Spectrum, Algebraicity and Normalization in Alternate Bases

Émilie Charlier

joint work with Célia Cisternino, Zuzana Masáková and Edita Pelantová

Département de mathématiques, ULiège

One World Numeration Seminar 2022, May 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cantor real bases and alternate bases

Let $\beta = (\beta_n)_{n \ge 0}$ be a sequence of real numbers greater than 1 and such that $\prod_{n=0}^{\infty} \beta_n$ is infinite.

A β -representation of a real number x is an infinite sequence $a = (a_n)_{n>0}$ of integers such that

$$x = \frac{a_0}{\beta_0} + \frac{a_1}{\beta_0\beta_1} + \frac{a_2}{\beta_0\beta_1\beta_2} + \cdots$$

An alternate base is a periodic Cantor base. In this case, we simply write $\beta = (\beta_0, \dots, \beta_{p-1})$ and we use the convention that

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

$$\triangleright \ \beta_n = \beta_n \mod p$$

$$\blacktriangleright \beta^{(n)} = (\beta_n, \ldots, \beta_{n+p-1})$$

for all $n \ge 0$. We call the number p the length of the alternate base β .

Greedy algorithm

For $x \in [0, 1]$, a distinguished β -representation

$$d_{\beta}(x) = (\varepsilon_n)_{n\geq 0},$$

called the β -expansion of x, is obtained from the greedy algorithm:

►
$$r_0 = x$$

► $\varepsilon_n = \lfloor \beta_n r_n \rfloor$ and $r_{n+1} = \beta_n r_n - \varepsilon_n$ for $n \in \mathbb{N}$.

For each *n*, we have $\varepsilon_n \in \{0, 1, \dots, \lfloor \beta_n \rfloor\}$.

Thus, the β -expansions are written over the alphabet $\{0, 1, \dots, \max_{0 \leq i < p} \lfloor \beta_i \rfloor\}$.

Parry's theorem for alternate bases and alternate β -shift

The quasi-greedy β -expansion of 1 is $d_{\beta}^*(1) = \lim_{x \to 1^-} d_{\beta}(x)$.

Theorem (Charlier & Cisternino 2021)

An infinite sequence $a_0a_1a_2\cdots$ of non-negative integers belongs to the set $\{d_\beta(x): x \in [0,1)\}$ if and only if $a_na_{n+1}a_{n+2}\cdots <_{lex} d^*_{\beta(n)}(1)$ for all $n \in \mathbb{N}$.

For an alternate base β , the set $\{d_{\beta}(x) : x \in [0,1)\}$ is not shift-invariant in general.

The β -shift is defined as the topological closure of the set

$$\bigcup_{i=0}^{p-1} \{ d_{\beta^{(i)}}(x) \colon x \in [0,1) \}.$$

Theorem (Charlier & Cisternino 2021)

The β -shift is sofic if and only if $d^*_{\beta^{(i)}}(1)$ is eventually periodic for all $i \in \{0, \dots, p-1\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In view of this result, we refer to such alternate bases as the Parry alternate bases.

Example

Let
$$\beta = (\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6})$$
. We can compute $d^*_{\beta^{(0)}}(1) = 200(10)^{\omega}$ and $d^*_{\beta^{(1)}}(1) = (10)^{\omega}$.

The following finite automaton accepts the set of factors of elements in the β -shift.

イロト イポト イヨト イヨト

æ

Aims of this work

Algebraic properties of Parry alternate bases.

- 1. A necessary condition for being a Parry alternate base is that the product $\delta = \prod_{i=0}^{p-1} \beta_i$ is an algebraic integer and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.
- 2. A sufficient condition for being a Parry alternate base if that δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.

Normalization of alternate base representations.

If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the normalization function is computable by a finite Büchi automaton. Such an automaton is effectively given.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Spectrum as a tool

The notion of spectrum associated with a real base $\beta > 1$ and an alphabet of the form $A_d = \{0, 1, \dots, d\}$ with $d \in \mathbb{N}$ was introduced by Erdős, Joó and Komornik in 1990.

For our purposes, we use a generalized concept of complex spectrum, and study its topological properties.

Let $\delta \in \mathbb{C}$ such that $|\delta| > 1$ with an alphabet $A \subset \mathbb{C}$.

The spectrum associated with δ and A is the set

$$X^{\mathcal{A}}(\delta) = \left\{ \sum_{i=0}^{\ell-1} a_i \delta^{\ell-1-i} : n \in \mathbb{N}, \ a_i \in \mathcal{A}
ight\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We say that a word $a_0 \cdots a_{\ell-1}$ over A corresponds to the element $\sum_{i=0}^{\ell-1} a_i \delta^{\ell-1-i}$ in the spectrum $X^A(\delta)$.

The following result shows that topological properties of the spectrum are linked with arithmetical aspects of the numeration system.

Theorem (Frougny & Pelantová 2018)

Let $\beta > 1$ and $d \in \mathbb{N}$. Then $Z(\beta, d)$ is accepted by a finite Büchi automaton if and only if the spectrum $X^{d}(\beta)$ has no accumulation point in \mathbb{R} .

For the case of real bases and symmetric integer alphabets, there is a complete characterization of the bases which give spectra without accumulation points in dependence on the alphabet.

Theorem (Akiyama & Komornik 2013, Feng 2016)

Let $\beta > 1$ and $d \in \mathbb{N}$. The spectrum $X^{d}(\beta)$ has no accumulation point in \mathbb{R} if and only if either $\beta - 1 \ge d$ or β is a Pisot number.

Set of δ -representations of zero and complex zero automaton

For a complex base δ and an alphabet A of complex numbers, we define

$$Z(\delta, A) = \{a \in A^{\mathbb{N}} : \sum_{n=0}^{+\infty} \frac{a_n}{\delta^{n+1}} = 0\}.$$

Generalizing ideas from Frougny, we define a Büchi automaton

 $\mathcal{Z}(\delta, A) = (Q, 0, Q, A, E).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► States: $Q = X^A(\delta) \cap \{z \in \mathbb{C} : |z| \le \frac{M}{|\delta|-1}\}$ where $M = \max\{|a| : a \in A\}$.

▶ Transitions: $E = \{(z, a, z\delta + a) : z \in Q, a \in A\}.$

Proposition

The Büchi automaton $\mathcal{Z}(\delta, A)$ accepts the set $Z(\delta, A)$.

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)

Let δ be a complex number such that $|\delta| > 1$ and let A be an alphabet of complex numbers. Then the following assertions are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. The set $Z(\delta, A)$ is accepted by a finite Büchi automaton.
- 2. The zero automaton $\mathcal{Z}(\delta, A)$ is finite.
- 3. The spectrum $X^A(\delta)$ has no accumulation point in \mathbb{C} .

Towards an analogous result for alternate bases

- We consider a fixed alternate base $\beta = (\beta_0, \dots, \beta_{p-1})$.
- We set $\delta = \prod_{i=0}^{p-1} \beta_i$.
- We consider a p-tuple D = (D₀,..., D_{p-1}) where, for all i ∈ {0,..., p − 1}, D_i is an alphabet of integers containing 0.
- ▶ We use the convention that for all $n \in \mathbb{Z}$, $D_n = D_{n \mod p}$ and $D^{(n)} = (D_n, \dots, D_{n+p-1})$.

Grouping terms p by p, the equality

$$x = \frac{a_0}{\beta_0} + \frac{a_1}{\beta_0\beta_1} + \dots + \frac{a_{p-1}}{\beta_0\beta_1\dots\beta_{p-1}} + \dots$$

can be written as

$$x = \frac{\sum_{i=0}^{p-1} a_i \beta_{i+1} \cdots \beta_{p-1}}{\delta} + \frac{\sum_{i=0}^{p-1} a_{p+i} \beta_{i+1} \cdots \beta_{p-1}}{\delta^2} + \cdots$$

If we add the constraint that each letter a_n belongs to D_n , then we obtain a δ -representation of x over the alphabet

$$\mathcal{D} = \left\{ \sum_{i=0}^{p-1} a_i \beta_{i+1} \cdots \beta_{p-1} : \forall i \in \{0, \dots, p-1\}, \ a_i \in D_i \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternate spectrum

For $\delta = \prod_{i=0}^{p-1} \beta_i$ and the alphabet \mathcal{D} , we consider the spectrum $X^{\mathcal{D}}(\delta)$.

For each $i \in \{0, ..., p-1\}$, we let X(i) denote the spectrum built from the shifted base $\beta^{(i)}$ and the shifted *p*-tuple of alphabets $D^{(i)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, we have $X(0) = X^{\mathcal{D}}(\delta)$.

Lemma

For each $i \in \{0, ..., p-1\}$, we have $X(i) \cdot \beta_i + D_i = X(i+1)$ where X(p) = X(0).

Alternate zero automaton

For each $i \in \{0, \ldots, p-1\}$, we define

$$M^{(i)} = \sum_{n=i}^{+\infty} \frac{\max(D_n)}{\prod_{k=i}^n \beta_k}$$
 and $m^{(i)} = \sum_{n=i}^{+\infty} \frac{\min(D_n)}{\prod_{k=i}^n \beta_k}.$

We define a Büchi automaton associated with an alternate base β and a *p*-tuple of alphabets **D** as

$$\mathcal{Z}(\boldsymbol{\beta},\boldsymbol{D}) = (Q_{\boldsymbol{\beta},\boldsymbol{D}},(0,0),Q_{\boldsymbol{\beta},\boldsymbol{D}},\cup_{i=0}^{p-1}D_i,E)$$

where

►
$$Q_{\beta,D} = \bigcup_{i=0}^{p-1} (\{i\} \times (X(i) \cap [-M^{(i)}, -m^{(i)}]))$$

► *E* is the set of transitions defined as follows: for $(i, s), (j, t) \in Q_{\beta, D}$ and $a \in \bigcup_{i=0}^{p-1} D_i$, there is a transition $(i, s) \xrightarrow{a} (j, t)$ if and only if $j \equiv i + 1 \pmod{p}$, $a \in D_i$ and $t = \beta_i s + a$.

Proposition

The Büchi automaton $\mathcal{Z}(\beta, D)$ accepts the set

$$Z(\beta, D) = \{ a \in \prod_{n=0}^{+\infty} D_n : \sum_{n=0}^{+\infty} \frac{a_n}{\prod_{k=0}^n \beta_k} = 0 \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

An example

Consider the alternate base $\beta = (\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6})$ and $D = (\{-2, -1, 0, 1, 2\}, \{-1, 0, 1\})$. Then $M^{(0)} = \operatorname{val}_{\beta}((21)^{\omega}) \simeq 1.67994$ and $M^{(1)} = \operatorname{val}_{\beta^{(1)}}((12)^{\omega}) \simeq 1.86852$.

Zero automaton $\mathcal{Z}(\beta, D)$

For instance, the infinite words $1(\overline{10})^{\omega}$ and $(0\overline{1}21\overline{21})^{\omega}$ have value 0 in base β (where $\overline{1}$ and $\overline{2}$ designate the digits -1 and -2 respectively).

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)

Let β be an alternate base of length p and let D be a p-tuple of alphabets of integers containing 0. Then the following assertions are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. The set $Z(\beta, D)$ is accepted by a finite Büchi automaton.
- 2. The zero automaton $\mathcal{Z}(\beta, D)$ is finite.
- 3. The spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R} .

Necessary conditions on β to be a Parry alternate base Theorem (Charlier, Cisternino, Masáková & Pelantová 2022) If β is a Parry alternate base, then

- δ is an algebraic integer
- $\beta_i \in \mathbb{Q}(\delta)$ for all $i \in \{0, \dots, p-1\}$.

Let me give some intuition on an example.

Let $\beta = (\beta_0, \beta_1, \beta_2)$ be a base such that the expansions of 1 are given by

$$d_{eta}(1)=30^{\omega}, \quad d_{eta^{(1)}}(1)=110^{\omega}, \quad d_{eta^{(2)}}(1)=1(110)^{\omega}.$$

We derive that $\beta_0, \beta_1, \beta_2$ satisfy the following set of equations

$$rac{3}{eta_0}=1, \quad rac{1}{eta_1}+rac{1}{eta_1eta_2}=1, \quad rac{1}{eta_2}+\left(rac{1}{eta_2eta_0}+rac{1}{\delta}
ight)rac{\delta}{\delta-1}=1,$$

where $\delta = \beta_0 \beta_1 \beta_2$.

Multiplying the first equation by δ , the second one by $\beta_1\beta_2$ and the third one by $(\delta - 1)\beta_2$, we obtain the identities

$$3\beta_1\beta_2 - \delta = 0, \quad -\beta_1\beta_2 + \beta_2 + 1 = 0, \quad \beta_1\beta_2 + (2 - \delta)\beta_2 + \delta - 1 = 0.$$

In a matrix formalism, we have

$$\begin{pmatrix} 3 & 0 & -\delta \\ -1 & 1 & 1 \\ 1 & 2-\delta & \delta-1 \end{pmatrix} \begin{pmatrix} \beta_1 \beta_2 \\ \beta_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The existence of a non-zero vector $(\beta_1\beta_2,\beta_2,1)^T$ as a solution of this equation forces that the determinant of the coefficient matrix is zero:

$$\delta^2 - 9\delta + 9 = 0.$$

Hence we must have $\delta=\frac{9+3\sqrt{5}}{2}=3\varphi^2$ where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.

We then obtain

$$\beta_1\beta_2=rac{\delta}{3}=arphi^2 ext{ and } \beta_2=\beta_1\beta_2-1=arphi^2-1=arphi.$$

Consequently,

$$\beta_1 = \frac{\beta_1 \beta_2}{\beta_2} = \frac{\varphi^2}{\varphi} = \varphi$$
 and $\beta_0 = \frac{\delta}{\beta_1 \beta_2} = \frac{3\varphi^2}{\varphi^2} = 3.$

Indeed, the triple $\beta = (3, \varphi, \varphi)$ is an alternate base giving precisely the given expansions of 1.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

For obtaining the values $\beta_0, \beta_1, \beta_2$ from the known eventually periodic expansions we have used the fact that $\beta_0, \beta_1, \beta_2$ and $\delta = \beta_0\beta_1\beta_2$ are solutions of a system of polynomial equations in four unknowns x_0, x_1, x_2, y , in our case

$$\begin{cases} 3x_1x_2 - y &= 0\\ -x_1x_2 + x_2 + 1 &= 0\\ x_1x_2 + (2 - y)x_2 + y - 1 &= 0\\ x_1x_2x_3 &= y. \end{cases}$$

The solution of the system yielded that δ is a root of a monic polynomial with integer coefficients, i.e., is an algebraic integer.

The same strategy can be applied to any Parry alternate base.

A sufficient condition on β to be a Parry alternate base

As previously:

- $\blacktriangleright \ \delta = \prod_{i=0}^{p-1} \beta_i$
- ▶ $D = (D_0, ..., D_{p-1})$ is a *p*-tuple of alphabets of integers containing 0
- $\blacktriangleright \ \mathcal{D}$ is the corresponding alphabet of real numbers.

Proposition

If $D_i \supseteq \{-\lfloor \beta_i \rfloor, \ldots, \lfloor \beta_i \rfloor\}$ for all $i \in \{0, \ldots, p-1\}$ and if the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R} , then β is a Parry alternate base.

Proposition

If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R} .

As a consequence, we get

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022) If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then β is a Parry alternate base.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some remarks

- The condition of δ being a Pisot number is neither sufficient nor necessary for β to be a Parry alternate base.
 - 1. Even for p = 1, there exist Parry numbers which are not Pisot.
 - 2. To see that it is not sufficient for $p \ge 2$, consider the alternate base $\beta = (\sqrt{\beta}, \sqrt{\beta})$ where β is the smallest Pisot number. The product δ is the Pisot number β . However, the β -expansion of 1 is equal to $d_{\sqrt{\beta}}(1)$, which is aperiodic.
- The bases β₀,..., β_{p-1} need not be algebraic integers in order to have a Parry alternate base.

To see this, consider $\beta = (\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6})$. For this base, we have $d_{\beta^{(0)}}(1) = 2010^{\omega}$ and $d_{\beta^{(1)}}(1) = 110^{\omega}$. However, $\frac{5+\sqrt{13}}{6}$ is not an algebraic integer.

For the same non Pisot algebraic integer δ , there may exist a Parry alternate base $\alpha = (\alpha_0, \dots, \alpha_{p-1})$ and a non-Parry alternate base $\beta = (\beta_0 \dots \beta_{p-1})$ such that $\prod_{i=0}^{p-1} \alpha_i = \prod_{i=0}^{p-1} \beta_i = \delta$.

Generalization of Schmidt's results

Define $Per(\beta) = \{x \in [0,1) : d_{\beta}(x) \text{ is ultimately periodic}\}.$

Theorem (Charlier, Cisternino & Kreczman 2022)

- If Q ∩ [0,1) ⊆ ∩^{p-1}_{i=0} Per(β⁽ⁱ⁾) then β₀,..., β_{p-1} ∈ Q(δ) and δ is either a Pisot number or a Salem number.
- 2. If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then $\operatorname{Per}(\beta) = \mathbb{Q}(\delta) \cap [0, 1)$.

Theorem (Charlier, Cisternino & Kreczman 2022)

If δ is an algebraic integer that is neither a Pisot number nor a Salem number then $Per(\beta) \cap \mathbb{Q}$ is nowhere dense in [0, 1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Alternate bases whose set of zero representations is accepted by a finite Büchi automaton

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)

The following assertions are equivalent.

- The set Z(β, D) is accepted by a finite Büchi automaton for all p-tuple of alphabets of integers D = (D₀,..., D_{p-1}).
- The set Z(β, D) is accepted by a finite Büchi automaton for one p-tuple of alphabets of integers D = (D₀,..., D_{p-1}) such that D_i ⊇ {- ⌊β_i⌋,..., ⌊β_i⌋} for all i ∈ {0,..., p − 1} and ⌊β_j⌋ ≥ ⌈δ⌉ − 1 for some j ∈ {0,..., p − 1}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

3. δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.

Normalization in alternate base

The normalization function is the partial function $\nu_{\beta,D}$ mapping any β -representation $a \in \prod_{n \in \mathbb{N}} D_n$ of a real number $x \in [0, 1)$ to the β -expansion of x.

We say that $\nu_{\beta,D}$ is computable by a finite Büchi automaton if there exists a finite Büchi automaton accepting the set

$$\Big\{(u,v)\in\prod_{n\in\mathbb{N}}(D_n\times\{0,\ldots,\lceil\beta_n\rceil-1\}):\operatorname{val}_\beta(u)=\operatorname{val}_\beta(v)\text{ and }\exists x\in[0,1),\ v=d_\beta(x)\Big\}.$$

First ingredient.

Consider two *p*-tuples of alphabets $D = (D_0, ..., D_{p-1})$ and $D' = (D'_0, ..., D'_{p-1})$. We set $D - D' = (D_0 - D'_0, ..., D_{p-1} - D'_{p-1})$.

From the zero automaton $\mathcal{Z}(\beta, D - D')$, we define a converter $\mathcal{C}_{\beta, D, D'}$ from D to D', that is, a Büchi automaton accepting the set

$$\{(u,v)\in\prod_{n\in\mathbb{N}}(D_n\times D'_n):\mathrm{val}_{\boldsymbol{\beta}}(u)=\mathrm{val}_{\boldsymbol{\beta}}(v)\}.$$

Proposition

If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the converter $\mathcal{C}_{\beta, \mathbf{D}, \mathbf{D}'}$ is finite.

Second ingredient.

In the case where β is a Parry alternate base, we can define a Büchi automaton accepting the set $\{d_{\beta}(x) : x \in [0, 1)\}$.

For $\beta = (\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6})$, we have seen that $d^*_{\beta^{(0)}}(1) = 200(10)^{\omega}$ and $d^*_{\beta^{(1)}}(1) = (10)^{\omega}$.

Combining these two automata, we obtain the following result.

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)

If δ is a Pisot number and $\beta_0, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the normalization function $\nu_{\beta, \mathbf{D}}$ is computable by a finite Büchi automaton.

Thank you!