result remains true for the larger class of *abstract numeration systems*.

ション ふゆ くち くち くち くち

An exact result for the integer bases

Theorem (Alexeev 2004)

Let $b, m \ge 2$. Let N, M be such that $b^N < m \le b^{N+1}$ and $(m, 1) < (m, b) < \cdots < (m, b^M) = (m, b^{M+1})$. The minimal automaton recognizing $m \mathbb{N}$ in base b has exactly

$$rac{m}{(m,b^{N+1})} + \sum_{t=0}^{\min\{N,M-1\}} rac{b^t}{(m,b^t)}$$
 states.

In particular, if m and b are coprime, then this number is just m. Further, if $m = b^n$, then this number is n + 1.

A lower bound

Theorem (C-Rampersad-Rigo-Waxweiler 2011) Let U be any numeration system (not necessarily linear). The number of states of $\mathcal{A}_{U,m}$ is at least $|\operatorname{rep}_U(m)|$.

The Hankel matrix

- Let $U = (U_n)_{n \ge 0}$ be a linear numeration system.
- ▶ Let k = k_{U,m} be the length of the shortest linear recurrence relation satisfied by (U_i mod m)_{i>0}.
- ▶ For t ≥ 1 define

$$H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}$$

For m ≥ 2, k_{U,m} is also the largest t such that det H_t ≠ 0 (mod m).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A system of linear congruences

▶ Let S_{U,m} denote the number of k-tuples b in {0,...,m-1}^k such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

has at least one solution $\mathbf{x} = (x_1, \ldots, x_k)$.

►
$$S_{U,m} \le m^k$$
.

Calculating $S_{U,m}$

•
$$U_{n+2} = 2U_{n+1} + U_n$$
, $(U_0, U_1) = (1, 3)$

- $(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, \dots$
- Consider the system

$$\begin{cases} 1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\ 3 x_1 + 7 x_2 \equiv b_2 \pmod{4} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\blacktriangleright 2x_1 \equiv b_2 - b_1 \pmod{4}$

For each value of b_1 there are at most 2 values for b_2 .

• Hence
$$S_{U,4} = 8$$

General state complexity result

Theorem

Let $m \geq 2$ and let $U = (U_n)_{n \geq 0}$ be a numeration system s.t.

(a) \mathbb{N} is U-recognizable;

(b) \mathcal{A}_U has a single strongly connected component \mathcal{C}_U ;

(c) for all states p, q in C_U with $p \neq q$, there exists a word x_{pq} such that $p \cdot x_{pq} \in C_U$ and $q \cdot x_{pq} \notin C_U$, or vice-versa;

(d) $(U_n \mod m)_{n \ge 0}$ is purely periodic.

Then the number of states of $\mathcal{A}_{U,m}$ from which infinitely many words are accepted is

 $|\mathcal{C}_U| S_{U,\mathbf{m}}.$

Idea of the proof

Let L be a language over the alphabet Σ . The Myhill-Nerode equivalence relation for L: $u \sim_L v$ means that for all $y \in \Sigma^*$, $uy \in L \Leftrightarrow vy \in L$.

The number of states of $\mathcal{A}_{U,m}$ from which infinitely many words are accepted is the number of sets $u^{-1}0^* \operatorname{rep}_U(m \mathbb{N})$ where u is s.t. $q_0 \cdot u$ belongs to \mathcal{C}_U (where q_0 is the initial state of \mathcal{A}_U).

For all $u,v\in A^*_U$ s.t. $q_0\cdot u$ and $q_0\cdot v$ belong to \mathcal{C}_U , we have $u\sim_{0^*\operatorname{rep}_U(m\mathbb{N})} v$ iff

$$\begin{cases} u \sim_{0^* \operatorname{rep}_U(\mathbb{N})} v & \text{and} \\ \forall i \in \{0, \dots, k-1\}, \ \operatorname{val}_U(u0^i) \equiv \operatorname{val}_U(v0^i) \pmod{m} \end{cases}$$

Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and A_U is strongly connected, then the number of states of $A_{U,m}$ is

 $|\mathcal{A}_U| S_{U,\mathbf{m}}.$

Further, we get an automatic procedure to obtain directly the minimal automaton $\mathcal{A}_{U,m}$ of $0^* \operatorname{rep}_U(m\mathbb{N})$.

Bertrand numeration systems

- ▶ Bertrand numeration system: w is in rep_U(N) if and only if w0 is in rep_U(N).
- ► E.g., the *l*-bonacci system is Bertrand.

A non-Bertrand system

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- $U_{n+2} = U_{n+1} + U_n, \ U_0 = 1, \ U_1 = 3$
- $(U_n)_{n\geq 0} = 1, 3, 4, 7, 11, 18, 29, 47, \dots$
- \blacktriangleright 2 is a greedy representation but 20 is not.

Theorem (Bertrand)

A numeration system U is Bertrand iff there is a $\beta > 1$ s.t.

 $0^* \operatorname{rep}_U(\mathbb{N}) = L(\beta).$

In that case, if $d^*_{\beta}(1) = (t_i)_{i \geq 1}$, then

$$U_n = t_1 U_{n-1} + \dots + t_n U_0 + 1.$$

- If β is a Parry number, the system is linear and we have a finite trim minimal automaton A_β accepting L(β).
- Consequently, $\operatorname{rep}_U(\mathbb{N})$ is regular and $\mathcal{A}_U = \mathcal{A}_{\beta}$.

Applying our state complexity result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a non-integral Parry number $\beta > 1$. The set \mathbb{N} is U-recognizable and the trim minimal automaton \mathcal{A}_U of $0^* \operatorname{rep}_U(\mathbb{N})$ fulfills the hypotheses of the theorem.

Consequently the previous state complexity result applies to the class of Bertrand numeration systems.

Result for the $\ell\text{-bonacci}$ system

Corollary

For U the ℓ -bonacci system, the number of states of $\mathcal{A}_{U,m}$ is ℓm^{ℓ} .

< □ > < □ > < □ > < □ > < □ > < □ >

э

13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	1 0 0 0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12

Further work for state complexity

 Analyze the structure of A_U for systems with no dominant root.

- ▶ Remove the assumption that (U_n mod m)_{n≥0} is purely periodic in the state complexity result.
- Look at any arithmetic progressions $X = m \mathbb{N} + r$.

Transition to syntactic complexity

◆□ > < 個 > < E > < E > E のQ @

Transition to syntactic complexity

Let $N_U(m) \in \{1, \ldots, m\}$ denote the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i>0}$.

Example (Zeckendorf system)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, \ldots)$, so $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, \ldots)$, so $N_F(11) = 7$.

Theorem (C-Rigo 2008)

Let
$$U = (U_i)_{i \ge 0}$$
 be a NS s.t. $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$.

If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p, then any DFA accepting $\operatorname{rep}_U(X)$ has at least $N_U(p)$ states.

- If N_U(m) → +∞ as m → +∞, then we obtain a decision procedure to the periodicity problem.
- If U satisfies

$$U_{i+k} = a_1 U_{i+k-1} + \dots + a_k U_i, \ i \ge 0, \quad \text{with} \quad a_k = \pm 1,$$

then $\lim_{m\to+\infty} N_U(m) = +\infty$.

- Works for the Zeckendorf system.
- Not true for integer base b: $N(b^n) = 1$ for all $n \ge 0$.

- ► The formula for the state complexity of m N for the Zeckendorf system is much simpler than the formula for integer base b systems.
- In this point of view, state complexity is not completely satisfying.
- Hope: Find a complexity that would handle all these systems in a kind of uniform way.

Syntactic complexity

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Syntactic complexity

- Let L be a language over the alphabet Σ.
- Myhill-Nerode equivalence relation for L: u ∼_L v means that for all y ∈ Σ*, uy ∈ L ⇔ vy ∈ L.
- Leads to the minimal automaton of L: |A_L| = |Σ^{*}/∼_L| is the state complexity of L.
- Syntactic congruence for L: $u \equiv_L v$ means that for all $x, y \in \Sigma^*$, $xuy \in L \Leftrightarrow xvy \in L$.
- Leads to the syntactic monoid of L: $(\Sigma^*/\equiv_L, \circ)$ where $[u] \circ [v] = [uv].$
- $|\Sigma^*/\equiv_L|$ is the syntactic complexity of L.

Theorem

A language L is regular iff Σ^* / \equiv_L is finite.

Theorem

Let L be a language over Σ . Two words $u, v \in \Sigma^*$ are s.t. $u \equiv_L v$ iff they perform the same transformation on the set of states of the minimal automaton \mathcal{A}_L : $q \cdot u = q \cdot v$ for all states q.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

An example: $L = a^*b^*$

Minimal automaton:

Representation of the syntactic monoid:

э

An example: $L = a^*b^*$

Minimal automaton:

Representation of the syntactic monoid:

э

Syntactic complexity for integer bases

The syntactic complexity of $X \subseteq \mathbb{N}$ is the syntactic complexity of the language $0^* \operatorname{rep}_U(X)$.

For x, y coprime, $\operatorname{ord}_y(x) = \min\{j \in \mathbb{N}_0 \colon x^j \equiv 1 \pmod{y}\}.$

Theorem (Rigo-Vandomme 2011)

Let m, b ≥ 2 be coprime integers.
If X ⊆ N is periodic of minimal period m, then the syntactic complexity of X is equal to m ord_m(b).

Main idea: For all $u, v \in A^*_U$, we have $u \equiv_{0^* \operatorname{rep}_b(X)} v$ iff

$$\begin{cases} |u| \equiv |v| \pmod{\operatorname{ord}_m(b)} \text{ and} \\ \operatorname{val}_b(u) \equiv \operatorname{val}_b(v) \pmod{m} \end{cases}$$

Theorem (continued)

- Let $b \ge 2$ and $m = b^n$ with $n \ge 1$.
 - (a) The syntactic complexity of $m \mathbb{N}$ is equal to 2n + 1.
 - (b) If X ⊆ N is periodic of minimal period m, then the syntactic complexity of X is ≥ n + 1.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

▶ Let $b \ge 2$ and $m = b^n q$ with $n \ge 1$ and (b,q) = 1. Then the syntactic complexity of $m \mathbb{N}$ is equal to $(n+1) q \operatorname{ord}_q(b) + n$.

A general lower bound for the integer base case

Theorem (Lacroix-Rampersad-Rigo-Vandomme 2012) Let $b \ge 2$ and $m = db^n q$ with $n \ge 1$ and (b,q) = 1 and where nand q are chosen to be maximal. If $X \subseteq \mathbb{N}$ is periodic of minimal period m, then the syntactic complexity of X is

$$\geq \max\left(q \operatorname{ord}_q(b), \frac{\gamma+1}{q \operatorname{ord}_q(b)}\right),$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

where $\gamma \to +\infty$ as n or $d \to +\infty$.

Zeckendorf numeration system and further work

Theorem

The syntactic complexity of $m \mathbb{N}$ is

 $4m^2p_F(m) + 2$

where $p_F(m)$ is the minimal period of $(F_i \mod m)_{i \ge 0}$.

So far, we can show that this result extends to the Bertrand systems s.t. $(U_n \mod m)_{n \ge 0}$ is purely periodic.

Further work and conclusion

Further work for syntactic complexity:

 Try to estimate the syntactic complexity of periodic sets for a larger class of numeration systems.

Conclusion

Syntactic complexity seems to allow us to handle integer bases and the Zeckendorf system at once.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ