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The set 2N of even integers is ['-recognizable or F-automatic, i.e.,
the language repp(2N) = {¢,10, 101, 1001, 10000, ...} is accepted
by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Zeckendorf system, any F-recognizable set can

be considered as a “particularly simple’ set of integers.

We get a similar definition for other numeration systems.



Numeration systems

> A numeration system (NS) is an increasing sequence of
integers U = (Up,)n>0 such that
» Up=1 and
» Cy :=sup|Upt1/Un] < +o0.
n>0
» U is linear if it satisfies a linear recurrence relation over Z.
» Let n € N. A word w = wy_1 ---wp over N represents n if
/—1
i=0
> In this case, we write valy (w) = n.



Greedy representations

» A representation w = wy_1 - - - wq of an integer is greedy if

j—1

Vj, Zwi U, < Uj.
=0

v

In that case, w € {0,1,...,Cy — 1}*.

v

repy;(n) is the greedy representation of n with wy_q # 0.

X C Nis U-recognizable & repy; (X)) is accepted by a finite

v

automaton.

v

repy;(N) is the numeration language.



Zeckendorf (or Fibonacci) numeration system

> Fn+2:Fn+1+Fn
> F():l, F1:2

» Ap accepts all words that do not contain 11.



The ¢-bonacci numeration system

» Unye = Unqo—1 + Uppp—2+ -+ Un
» U;=2,i€{0,...,0—1}

» Ay accepts all words that do not contain 1.



U-recognizability of arithmetic progressions

Theorem

Let U = (U;)i>0 be a NS such that N is U-recognizable.

Then m N +r is U-recognizable for all m,r € N, and, given a DFA
accepting rep;(N), a DFA accepting repy;(m N+r) can be
obtained effectively.

Consequently, any ultimately periodic set is U-recognizable.

Theorem
Let U be a PNS. If N is U-recognizable, then U is linear, i.e., it

satisfies a linear recurrence relation over Z.



Motivations

What is the “best automaton” we can get?

DFAs accepting the binary representations of 4N + 3.

Question
The general algorithm doesn’t provide a minimal automaton. What

is the state complexity of rep; (mN + r)?



Related questions

Suppose that repy;(N) is regular and let Ay be the trim minimal

automaton recognizing N.
» What does Ay look like?

Suppose we are interested in a certain property P on sets of
integers (like being ultimately periodic) that is U-recognizable.

» Describe the state complexity of a set X € P w.r.t U.

» Describe the syntactic complexity of a set X € P w.r.t U.



Honkala’s decision procedure 1986

Given any finite automaton recognizing a set X of integers written

in base b, it is decidable whether X is ultimately periodic.

Main ideas for an automata-resolution of this problem:

» If X C N is ultimately periodic, then the state complexity of
the associated minimal DFA should grow with the period and

preperiod of X.

» Analyse the inner structure of DFAs accepting the

U-representations of m N +r.



Information we are looking for

Consider a NS U such that N is U-recognizable.

How many states does the trim minimal automaton A,
recognizing m N contain?

1. Give upper/lower bounds?

2. Study special cases, e.g., Zeckendorf numeration system.

All these questions could be reformulated using the syntactic

monoid instead of the minimal automaton.



State complexity



A general upper bound

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010)
Let m,r € N withm > 2 and r < m.

If repy;(N) is accepted by a n-state DFA, then the minimal
automaton of rep;;(mN + r) has at most nm” states.

NB: This result remains true for the larger class of abstract

numeration systems.



An exact result for the integer bases

Theorem (Alexeev 2004)

Let b,m > 2. Let N, M be such that b < m < bV*! and
(m,1) < (m,b) < -+ < (m,bM) = (m,bM+1).

The minimal automaton recognizing m N in base b has exactly

min{N,M—1} bt

m
m + Z (m bt) states.
M t:0 M

In particular, if m and b are coprime, then this number is just m.
Further, if m = b", then this number is n + 1.



A lower bound

Theorem (C-Rampersad-Rigo-Waxweiler 2011)

Let U be any numeration system (not necessarily linear). The
number of states of Ay, is at least | repy(m)|.



The Hankel matrix

v

Let U = (Uy)n>0 be a linear numeration system.

v

Let & = k7, be the length of the shortest linear recurrence

relation satisfied by (U; mod m);>o.

» For t > 1 define
Uy Uy - Ui
U U - U,
Hy = . . .
U1 U - U2

v

For m > 2, ky,, is also the largest ¢t such that det H; # 0

(mod m).



A system of linear congruences

> Let Sy, denote the number of k-tuples b in {0, ...

such that the system
Hipx=b (mod m)

has at least one solution x = (x1,..., k).

> Sum < mk.

7m_1}k



Calculating Sy

v

Un+2 = 2Uvn—i-l + Un, (U07Ul) = (173)
(Up)nso = 1,3,7,17,41,99, 239, . ..

v

v

Consider the system

lz1+3x2 = by (mod 4)
3x1+7x2 = by (mod 4)

v

2x1 = by — by (mod 4)

v

For each value of b; there are at most 2 values for bs.

v

Hence Sy 4 = 8.



General state complexity result

Theorem
Let m > 2 and let U = (U, )n>0 be a numeration system s.t.

(a) N is U-recognizable;

(b) Ay has a single strongly connected component C;

(c) for all states p, g in Cyy with p # g, there exists a word ),
such that p - x,, € Cy and q - 2,4 € Cyy, or vice-versa;

(d) (Up mod m),>o is purely periodic.

Then the number of states of Ay, from which infinitely many

words are accepted is
ICu| Su,m.-



Idea of the proof

Let L be a language over the alphabet X..
The Myhill-Nerode equivalence relation for L: u ~j, v means that
forally e ¥*, uy € L < vy € L.

The number of states of Ay, from which infinitely many words
are accepted is the number of sets u=10* rep;;(m N) where u is s.t.
qo - u belongs to Cyy (where g is the initial state of Ay).

For all u,v € Aj; s.t. qo-u and qo - v belong to Cy7, we have

U ~0 repy (mN) U Iff

U ~o* repy (N) v and
Vi€ {0,...,k — 1}, valy(u0?) = valy(v0?) (mod m)



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and Ay is

strongly connected, then the number of states of Ay, is
| A | Sv.m.

Further, we get an automatic procedure to obtain directly the
minimal automaton Ay, of 0% repy;(mN).



Bertrand numeration systems

» Bertrand numeration system: w is in repy;(N) if and only if
w0 is in repy (N).

» E.g., the /-bonacci system is Bertrand.




A non-Bertrand system

> U’I’H—Q = Un+1 +U’n7 UO = 17 Ul =3
> (Un)nso = 1,3,4,7,11, 18,29, 47, . ..

> 2 is a greedy representation but 20 is not.



Theorem (Bertrand)

A numeration system U is Bertrand iff thereisa > 1 s.t.
0% repy (N) = L(8).
In that case, if dj(1) = (¢;)i>1, then

U,=t1Up_1+---+t,Uy+ 1.

» If 3 is a Parry number, the system is linear and we have a
finite trim minimal automaton A3 accepting L(f3).

» Consequently, rep;;(N) is regular and Ay = Ag.



Applying our state complexity result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a
non-integral Parry number 5 > 1. The set N is U-recognizable and
the trim minimal automaton Ay of 0% rep;;(N) fulfills the
hypotheses of the theorem.

Consequently the previous state complexity result applies to the

class of Bertrand numeration systems.



Result for the /-bonacci system

Corollary

For U the /-bonacci system, the number of states of Ay, is ¢mt.
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Further work for state complexity

» Analyze the structure of Ay for systems with no dominant
root.

» Remove the assumption that (U,, mod m),>0 is purely

periodic in the state complexity result.

» Look at any arithmetic progressions X = m N +r.



Transition to syntactic complexity



Transition to syntactic complexity

Let Nyy(m) € {1,...,m} denote the number of values that are
taken infinitely often by the sequence (U; mod m);>o.

Example (Zeckendorf system)
(F; mod 4) = (1,2,3,1,0,1,1,2,3,...), so Np(4) = 4.
(F; mod 11) = (1,2,3,5,8,2,10,1,0,1,1,2,3,...), so Np(11) = 7.
Theorem (C-Rigo 2008)
Let U = (U;)i>o be a NS s.t. -li+m Uit1 — U; = 4o00.
- 11— 400

If X C N is an ultimately periodic U-recognizable set of period p,
then any DFA accepting rep;;(X) has at least Ny (p) states.



v

v

v

v

If Niy(m) — +o0 as m — +o00, then we obtain a decision
procedure to the periodicity problem.

If U satisfies
Uisk = a1 Uip—1 + -+ axU;, 0 > 0, with ap = +1,

then lim,,—, + o Ny(m) = +o0.
Works for the Zeckendorf system.
Not true for integer base b: N (") =1 for all n > 0.



» The formula for the state complexity of m N for the
Zeckendorf system is much simpler than the formula for

integer base b systems.

» In this point of view, state complexity is not completely
satisfying.

» Hope: Find a complexity that would handle all these systems

in a kind of uniform way.



Syntactic complexity



Syntactic complexity

v

Let L be a language over the alphabet X..

Myhill-Nerode equivalence relation for L: u ~, v means that
forally € ¥* uy € L < vy € L.

Leads to the minimal automaton of L: |Af| = |¥*/~7| is the
state complexity of L.

Syntactic congruence for L: u =1, v means that for all
x,y € X5, zuy € L & zvy € L.

Leads to the syntactic monoid of L: (¥*/=p,0) where
[u] o [v] = [uv].

|>* /=L is the syntactic complexity of L.



Theorem
A language L is regular iff ¥X* /=y, is finite.

Theorem
Let L be a language over 3. Two words u,v € ¥* are s.t. u = v
iff they perform the same transformation on the set of states of the

minimal automaton Ay: q-u = q - v for all states q.



An example: L = a*b*

Minimal automaton:

q. Q g

Representation of the syntactic monoid:




An example: L = a*b*

Minimal automaton:




Syntactic complexity for integer bases

The syntactic complexity of X C N is the syntactic complexity of
the language 0* rep;; (X).
For z,y coprime, ord,(z) = min{j € No: 2/ =1 (mod y)}.

Theorem (Rigo-Vandomme 2011)

> Let m,b > 2 be coprime integers.
If X C N is periodic of minimal period m, then the syntactic
complexity of X is equal to m ord,,(b).

Main idea: For all u,v € Af;, we have u =g y¢p, (x) v iff

{ |lu| = |v| (mod ord,,(b)) and
valy(u) = valy(v) (mod m)



Theorem (continued)

> Lletb>2and m =b" withn > 1.
(a) The syntactic complexity of mN is equal to 2n + 1.
(b) If X C N is periodic of minimal period m, then the syntactic
complexity of X is > n+ 1.
» Letb>2 and m =0b"qg withn >1 and (b,q) = 1.
Then the syntactic complexity of m N is equal to
(n+ 1) gord,(b) + n.



A general lower bound for the integer base case

Theorem (Lacroix-Rampersad-Rigo-Vandomme 2012)
Letb>2 and m = db"q withn > 1 and (b,q) = 1 and where n
and q are chosen to be maximal.

If X C N is periodic of minimal period m, then the syntactic
complexity of X is

7+1
> d,(b), ————
> s (st ) 2 )

where v — +00 asn or d — +00.



Zeckendorf numeration system and further work

Theorem
The syntactic complexity of mN is

4m2pr(m) + 2

where pr(m) is the minimal period of (F; mod m);>o.

So far, we can show that this result extends to the Bertrand

systems s.t. (U, mod m),>o is purely periodic.



Further work and conclusion

Further work for syntactic complexity:

» Try to estimate the syntactic complexity of periodic sets for a

larger class of numeration systems.

Conclusion
Syntactic complexity seems to allow us to handle integer bases and

the Zeckendorf system at once.



