Spectrum, Algebraicity and Normalization in Alternate Bases

Émilie Charlier
joint work with Célia Cisternino, Zuzana Masáková and Edita Pelantová

Département de mathématiques, ULiège

One World Numeration Seminar
2022, May 24

Cantor real bases and alternate bases

Let $\beta=\left(\beta_{n}\right)_{n \geq 0}$ be a sequence of real numbers greater than 1 and such that $\prod_{n=0}^{\infty} \beta_{n}$ is infinite.

A β-representation of a real number x is an infinite sequence $a=\left(a_{n}\right)_{n \geq 0}$ of integers such that

$$
x=\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\frac{a_{2}}{\beta_{0} \beta_{1} \beta_{2}}+\cdots
$$

An alternate base is a periodic Cantor base. In this case, we simply write $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ and we use the convention that

- $\beta_{n}=\beta_{n \bmod p}$
- $\beta^{(n)}=\left(\beta_{n}, \ldots, \beta_{n+p-1}\right)$
for all $n \geq 0$. We call the number p the length of the alternate base β.

Greedy algorithm

For $x \in[0,1]$, a distinguished β-representation

$$
d_{\beta}(x)=\left(\varepsilon_{n}\right)_{n \geq 0},
$$

called the β-expansion of x, is obtained from the greedy algorithm:

- $r_{0}=x$
- $\varepsilon_{n}=\left\lfloor\beta_{n} r_{n}\right\rfloor$ and $r_{n+1}=\beta_{n} r_{n}-\varepsilon_{n}$ for $n \in \mathbb{N}$.

For each n, we have $\varepsilon_{n} \in\left\{0,1, \ldots,\left\lfloor\beta_{n}\right\rfloor\right\}$.
Thus, the β-expansions are written over the alphabet $\left\{0,1, \ldots, \max _{0 \leq i<p}\left\lfloor\beta_{i}\right\rfloor\right\}$.

Parry's theorem for alternate bases and alternate β-shift

The quasi-greedy β-expansion of 1 is $d_{\beta}^{*}(1)=\lim _{x \rightarrow 1^{-}} d_{\beta}(x)$.
Theorem (Charlier \& Cisternino 2021)
An infinite sequence $a_{0} a_{1} a_{2} \cdots$ of non-negative integers belongs to the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$ if and only if $a_{n} a_{n+1} a_{n+2} \cdots<_{\operatorname{lex}} d_{\boldsymbol{\beta}^{(n)}}^{*}(1)$ for all $n \in \mathbb{N}$.

For an alternate base β, the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$ is not shift-invariant in general.
The β-shift is defined as the topological closure of the set

$$
\bigcup_{i=0}^{p-1}\left\{d_{\beta^{(i)}}(x): x \in[0,1)\right\}
$$

Theorem (Charlier \& Cisternino 2021)
The $\boldsymbol{\beta}$-shift is sofic if and only if $\boldsymbol{d}_{\boldsymbol{\beta}^{(i)}}^{*}(1)$ is eventually periodic for all $i \in\{0, \ldots, p-1\}$.
In view of this result, we refer to such alternate bases as the Parry alternate bases.

Example

Let $\beta=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$. We can compute $d_{\boldsymbol{\beta}^{(0)}}^{*}(1)=200(10)^{\omega}$ and $d_{\boldsymbol{\beta}^{(1)}}^{*}(1)=(10)^{\omega}$.
The following finite automaton accepts the set of factors of elements in the β-shift.

Aims of this work

- Algebraic properties of Parry alternate bases.

1. A necessary condition for being a Parry alternate base is that the product $\delta=\prod_{i=0}^{p-1} \beta_{i}$ is an algebraic integer and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.
2. A sufficient condition for being a Parry alternate base if that δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.

- Normalization of alternate base representations.

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the normalization function is computable by a finite Büchi automaton. Such an automaton is effectively given.

Spectrum as a tool

The notion of spectrum associated with a real base $\beta>1$ and an alphabet of the form $A_{d}=\{0,1, \ldots, d\}$ with $d \in \mathbb{N}$ was introduced by Erdős, Joó and Komornik in 1990.

For our purposes, we use a generalized concept of complex spectrum, and study its topological properties.

Let $\delta \in \mathbb{C}$ such that $|\delta|>1$ with an alphabet $A \subset \mathbb{C}$.
The spectrum associated with δ and A is the set

$$
X^{A}(\delta)=\left\{\sum_{i=0}^{\ell-1} a_{i} \delta^{\ell-1-i}: n \in \mathbb{N}, a_{i} \in A\right\}
$$

We say that a word $a_{0} \cdots a_{\ell-1}$ over A corresponds to the element $\sum_{i=0}^{\ell-1} a_{i} \delta^{\ell-1-i}$ in the spectrum $X^{A}(\delta)$.

The following result shows that topological properties of the spectrum are linked with arithmetical aspects of the numeration system.

Theorem (Frougny \& Pelantová 2018)

Let $\beta>1$ and $d \in \mathbb{N}$. Then $Z(\beta, d)$ is accepted by a finite Büchi automaton if and only if the spectrum $X^{d}(\beta)$ has no accumulation point in \mathbb{R}.

For the case of real bases and symmetric integer alphabets, there is a complete characterization of the bases which give spectra without accumulation points in dependence on the alphabet.

Theorem (Akiyama \& Komornik 2013, Feng 2016)
Let $\beta>1$ and $d \in \mathbb{N}$. The spectrum $X^{d}(\beta)$ has no accumulation point in \mathbb{R} if and only if either $\beta-1 \geq d$ or β is a Pisot number.

Set of δ-representations of zero and complex zero automaton

For a complex base δ and an alphabet A of complex numbers, we define

$$
Z(\delta, A)=\left\{a \in A^{\mathbb{N}}: \sum_{n=0}^{+\infty} \frac{a_{n}}{\delta^{n+1}}=0\right\} .
$$

Generalizing ideas from Frougny, we define a Büchi automaton

$$
\mathcal{Z}(\delta, A)=(Q, 0, Q, A, E)
$$

- States: $Q=X^{A}(\delta) \cap\left\{z \in \mathbb{C}:|z| \leq \frac{M}{|\delta|-1}\right\}$ where $M=\max \{|a|: a \in A\}$.
- Transitions: $E=\{(z, a, z \delta+a): z \in Q, a \in A\}$.

Proposition

The Büchi automaton $\mathcal{Z}(\delta, A)$ accepts the set $Z(\delta, A)$.

Linking the complex spectrum and the complex zero automaton

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
Let δ be a complex number such that $|\delta|>1$ and let A be an alphabet of complex numbers. Then the following assertions are equivalent.

1. The set $Z(\delta, A)$ is accepted by a finite Büchi automaton.
2. The zero automaton $\mathcal{Z}(\delta, A)$ is finite.
3. The spectrum $X^{A}(\delta)$ has no accumulation point in \mathbb{C}.

Towards an analogous result for alternate bases

- We consider a fixed alternate base $\beta=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$.
- We set $\delta=\prod_{i=0}^{p-1} \beta_{i}$.
- We consider a p-tuple $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ where, for all $i \in\{0, \ldots, p-1\}, D_{i}$ is an alphabet of integers containing 0 .
- We use the convention that for all $n \in \mathbb{Z}, D_{n}=D_{n \bmod p}$ and $\boldsymbol{D}^{(n)}=\left(D_{n}, \ldots, D_{n+p-1}\right)$.

Grouping terms p by p, the equality

$$
x=\frac{a_{0}}{\beta_{0}}+\frac{a_{1}}{\beta_{0} \beta_{1}}+\cdots+\frac{a_{p-1}}{\beta_{0} \beta_{1} \cdots \beta_{p-1}}+\cdots
$$

can be written as

$$
x=\frac{\sum_{i=0}^{p-1} a_{i} \beta_{i+1} \cdots \beta_{p-1}}{\delta}+\frac{\sum_{i=0}^{p-1} a_{p+i} \beta_{i+1} \cdots \beta_{p-1}}{\delta^{2}}+\cdots
$$

If we add the constraint that each letter a_{n} belongs to D_{n}, then we obtain a δ-representation of x over the alphabet

$$
\mathcal{D}=\left\{\sum_{i=0}^{p-1} a_{i} \beta_{i+1} \cdots \beta_{p-1}: \forall i \in\{0, \ldots, p-1\}, a_{i} \in D_{i}\right\}
$$

Alternate spectrum

For $\delta=\prod_{i=0}^{p-1} \beta_{i}$ and the alphabet \mathcal{D}, we consider the spectrum $X^{\mathcal{D}}(\delta)$.
For each $i \in\{0, \ldots, p-1\}$, we let $X(i)$ denote the spectrum built from the shifted base $\boldsymbol{\beta}^{(i)}$ and the shifted p-tuple of alphabets $\boldsymbol{D}^{(i)}$.

In particular, we have $X(0)=X^{\mathcal{D}}(\delta)$.
Lemma
For each $i \in\{0, \ldots, p-1\}$, we have $X(i) \cdot \beta_{i}+D_{i}=X(i+1)$ where $X(p)=X(0)$.

Alternate zero automaton

For each $i \in\{0, \ldots, p-1\}$, we define

$$
M^{(i)}=\sum_{n=i}^{+\infty} \frac{\max \left(D_{n}\right)}{\prod_{k=i}^{n} \beta_{k}} \quad \text { and } \quad m^{(i)}=\sum_{n=i}^{+\infty} \frac{\min \left(D_{n}\right)}{\prod_{k=i}^{n} \beta_{k}}
$$

We define a Büchi automaton associated with an alternate base β and a p-tuple of alphabets D as

$$
\mathcal{Z}(\beta, \boldsymbol{D})=\left(Q_{\beta, \boldsymbol{D}},(0,0), Q_{\beta, \boldsymbol{D}}, \cup_{i=0}^{p-1} D_{i}, E\right)
$$

where

- $Q_{\beta, D}=\bigcup_{i=0}^{p-1}\left(\{i\} \times\left(X(i) \cap\left[-M^{(i)},-m^{(i)}\right]\right)\right)$
- E is the set of transitions defined as follows: for $(i, s),(j, t) \in Q_{\beta, D}$ and $a \in \cup_{i=0}^{p-1} D_{i}$, there is a transition $(i, s) \xrightarrow{a}(j, t)$ if and only if $j \equiv i+1(\bmod p), a \in D_{i}$ and $t=\beta_{i} s+a$.

Proposition

The Büchi automaton $\mathcal{Z}(\boldsymbol{\beta}, \boldsymbol{D})$ accepts the set

$$
Z(\beta, D)=\left\{a \in \prod_{n=0}^{+\infty} D_{n}: \sum_{n=0}^{+\infty} \frac{a_{n}}{\prod_{k=0}^{n} \beta_{k}}=0\right\}
$$

An example

Consider the alternate base $\boldsymbol{\beta}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$ and $\boldsymbol{D}=(\{-2,-1,0,1,2\},\{-1,0,1\})$. Then $M^{(0)}=\operatorname{val}_{\beta}\left((21)^{\omega}\right) \simeq 1.67994$ and $M^{(1)}=\operatorname{val}_{\beta^{(1)}}\left((12)^{\omega}\right) \simeq 1.86852$.

For instance, the infinite words $1(\overline{10})^{\omega}$ and $(0 \overline{1} 21 \overline{21})^{\omega}$ have value 0 in base β (where $\overline{1}$ and $\overline{2}$ designate the digits -1 and -2 respectively).

Linking the alternate spectrum and the alternate zero automaton

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
Let β be an alternate base of length p and let \boldsymbol{D} be a p-tuple of alphabets of integers containing 0 . Then the following assertions are equivalent.

1. The set $Z(\beta, D)$ is accepted by a finite Büchi automaton.
2. The zero automaton $\mathcal{Z}(\boldsymbol{\beta}, \boldsymbol{D})$ is finite.
3. The spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}.

Necessary conditions on β to be a Parry alternate base

Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If β is a Parry alternate base, then

- δ is an algebraic integer
- $\beta_{i} \in \mathbb{Q}(\delta)$ for all $i \in\{0, \ldots, p-1\}$.

Let me give some intuition on an example.
Let $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ be a base such that the expansions of 1 are given by

$$
d_{\beta}(1)=30^{\omega}, \quad d_{\beta^{(1)}}(1)=110^{\omega}, \quad d_{\beta^{(2)}}(1)=1(110)^{\omega} .
$$

We derive that $\beta_{0}, \beta_{1}, \beta_{2}$ satisfy the following set of equations

$$
\frac{3}{\beta_{0}}=1, \quad \frac{1}{\beta_{1}}+\frac{1}{\beta_{1} \beta_{2}}=1, \quad \frac{1}{\beta_{2}}+\left(\frac{1}{\beta_{2} \beta_{0}}+\frac{1}{\delta}\right) \frac{\delta}{\delta-1}=1,
$$

where $\delta=\beta_{0} \beta_{1} \beta_{2}$.
Multiplying the first equation by δ, the second one by $\beta_{1} \beta_{2}$ and the third one by $(\delta-1) \beta_{2}$, we obtain the identities

$$
3 \beta_{1} \beta_{2}-\delta=0, \quad-\beta_{1} \beta_{2}+\beta_{2}+1=0, \quad \beta_{1} \beta_{2}+(2-\delta) \beta_{2}+\delta-1=0
$$

In a matrix formalism, we have

$$
\left(\begin{array}{ccc}
3 & 0 & -\delta \\
-1 & 1 & 1 \\
1 & 2-\delta & \delta-1
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \beta_{2} \\
\beta_{2} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The existence of a non-zero vector $\left(\beta_{1} \beta_{2}, \beta_{2}, 1\right)^{T}$ as a solution of this equation forces that the determinant of the coefficient matrix is zero:

$$
\delta^{2}-9 \delta+9=0
$$

Hence we must have $\delta=\frac{9+3 \sqrt{5}}{2}=3 \varphi^{2}$ where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
We then obtain

$$
\beta_{1} \beta_{2}=\frac{\delta}{3}=\varphi^{2} \text { and } \beta_{2}=\beta_{1} \beta_{2}-1=\varphi^{2}-1=\varphi .
$$

Consequently,

$$
\beta_{1}=\frac{\beta_{1} \beta_{2}}{\beta_{2}}=\frac{\varphi^{2}}{\varphi}=\varphi \text { and } \beta_{0}=\frac{\delta}{\beta_{1} \beta_{2}}=\frac{3 \varphi^{2}}{\varphi^{2}}=3 .
$$

Indeed, the triple $\beta=(3, \varphi, \varphi)$ is an alternate base giving precisely the given expansions of 1 .

For obtaining the values $\beta_{0}, \beta_{1}, \beta_{2}$ from the known eventually periodic expansions we have used the fact that $\beta_{0}, \beta_{1}, \beta_{2}$ and $\delta=\beta_{0} \beta_{1} \beta_{2}$ are solutions of a system of polynomial equations in four unknowns x_{0}, x_{1}, x_{2}, y, in our case

$$
\left\{\begin{aligned}
3 x_{1} x_{2}-y & =0 \\
-x_{1} x_{2}+x_{2}+1 & =0 \\
x_{1} x_{2}+(2-y) x_{2}+y-1 & =0 \\
x_{1} x_{2} x_{3} & =y
\end{aligned}\right.
$$

The solution of the system yielded that δ is a root of a monic polynomial with integer coefficients, i.e., is an algebraic integer.

The same strategy can be applied to any Parry alternate base.

A sufficient condition on β to be a Parry alternate base

As previously:

- $\delta=\prod_{i=0}^{p-1} \beta_{i}$
- $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ is a p-tuple of alphabets of integers containing 0
- \mathcal{D} is the corresponding alphabet of real numbers.

Proposition

If $D_{i} \supseteq\left\{-\left\lfloor\beta_{i}\right\rfloor, \ldots,\left\lfloor\beta_{i}\right\rfloor\right\}$ for all $i \in\{0, \ldots, p-1\}$ and if the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}, then β is a Parry alternate base.

Proposition

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then the spectrum $X^{\mathcal{D}}(\delta)$ has no accumulation point in \mathbb{R}.

As a consequence, we get
Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then β is a Parry alternate base.

Some remarks

- The condition of δ being a Pisot number is neither sufficient nor necessary for β to be a Parry alternate base.

1. Even for $p=1$, there exist Parry numbers which are not Pisot.
2. To see that it is not sufficient for $p \geq 2$, consider the alternate base $\boldsymbol{\beta}=(\sqrt{\beta}, \sqrt{\beta})$ where β is the smallest Pisot number. The product δ is the P isot number β. However, the $\boldsymbol{\beta}$-expansion of 1 is equal to $d_{\sqrt{\beta}}(1)$, which is aperiodic.

- The bases $\beta_{0}, \ldots, \beta_{p-1}$ need not be algebraic integers in order to have a Parry alternate base.

To see this, consider $\beta=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$. For this base, we have $d_{\beta}(0)(1)=2010^{\omega}$ and $d_{\beta^{(1)}}(1)=110^{\omega}$. However, $\frac{5+\sqrt{13}}{6}$ is not an algebraic integer.

- For the same non Pisot algebraic integer δ, there may exist a Parry alternate base $\alpha=\left(\alpha_{0}, \cdots, \alpha_{p-1}\right)$ and a non-Parry alternate base $\beta=\left(\beta_{0} \cdots \beta_{p-1}\right)$ such that $\prod_{i=0}^{p-1} \alpha_{i}=\prod_{i=0}^{p-1} \beta_{i}=\delta$.

Generalization of Schmidt's results

Define $\operatorname{Per}(\beta)=\left\{x \in[0,1): d_{\beta}(x)\right.$ is ultimately periodic $\}$.
Theorem (Charlier, Cisternino \& Kreczman 2022)

1. If $\mathbb{Q} \cap[0,1) \subseteq \bigcap_{i=0}^{p-1} \operatorname{Per}\left(\beta^{(i)}\right)$ then $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ and δ is either a Pisot number or a Salem number.
2. If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$ then $\operatorname{Per}(\beta)=\mathbb{Q}(\delta) \cap[0,1)$.

Theorem (Charlier, Cisternino \& Kreczman 2022)
If δ is an algebraic integer that is neither a Pisot number nor a Salem number then $\operatorname{Per}(\beta) \cap \mathbb{Q}$ is nowhere dense in $[0,1)$.

Alternate bases whose set of zero representations is accepted by a finite

 Büchi automatonTheorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
The following assertions are equivalent.

1. The set $Z(\boldsymbol{\beta}, \boldsymbol{D})$ is accepted by a finite Büchi automaton for all p-tuple of alphabets of integers $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$.
2. The set $Z(\boldsymbol{\beta}, \boldsymbol{D})$ is accepted by a finite Büchi automaton for one p-tuple of alphabets of integers $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ such that $D_{i} \supseteq\left\{-\left\lfloor\beta_{i}\right\rfloor, \ldots,\left\lfloor\beta_{i}\right\rfloor\right\}$ for all $i \in\{0, \ldots, p-1\}$ and $\left\lfloor\beta_{j}\right\rfloor \geq\lceil\delta\rceil-1$ for some $j \in\{0, \ldots, p-1\}$.
3. δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$.

Normalization in alternate base

The normalization function is the partial function $\nu_{\beta, D}$ mapping any β-representation $a \in \prod_{n \in \mathbb{N}} D_{n}$ of a real number $x \in[0,1)$ to the β-expansion of x.
We say that $\nu_{\boldsymbol{\beta}, \boldsymbol{D}}$ is computable by a finite Büchi automaton if there exists a finite Büchi automaton accepting the set

$$
\left\{(u, v) \in \prod_{n \in \mathbb{N}}\left(D_{n} \times\left\{0, \ldots,\left\lceil\beta_{n}\right\rceil-1\right\}\right): \operatorname{val}_{\beta}(u)=\operatorname{val}_{\beta}(v) \text { and } \exists x \in[0,1), v=d_{\beta}(x)\right\}
$$

First ingredient.
Consider two p-tuples of alphabets $\boldsymbol{D}=\left(D_{0}, \ldots, D_{p-1}\right)$ and $\boldsymbol{D}^{\prime}=\left(D_{0}^{\prime}, \ldots, D_{p-1}^{\prime}\right)$.
We set $\boldsymbol{D}-\boldsymbol{D}^{\prime}=\left(D_{0}-D_{0}^{\prime}, \ldots, D_{p-1}-D_{p-1}^{\prime}\right)$.
From the zero automaton $\mathcal{Z}\left(\boldsymbol{\beta}, \boldsymbol{D}-\boldsymbol{D}^{\prime}\right)$, we define a converter $\mathcal{C}_{\boldsymbol{\beta}, \boldsymbol{D}, \boldsymbol{D}^{\prime}}$ from \boldsymbol{D} to \boldsymbol{D}^{\prime}, that is, a Büchi automaton accepting the set

$$
\left\{(u, v) \in \prod_{n \in \mathbb{N}}\left(D_{n} \times D_{n}^{\prime}\right): \operatorname{val}_{\beta}(u)=\operatorname{val}_{\beta}(v)\right\}
$$

Proposition

If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the converter $\mathcal{C}_{\beta, \boldsymbol{D}, \boldsymbol{D}^{\prime}}$ is finite.

Second ingredient.

In the case where $\boldsymbol{\beta}$ is a Parry alternate base, we can define a Büchi automaton accepting the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$.

For $\boldsymbol{\beta}=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have seen that $d_{\boldsymbol{\beta}^{(0)}}^{*}(1)=200(10)^{\omega}$ and $d_{\boldsymbol{\beta}^{(1)}}^{*}(1)=(10)^{\omega}$.

Combining these two automata, we obtain the following result.
Theorem (Charlier, Cisternino, Masáková \& Pelantová 2022)
If δ is a Pisot number and $\beta_{0}, \ldots, \beta_{p-1} \in \mathbb{Q}(\delta)$, then the normalization function $\nu_{\beta, D}$ is computable by a finite Büchi automaton.

Thank you!

