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Part 1

(S,K)-regular sequences



Abstract numeration systems

An ANS is a triple S = (L,A, <) where L is an infinite regular language over a
totally ordered alphabet (A, <).

The words in L are ordered with respect to the radix order <rad induced by the
order < on A.

The S-representation function repS : N→ L maps any non-negative integer n
onto the nth word in L.

The S-value function valS : L→ N is the reciprocal function of repS .

(Lecomte & Rigo 2001)



Runnning example: S = (a∗b∗, a < b)

.
n repS(n) n repS(n) n repS(n)
0 ε 8 abb 16 aaaab
1 a 9 bbb 17 aaabb
2 b 10 aaaa 18 aabbb
3 aa 11 aaab 19 abbbb
4 ab 12 aabb 20 bbbbb
5 bb 13 abbb 21 aaaaaa
6 aaa 14 bbbb 22 aaaaab
7 aab 15 aaaaa 23 aaaabb

valS(apbq) = (p + q)(p + q + 1)
2 + q



Other examples

I Integer base b numeration systems correspond to the ANS
Sb = ({1, . . . , b − 1}{0, . . . , b − 1}∗ ∪ {ε}, 0 < 1 < · · · < b − 1).

I The Zeckendorf numeration system corresponds to the ANS
SF = (1{0, 01}∗ ∪ {ε}, 0 < 1).

I More generally, numeration systems based on a sequence U = (Ui )i≥0 and
having a regular numeration language.

I All Pisot numeration systems.



Representing elements of Nd

We will work with a d-tuple S = (S1, . . . ,Sd ) of ANS

S1 = (L1,A1, <1), . . . , Sd = (Ld ,Ad , <d ).

Let # /∈ A1 ∪ · · · ∪ Ad and the numeration alphabet is

A =
(
(A1 ∪ {#})× · · · × (Ad ∪ {#})

)
\
{(

#
...
#

)}
.

For a d-tuple ( w1...
wd

)
∈ A∗1 × · · · × A∗d

we set ( w1...
wd

)#
=
(

#`−|w1|w1...
#`−|wd |wd

)
∈ A∗

where ` = max{|w1|, . . . , |wd |}.



The numeration language is L = (L1 × · · · × Ld )#.

Since the languages L1, . . . , Ld are regular, L is a regular language over A.

Then

repS : Nd → L,
( n1...

nd

)
7→

( repS1 (n1)
...

repSd
(nd )

)#

and

valS : L→ Nd ,

( w1...
wd

)
7→

(
valS1 (τ#(w1))...
valSd (τ#(wd ))

)
where τ# is the morphism that erases the letter # and leaves the other letters
unchanged.



Running Example

Consider the 2-dimensional ANS S = (S,S).

We have

I A =
{

( #
a ) ,

(#
b

)
, ( a

# ) , ( a
a ) , ( a

b ) ,
( b

#
)
, ( b

a ) , ( b
b )
}

I L = (a∗b∗ × a∗b∗)#.

For instance,

I repS( 4
9 ) =

(#ab
bbb

)
=
(#

b

)
( a

b ) ( b
b )

I valS
( aab

##a
)

=
(

valS (aab)
valS (a)

)
= ( 7

1 ).



(S,K)-Regular sequences

In this talk, K designates an arbitrary commutative semiring.

A sequence f : Nd → K is called (S,K)-regular if the series

Sf :=
∑
w∈L

f (valS(w)) w

is K-recognizable.



Background on noncommutative formal series

A series is an application

S : A∗ → K, w 7→ (S,w).

It is also denoted ∑
w∈A∗

(S,w)w .

A series is K-recognizable if there exist µ : A→ Kr×r , λ ∈ K1×r and γ ∈ Kr×1

such that

∀a1, . . . , a` ∈ A, (S, a1 · · · a`) = λµ(a1) · · ·µ(a`)γ.

The triple (λ, µ, γ) is called a linear representation of S.



Running Example
Consider the sequence

f : N2 → N, ( m
n ) 7→ max |Suff(repS(m)) ∩ Suff(repS(n))|.

We have
Sf =

∑
w∈L

(S,w)w

where
S : A∗ → N, ( u

v ) 7→ max |Suff(u) ∩ Suff(v)|.

Since L is a regular language, the series Sf is N-recognizable if so is S.

A linear representation (λ, µ, γ) of S is given by

λ = ( 0 1 ) , γ = ( 1
0 ) ,

µ ( a
a ) = µ

( b
b
)

=
(
1 0
1 1

)
,

µ(a) =
(
0 0
0 1

)
for a ∈ A \

{
( a

a ) ,
( b

b
)}
.

Thus, Sf is N-recognizable, and hence the sequence f is (S,N)-regular.



Unidimensional versus multidimensional

If we take the convention to pad representations on the right, then we get a
different notion of (S,K)-regular sequences.

In the unidimensional case, the two notions coincide (since no padding is
necessary).

However, there is no such nice analogy in higher dimensions since it might be
that a left (S,K)-regular sequence is not a right (S,K)-regular sequence, or
vice-versa.



Part 2

S-kernel of a sequence



S-kernel of a sequence
Working hypothesis (WH). The numeration language L is prefix-closed:

∀u, v ∈ A∗, uv ∈ L =⇒ u ∈ L.

(This amounts to asking that all languages L1, . . . , Ld are prefix-closed.)

For f : Nd → K and w ∈ A∗, we define a sequence

f ◦w : Nd → K

by setting

∀n ∈ Nd , (f ◦w)(n) =
{
f (valS(repS(n)w)) if repS(n)w ∈ L
0 else.

The S-kernel of f is the set kerS(f ) = {f ◦w : w ∈ A∗}.

These definitions generalize those of Berstel & Reutenauer 2011.



Running Example

For all w ∈ a∗b∗, we have wb ∈ a∗b∗ so we get that

∀n ∈ N2, (f ◦
( b

b
)
)(n) = f (n) + 1.

Some values of the function f ◦
( ab

ab
)
:

n ( 0
1 ) ( 1

2 ) ( 3
2 ) ( 6

3 )
repS(n) ( #

a ) ( a
b ) ( aa

#b ) ( aaa
#aa )

repS(n)
( ab

ab
) (#ab

aab
) ( aab

bab
) ( aaab

#bab
) ( aaaab

#aaab
)

valS(repS(n)
( ab

ab
)
) ( 4

7 ) @ @ ( 16
11 )

(f ◦
( ab

ab
)
)(n) 2 0 0 4



Left-right duality
Like for (S,K)-regular sequences, the notion of S-kernel is not left-right
symmetric.

The S-kernel defined above may be seen as the right S-kernel.

The left S-kernel of a sequence f : Nd → K would then be the set of sequences
{w ◦ f : w ∈ A∗} where

∀n ∈ Nd , (w ◦ f )(n) =
{
f (valS(w repS(n))) if w repS(n) ∈ L
0 else.

In this case, we need to adapt the conventions used so far:

I We pad representations of vectors of integers with #’s on the right.

I We ask the numeration language L to be suffix-closed.

Provided that these conventions are taken, all our results can be adapted to the
left version of the S-kernel and left (S,K)-regular sequences.



First characterization of (S,K)-regular sequences

A K-submodule of KNd is called stable if it is closed under all operations

KNd
→ KNd

, f 7→ f ◦w

for all w ∈ A∗.

Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence f : Nd → K is (S,K)-regular if and only if there exists a stable
finitely generated K-submodule of KNd containing f .

The proof of this result generalizes ideas from Berstel & Reutenauer 2011.

It relies on the property (under WH) that for all u, v ∈ A∗ and f : Nd → K,
(f ◦ v) ◦ u = f ◦ uv .

Remark: The latter property cannot be obtained from the notion of S-kernel
used in Rigo & Maes 2002.



Second characterization of (S,K)-regular sequences

The following result is a practical criterion for (S,K)-regularity.

Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence f : Nd → K is (S,K)-regular if and only if there exist r ∈ N and
f1, f2, . . . , fr : Nd → K such that f = f1 and for all a ∈ A and all i ∈ [[1, r ]], there
exist ka,i,1, . . . , ka,i,r ∈ K such that

fi ◦ a =
r∑

j=1
ka,i,j fj .



Running Example

Define the sequence

g : N2 → K, n 7→
{
f (n) if n ∈ valS(a∗)× valS(a∗)
0 else.

The sequences

1. f

2. g

3. χ{0}×valS(a∗)

4. χ{0}×N

5. χvalS(a∗)×{0}

6. χvalS(a∗)×valS(a∗)

7. χvalS(a∗)×N

8. χN×{0}

9. χN×valS(a∗)

10. 1

satisfy the second characterization.



Let a ∈ A. Then

f ◦ a =


g + χvalS(a∗)×valS(a∗) if a = ( a

a )
f + 1 if a =

( b
b
)

0 else

g ◦ a =
{
g + χvalS(a∗)×valS(a∗) if a = ( a

a )
0 else.

Next, take X1,X2 ∈ {{0}, valS(a∗),N} such that not both X1,X2 are equal to
{0}. Then

χX1×X2 ◦ a = χY1×Y2

where

∀i ∈ {1, 2}, Yi =


{0} if ai = #
valS(a∗) if ai = a and Xi ∈ {valS(a∗),N}
N if ai = b and Xi = N
∅ else.



An N-automaton recognizing the series Sf

1

2

3

4

5

6

7

8

9

10

1

1

1

1

1

1

1

1

1

( b
b
)
| 1

( a
a ) | 1

( a
a ) | 1

( b
b
)
| 1( a

a ) | 1

( a
a ) | 1

( #
a ) | 1

(#
b
)
| 1

( #
a ) | 1

( a
# ) | 1

( a
a ) | 1 ( #

a ) | 1

( a
# ) | 1

( a
b ) | 1

( #
a ) | 1

(#
b
)
| 1

( a
# ) | 1

( a
a ) | 1

( b
#
)
| 1

( a
# ) | 1

( b
a ) | 1

( #
a ) | 1

( a
# ) | 1

( a
a ) | 1

( b
#
)
| 1

( b
b
)
| 1

( #
a ) | 1

(#
b
)
| 1

( a
# ) | 1

( a
a ) | 1

( a
b ) | 1

( b
#
)
| 1

( b
a ) | 1



Third characterization (whenever K is finite or is a ring)

Since 〈kerS(f )〉K is stable, it is the smallest stable K-submodule of KNd

containing f .

For an arbitrary commutative semiring K, the fact that f is a (S,K)-regular
sequence does not imply that 〈kerS(f )〉K is finitely generated.

The following theorem provides us with some cases where 〈kerS(f )〉K is indeed
finitely generated.

Theorem (Charlier-Cisternino-Stipulanti 2020)
Let f : Nd → K be a sequence.

I If 〈kerS(f )〉K is finitely generated then f is (S,K)-regular.

I If f is (S,K)-regular and if moreover K is finite or is a ring, then
〈kerS(f )〉K is finitely generated.



Running Example
The kernel 〈kerS(f )〉N is not finitely generated.

I For w ∈ A∗ \ ( a
a )∗
( b

b
)∗, we have f ◦w = 0.

I For k ∈ N, we have f ◦
( b

b
)k = f + k.

I For k, k ′ ∈ N with k ≥ 1, we have

(
f ◦ ( a

a )k ( b
b
)k′
)

(n) =
{
f (n) + k + k ′ if n ∈

(
valS(a∗)

)2
0 else.

However, since f is (S,N)-regular, hence also (S,Z)-regular, our third
characterization implies that 〈kerS(f )〉Z is finitely generated.

Indeed, it is easily seen that

〈kerS(f )〉Z = 〈f , f ◦ ( a
a ) , f ◦

( b
b
)
, f ◦ ( aa

aa )〉Z.



Part 3

S-Automatic sequences



Characterization of S-automatic sequences
A sequence f : Nd → ∆ is called S-automatic if there exists a DFAO
A = (Q, q0, δ,A, τ,∆) such that

∀n ∈ Nd , f (n) = τ(δ(q0, repS(n))).

This definition was introduced in Rigo 2000.

In this work, we consider sequences f with images in K, so the output alphabet
∆ is seen as a subset of K.

Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence f : Nd → K is S-automatic if and only if kerS(f ) is finite.

Even though, for d = 1, the statement of this result coincide with that of a
result from Rigo & Maes 2002, this is indeed a new result since we are working
with a different notion of S-kernel.

As a consequence, we obtain that, for any given sequence f , both kernels are
simultaneously finite.



Characterization of S-automatic sequences among
(S,K)-regular sequences (whenever K is finite or is a ring)

Theorem (Charlier-Cisternino-Stipulanti 2020)
Let f : Nd → K.

I If f is S-automatic then it is (S,K)-regular.

I If f is (S,K)-regular and takes only finitely many values, and if moreover
K is finite or is a ring, then f is S-automatic.



Part 4

Enumerating S-recognizable properties of S-automatic sequences give rise to
(S,N)-regular sequences



First ingredient: generating (S,N)-regular sequences from
(S, S ′)-recognizable sets

In this part, we focus on the semirings N and N∞ = N ∪ {∞}.

A subset X of Nd is S-recognizable if the language repS(X ) is regular.

Ingredient 1 (Charlier-Cisternino-Stipulanti 2020)
Let S and S ′ be d- and d ′-dimensional ANS respectively.
If X is an (S,S ′)-recognizable subset of Nd+d′ , then the sequence

f : Nd → N∞, n 7→ Card{n′ ∈ Nd′ : ( n
n′ ) ∈ X}

is (S,N∞)-regular. If moreover f (N) ⊆ N then f is (S,N)-regular.



Second ingredient: S-recognizable enumerations of Nd

We define an enumeration ES : Nd → N recursively as follows.

We fix a total order on A and we consider the induced radix order on A∗.

Then we define a total order <S on Nd by declaring that

∀m,n ∈ Nd , m <S n ⇐⇒ repS(m) <rad repS(n).

For all n ∈ Nd , we define
ES(n) = i

if n is the i-th element of Nd w.r.t. <S .

Ingredient 2
For each � ∈ {=, >,<}, the set

{( m
n ) ∈ N2d : ES(m) � ES(n)}

is (S,S)-recognizable.



Running Example

Assuming
(

#
a

)
<
(

#
b

)
<
(

a
#

)
< ( a

a ) < ( a
b ) <

(
b
#

)
<
(

b
a

)
<
(

b
b

)
, we obtain
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Third ingredient: S-recognizable predicates

A predicate P on Nmd is S-recognizable is the set

{n ∈ Nmd : P(n) is true}

is (S, . . . ,S)-recognizable (where S is repeated m times).

The following result generalizes ideas from Bruyère, Hansel, Michaux &
Villemaire 1996 and Charlier, Rampersad & Shallit 2012 to ANS.

Ingredient 3
Any predicate on Nmd that is defined recursively from S-recognizable predicates
by only using the logical connectives ∧,∨,¬, =⇒ , ⇐⇒ and the quantifiers ∀
and ∃ on variables describing elements of Nd , is S-recognizable.

Corollary
If P a such a predicate on Nd then the closed predicates ∀xP(x), ∃xP(x) and
∃∞xP(x) are decidable.



Application to factor complexity

The factor complexity of f : Nd → K is the function ρf : Nd 7→ N∞ that maps
each s ∈ Nd to the number of factors of size s occurring in f .

p

s1

s2

If the sequence f has a finite image (as is the case for automatic sequences)
then for all s ∈ Nd , ρf (s) ∈ N.

Theorem (Charlier-Cisternino-Stipulanti 2020)
Let S be an ANS such that addition is S-recognizable, i.e., the 3d-ary predicate
x + y = z is S-recognizable. Then the factor complexity of an S-automatic
sequence is an (S,N)-regular sequence.



Proof.
Let f be an S-automatic d-dimensional sequence.

For all s ∈ Nd , ρf (s) is equal to

Card{p ∈ Nd : ∀p′ ∈ Nd
(
ES(p′) < ES(p) =⇒ ∃i < s, f (p′ + i) 6= f (p + i)

)
}.

By Ingredient 1, it suffices to prove that the set

X := {(s, p) ∈ N2d : ∀p′ ∈ Nd
(
ES(p′) < ES(p) =⇒ ∃i < s, f (p′ + i) 6= f (p + i)

)
}

is (S,S)-recognizable.

By Ingredient 2, the predicate ES
(
p′) < ES(p) is S-recognizable.

By Ingredient 3, since f is S-automatic and addition is S-recognizable, we get
that X is S-recognizable.



Part 5

(S,S ′)-Synchronized sequences



(S, S ′)-Synchronized sequences

In this section, we consider a (d + d ′)-dimensional ANS
(S,S ′) = (S1, . . . ,Sd ,S ′1, . . . ,S ′d′).

A sequence f : Nd → Nd′ is (S,S ′)-synchronized if its graph

Gf = {
( n

f (n)
)

: n ∈ Nd}

is an (S,S ′)-recognizable subset of Nd+d′ .



Running Example

By a pumping argument, it is easily seen that the sequence f is not
(S,S)-synchronized.

However, the sequence f is (S,Sc)-synchronized where Sc = (c∗, c).

�
(#

a
#

)
�

( a
a
#

)
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( b
a
#

)
�

(
#
b
#

)
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( a
b
#

)
�

( b
b
c

)
�

( a
#
#

)
�

(
b
#
#

)
�

( a
a
c

)



Proposition
I For all k ∈ Nd , the sequence Nd → Nd , n 7→ n + k is (S,S)-synchronized.

I Any S-automatic sequence f : Nd → Nd′ is (S,S ′)-synchronized.

I Any (S,S ′)-synchronized sequence f : Nd → N is (S,N)-regular.

Sketch of the proof
The 1st item generalizes a result from Charlier, Lacroix & Rampersad 2011.

The 3rd item follows from Ingredient 3 since for any f : Nd → N, we have

∀n ∈ Nd , f (n) = Card{` ∈ N : ` < f (n)}
= Card{` ∈ N : ∃m, ( n

m ) ∈ Gf ∧ ` < m}.



Even though both families of S-automatic sequences and (S,N)-regular
sequences are closed under sum, product and product by a constant, it is no
longer the case of the family of (S,S ′)-synchronized sequences.

For instance, the sequence N→ N, n 7→ n is (S,S)-synchronized for any
abstract numeration system S.

However, the sequence N→ N, n 7→ 2n is not (S,S)-synchronized in general.

For example, it is not for the unary system S = (c∗, c) since the language{(
#ncn

c2n

)
: n ∈ N

}
is not regular.



Synchronized relations

The graph of a relation R : A∗ → B∗ (where A and B are arbitrary alphabets) is

GR = {( u
v ) ∈ A∗ × B∗ : uRv}.

Let $ /∈ A ∪ B. A relation R : A∗ → B∗ is synchronized if the language

(GR)$ = {( u
v )$ : ( u

v ) ∈ GR}

is regular.

For a sequence f : Nd → Nd′ , we define a relation Rf ,S,S′ : A∗ → (A′)∗ by

GRf ,S,S′ = {( w
w′ ) ∈ L× L′ : f (valS(w)) = valS′(w ′)}.

Proposition
A sequence f : Nd → Nd′ is (S,S ′)-synchronized if and only if the relation
Rf ,S,S′ is synchronized.



The composition of synchronized sequences is
synchronized.

Since the composition of synchronized relations is synchronized (Frougny &
Sakarovitch 2010), we obtain the following result.

Proposition
Let f : Nd → Nd′ be an (S,S ′)-synchronized sequence and g : Nd′ → Nd′′ be
an (S ′,S ′′)-synchronized sequence. Then g ◦ f : Nd → Nd′′ is
(S,S ′′)-synchronized.

This contrasts with the well-known fact that the family of regular sequences is
not closed under composition (Allouche & Shallit 1992).



Part 6

Mixing regular sequences and synchronized sequences



The composition of a synchronized relation and a
K-recognizable series is K-recognizable.

For a relation R : A∗ → B∗ and a series S : B∗ → K such that for all u ∈ A∗,
the language {v ∈ B∗ : uRv} is finite, we define

S ◦ R : A∗ → K, u 7→
∑

v∈B∗
uRv

(S, v).

Theorem (Charlier-Cisternino-Stipulanti 2020)
If R is synchronized and S is K-recognizable, then S ◦ R is K-recognizable.



The composition of a synchronized sequence and a regular
one is regular.

Corollary
If f : Nd → Nd′ is (S,S ′)-synchronized and g : Nd′ → K is (S ′,K)-regular, then
g ◦ f : Nd → K is (S,K)-regular.

Corollary
Suppose that K is finite or is a ring. If f : Nd → Nd′ is an S-automatic
sequence and g : Nd′ → K is an (S ′,K)-regular sequence, then the sequence
g ◦ f : Nd → K is S-automatic.



Part 7

Robustness of (U,K)-regular sequences for Pisot numeration systems U



Theorem (Charlier-Cisternino-Stipulanti 2020)
For f : Nd → K and a d-tuple U = (U1, . . . ,Ud ) of Pisot numeration systems,
the following assertions are equivalent.

1. The sequence f is (U,K)-regular.

2. For all finite alphabets A ⊂ Zd , the series
∑

w∈A∗ f (||valU(w)||) w is
K-recognizable.

3. The series
∑

w∈A∗U
f (valU(w)) w is K-recognizable.

4. There exists a K-recognizable series S : A∗U → K such that for all n ∈ Nd ,
(S, repU(n)) = f (n).
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