Regular sequences in abstract numeration systems

Émilie Charlier
joint work with Célia Cisternino and Manon Stipulanti
Département de mathématiques, ULiège
One World Seminar on Combinatorics on Words 2020, November 23

Part 1

(\mathcal{S}, \mathbb{K})-regular sequences

Abstract numeration systems

An ANS is a triple $\mathcal{S}=(L, A,<)$ where L is an infinite regular language over a totally ordered alphabet $(A,<)$.

The words in L are ordered with respect to the radix order $<_{\text {rad }}$ induced by the order < on A.

The \mathcal{S}-representation function $\operatorname{rep}_{\mathcal{S}}: \mathbb{N} \rightarrow L$ maps any non-negative integer n onto the nth word in L.

The \mathcal{S}-value function $\operatorname{val}_{\mathcal{S}}: L \rightarrow \mathbb{N}$ is the reciprocal function of $\operatorname{rep}_{\mathcal{S}}$.
(Lecomte \& Rigo 2001)

Runnning example: $\mathcal{S}=\left(a^{*} b^{*}, a<b\right)$

n	$\operatorname{rep}_{\mathcal{S}}(n)$	n	$\operatorname{rep}_{\mathcal{S}}(n)$	n	$\operatorname{rep}_{\mathcal{S}}(n)$
0	ε	8	$a b b$	16	aaaab
1	a	9	$b b b$	17	aaabb
2	b	10	$a a a a$	18	$a a b b b$
3	$a a$	11	$a a a b$	19	$a b b b b$
4	$a b$	12	$a a b b$	20	$b b b b b$
5	$b b$	13	$a b b b$	21	aaaaaa
6	$a a a$	14	$b b b b$	22	aaaaab
7	$a a b$	15	aaaaa	23	aaaabb

$$
\operatorname{val}_{\mathcal{S}}\left(a^{p} b^{q}\right)=\frac{(p+q)(p+q+1)}{2}+q
$$

Other examples

- Integer base b numeration systems correspond to the ANS $\mathcal{S}_{b}=\left(\{1, \ldots, b-1\}\{0, \ldots, b-1\}^{*} \cup\{\varepsilon\}, 0<1<\cdots<b-1\right)$.
- The Zeckendorf numeration system corresponds to the ANS $\mathcal{S}_{F}=\left(1\{0,01\}^{*} \cup\{\varepsilon\}, 0<1\right)$.
- More generally, numeration systems based on a sequence $U=\left(U_{i}\right)_{i \geq 0}$ and having a regular numeration language.
- All Pisot numeration systems.

Representing elements of \mathbb{N}^{d}

We will work with a d-tuple $\mathcal{S}=\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{d}\right)$ of ANS

$$
\mathcal{S}_{1}=\left(L_{1}, A_{1},<_{1}\right), \ldots, \mathcal{S}_{d}=\left(L_{d}, A_{d},<_{d}\right)
$$

Let $\# \notin A_{1} \cup \cdots \cup A_{d}$ and the numeration alphabet is

$$
\boldsymbol{A}=\left(\left(A_{1} \cup\{\#\}\right) \times \cdots \times\left(A_{d} \cup\{\#\}\right)\right) \backslash\left\{\left(\begin{array}{c}
\# \\
\vdots \\
\#
\end{array}\right)\right\} .
$$

For a d-tuple

$$
\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right) \in A_{1}^{*} \times \cdots \times A_{d}^{*}
$$

we set

$$
\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right)^{\#}=\left(\begin{array}{c}
\#^{\ell-\left|w_{1}\right|} \mid \\
\vdots \\
\#^{\ell-\left|w_{d}\right|} \\
w_{d}
\end{array}\right) \in \boldsymbol{A}^{*}
$$

where $\ell=\max \left\{\left|w_{1}\right|, \ldots,\left|w_{d}\right|\right\}$.

The numeration language is $\boldsymbol{L}=\left(L_{1} \times \cdots \times L_{d}\right)^{\#}$.
Since the languages L_{1}, \ldots, L_{d} are regular, \boldsymbol{L} is a regular language over \boldsymbol{A}.
Then

$$
\operatorname{rep}_{\mathcal{S}}: \mathbb{N}^{d} \rightarrow \boldsymbol{L},\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{d}
\end{array}\right) \mapsto\left(\begin{array}{c}
\operatorname{rep}_{\mathcal{S}_{1}}\left(n_{1}\right) \\
\vdots \\
\operatorname{rep}_{\mathcal{S}_{d}}\left(n_{d}\right)
\end{array}\right)^{\#}
$$

and

$$
\operatorname{val}_{\mathcal{S}}: \boldsymbol{L} \rightarrow \mathbb{N}^{d},\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right) \mapsto\left(\begin{array}{c}
\operatorname{val}_{\mathcal{S}_{1}}\left(\tau_{\#}\left(w_{1}\right)\right) \\
\vdots \\
\operatorname{val}_{\mathcal{S}_{d}}\left(\tau_{\#}\left(w_{d}\right)\right)
\end{array}\right)
$$

where $\tau_{\#}$ is the morphism that erases the letter \# and leaves the other letters unchanged.

Running Example

Consider the 2-dimensional ANS $\mathcal{S}=(\mathcal{S}, \mathcal{S})$.
We have

- $\boldsymbol{A}=\left\{\binom{\#}{a},\binom{\#}{b},\binom{a}{\#},\binom{a}{a},\binom{a}{b},\binom{b}{\#},\binom{b}{a},\binom{b}{b}\right\}$
- $\boldsymbol{L}=\left(a^{*} b^{*} \times a^{*} b^{*}\right)^{\#}$.

For instance,
$-\operatorname{rep}_{\mathcal{S}}\binom{4}{9}=\binom{\# a b}{b b b}=\binom{\#}{b}\binom{a}{b}\binom{b}{b}$
$-\operatorname{val}_{\mathcal{S}}\binom{a a b}{\# \# a}=\binom{\operatorname{val}_{\mathcal{S}}(a a b)}{\operatorname{vall}(a)}=\binom{7}{1}$.

$(\mathcal{S}, \mathbb{K})$-Regular sequences

In this talk, \mathbb{K} designates an arbitrary commutative semiring.
A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is called $(\mathcal{S}, \mathbb{K})$-regular if the series

$$
S_{f}:=\sum_{\boldsymbol{w} \in \boldsymbol{L}} f\left(\operatorname{val}_{\mathcal{S}}(\boldsymbol{w})\right) \boldsymbol{w}
$$

is \mathbb{K}-recognizable.

Background on noncommutative formal series

A series is an application

$$
S: A^{*} \rightarrow \mathbb{K}, w \mapsto(S, w)
$$

It is also denoted

$$
\sum_{w \in A^{*}}(S, w) w .
$$

A series is \mathbb{K}-recognizable if there exist $\mu: A \rightarrow \mathbb{K}^{r \times r}, \lambda \in \mathbb{K}^{1 \times r}$ and $\gamma \in \mathbb{K}^{r \times 1}$ such that

$$
\forall a_{1}, \ldots, a_{\ell} \in A, \quad\left(S, a_{1} \cdots a_{\ell}\right)=\lambda \mu\left(a_{1}\right) \cdots \mu\left(a_{\ell}\right) \gamma
$$

The triple (λ, μ, γ) is called a linear representation of S.

Running Example

Consider the sequence

$$
f: \mathbb{N}^{2} \rightarrow \mathbb{N},\binom{m}{n} \mapsto \max \left|\operatorname{Suff}\left(\operatorname{rep}_{\mathcal{S}}(m)\right) \cap \operatorname{Suff}\left(\operatorname{rep}_{\mathcal{S}}(n)\right)\right| .
$$

We have

$$
S_{f}=\sum_{w \in L}(S, \boldsymbol{w}) \boldsymbol{w}
$$

where

$$
S: \boldsymbol{A}^{*} \rightarrow \mathbb{N},\binom{u}{v} \mapsto \max |\operatorname{Suff}(u) \cap \operatorname{Suff}(v)| .
$$

Since \boldsymbol{L} is a regular language, the series S_{f} is \mathbb{N}-recognizable if so is S.
A linear representation (λ, μ, γ) of S is given by

$$
\begin{aligned}
& \lambda=\left(\begin{array}{ll}
0 & 1
\end{array}\right), \gamma=\binom{1}{0}, \\
& \mu\binom{a}{a}=\mu\binom{b}{b}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
& \mu(\boldsymbol{a})=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { for } \boldsymbol{a} \in \boldsymbol{A} \backslash\left\{\binom{a}{a},\binom{b}{b}\right\} .
\end{aligned}
$$

Thus, S_{f} is \mathbb{N}-recognizable, and hence the sequence f is $(\mathcal{S}, \mathbb{N})$-regular.

Unidimensional versus multidimensional

If we take the convention to pad representations on the right, then we get a different notion of $(\mathcal{S}, \mathbb{K})$-regular sequences.

In the unidimensional case, the two notions coincide (since no padding is necessary).

However, there is no such nice analogy in higher dimensions since it might be that a left $(\mathcal{S}, \mathbb{K})$-regular sequence is not a right $(\mathcal{S}, \mathbb{K})$-regular sequence, or vice-versa.

Part 2

\mathcal{S}-kernel of a sequence

\mathcal{S}-kernel of a sequence

Working hypothesis (WH). The numeration language \boldsymbol{L} is prefix-closed:

$$
\forall \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{A}^{*}, \quad \boldsymbol{u} \boldsymbol{v} \in \boldsymbol{L} \Longrightarrow \boldsymbol{u} \in \boldsymbol{L}
$$

(This amounts to asking that all languages L_{1}, \ldots, L_{d} are prefix-closed.) For $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ and $\boldsymbol{w} \in \boldsymbol{A}^{*}$, we define a sequence

$$
f \circ \boldsymbol{w}: \mathbb{N}^{d} \rightarrow \mathbb{K}
$$

by setting

$$
\forall \boldsymbol{n} \in \mathbb{N}^{d}, \quad(f \circ \boldsymbol{w})(\boldsymbol{n})= \begin{cases}f\left(\operatorname{val}_{\mathcal{S}}\left(\operatorname{rep}_{\mathcal{S}}(\boldsymbol{n}) \boldsymbol{w}\right)\right) & \text { if } \operatorname{rep}_{\mathcal{S}}(\boldsymbol{n}) \boldsymbol{w} \in \boldsymbol{L} \\ 0 & \text { else. }\end{cases}
$$

The \mathcal{S}-kernel of f is the set $\operatorname{ker}_{\mathcal{S}}(f)=\left\{f \circ \boldsymbol{w}: \boldsymbol{w} \in \boldsymbol{A}^{*}\right\}$.
These definitions generalize those of Berstel \& Reutenauer 2011.

Running Example

For all $w \in a^{*} b^{*}$ ，we have $w b \in a^{*} b^{*}$ so we get that

$$
\forall \boldsymbol{n} \in \mathbb{N}^{2}, \quad\left(f \circ\binom{b}{b}\right)(\boldsymbol{n})=f(\boldsymbol{n})+1 .
$$

Some values of the function $f \circ\binom{a b}{a b}$ ：

n	$\binom{0}{1}$	$\binom{1}{2}$	$\binom{3}{2}$	$\binom{6}{3}$
$\operatorname{rep}_{\mathcal{S}}(\boldsymbol{n})$	（ $\begin{aligned} & \text { a } \\ & \text { ）}\end{aligned}$	$\binom{$ a }{$b}$	（ $\begin{gathered}\text { a } \\ \# ⿰ 丿 ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 灬) ~\end{gathered}$	（ $\begin{aligned} & \text { aaa } \\ & \# \text { aa }\end{aligned}$
$\operatorname{rep}_{\mathcal{S}}(\boldsymbol{n})\binom{a b}{a b}$	$\binom{\# a b}{$ aba }	$\binom{$ ab }{$b a b}$	$\binom{$ aaba }{$\# b a b}$	$\left(\begin{array}{l}\text { azaab } \\ \# \text { aab }\end{array}\right.$
$\operatorname{val}_{\mathcal{S}}\left(\operatorname{rep}_{\mathcal{S}}(\boldsymbol{n})\binom{a b}{a b}\right)$	$\binom{4}{7}$	\＃	\＃	$\binom{16}{11}$
$\left(f \circ\binom{a b}{a b}\right)(\boldsymbol{n})$	2	0	0	4

Left-right duality

Like for $(\mathcal{S}, \mathbb{K})$-regular sequences, the notion of \mathcal{S}-kernel is not left-right symmetric.

The \mathcal{S}-kernel defined above may be seen as the right \mathcal{S}-kernel.
The left \mathcal{S}-kernel of a sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ would then be the set of sequences $\left\{\boldsymbol{w} \circ f: \boldsymbol{w} \in \boldsymbol{A}^{*}\right\}$ where

$$
\forall \boldsymbol{n} \in \mathbb{N}^{d}, \quad(\boldsymbol{w} \circ f)(\boldsymbol{n})= \begin{cases}f\left(\operatorname{val}_{\mathcal{S}}\left(\boldsymbol{w} \operatorname{rep}_{\mathcal{S}}(\boldsymbol{n})\right)\right) & \text { if } \boldsymbol{w} \operatorname{rep}_{\mathcal{S}}(\boldsymbol{n}) \in \boldsymbol{L} \\ 0 & \text { else. }\end{cases}
$$

In this case, we need to adapt the conventions used so far:

- We pad representations of vectors of integers with \#'s on the right.
- We ask the numeration language \boldsymbol{L} to be suffix-closed.

Provided that these conventions are taken, all our results can be adapted to the left version of the \mathcal{S}-kernel and left $(\mathcal{S}, \mathbb{K})$-regular sequences.

First characterization of $(\mathcal{S}, \mathbb{K})$-regular sequences

A \mathbb{K}-submodule of $\mathbb{K}^{\mathbb{N}^{d}}$ is called stable if it is closed under all operations

$$
\mathbb{K}^{\mathbb{N}^{d}} \rightarrow \mathbb{K}^{\mathbb{N}^{d}}, f \mapsto f \circ \boldsymbol{w}
$$

for all $\boldsymbol{w} \in \boldsymbol{A}^{*}$.
Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is (\mathcal{S}, \mathbb{K})-regular if and only if there exists a stable finitely generated \mathbb{K}-submodule of $\mathbb{K}^{\mathbb{N}^{d}}$ containing f.

The proof of this result generalizes ideas from Berstel \& Reutenauer 2011. It relies on the property (under WH) that for all $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{A}^{*}$ and $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$, $(f \circ \boldsymbol{v}) \circ \boldsymbol{u}=f \circ \boldsymbol{u} \boldsymbol{v}$.

Remark: The latter property cannot be obtained from the notion of \mathcal{S}-kernel used in Rigo \& Maes 2002.

Second characterization of $(\mathcal{S}, \mathbb{K})$-regular sequences

The following result is a practical criterion for $(\mathcal{S}, \mathbb{K})$-regularity.

Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is $(\mathcal{S}, \mathbb{K})$-regular if and only if there exist $r \in \mathbb{N}$ and $f_{1}, f_{2}, \ldots, f_{r}: \mathbb{N}^{d} \rightarrow \mathbb{K}$ such that $f=f_{1}$ and for all $\boldsymbol{a} \in \boldsymbol{A}$ and all $i \in \llbracket 1, r \rrbracket$, there exist $k_{\mathbf{a}, i, 1}, \ldots, k_{a}, i, r \in \mathbb{K}$ such that

$$
f_{i} \circ \boldsymbol{a}=\sum_{j=1}^{r} k_{a, i, j} f_{j} .
$$

Running Example

Define the sequence

$$
g: \mathbb{N}^{2} \rightarrow \mathbb{K}, \boldsymbol{n} \mapsto \begin{cases}f(\boldsymbol{n}) & \text { if } \boldsymbol{n} \in \operatorname{val}_{\mathcal{S}}\left(a^{*}\right) \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right) \\ 0 & \text { else. }\end{cases}
$$

The sequences

1. f
2. g
3. $\chi_{\{0\} \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right)}$
4. $\chi_{\{0\} \times \mathbb{N}}$
5. $\chi_{\text {val }_{\mathcal{S}}\left(a^{*}\right) \times\{0\}}$
6. $\chi_{\text {val }_{\mathcal{S}}\left(a^{*}\right) \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right)}$
7. $\chi_{\mathbb{N} \times\{0\}}$
8. $\chi_{\mathbb{N} \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right)}$
9. 1
satisfy the second characterization.

Let $\boldsymbol{a} \in \boldsymbol{A}$. Then

$$
\begin{aligned}
& f \circ \boldsymbol{a}= \begin{cases}g+\chi_{\operatorname{val}_{\mathcal{S}}\left(a^{*}\right) \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right)} & \text { if } \boldsymbol{a}=\binom{a}{a} \\
f+1 & \text { if } \boldsymbol{a}=\binom{b}{b} \\
0 & \text { else }\end{cases} \\
& g \circ \boldsymbol{a}= \begin{cases}g+\chi_{\operatorname{val}_{\mathcal{S}}\left(a^{*}\right) \times \operatorname{val}_{\mathcal{S}}\left(a^{*}\right)} & \text { if } \boldsymbol{a}=\binom{a}{a} \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Next, take $X_{1}, X_{2} \in\left\{\{0\}, \operatorname{val}_{\mathcal{S}}\left(a^{*}\right), \mathbb{N}\right\}$ such that not both X_{1}, X_{2} are equal to $\{0\}$. Then

$$
\chi X_{1} \times X_{2} \circ \boldsymbol{a}=\chi_{Y_{1} \times Y_{2}}
$$

where
$\forall i \in\{1,2\}, \quad Y_{i}= \begin{cases}\{0\} & \text { if } a_{i}=\# \\ \operatorname{val}_{\mathcal{S}}\left(a^{*}\right) & \text { if } a_{i}=a \text { and } X_{i} \in\left\{\operatorname{val}_{\mathcal{S}}\left(a^{*}\right), \mathbb{N}\right\} \\ \mathbb{N} & \text { if } a_{i}=b \text { and } X_{i}=\mathbb{N} \\ \emptyset & \text { else. }\end{cases}$

An \mathbb{N}-automaton recognizing the series S_{f}

Third characterization (whenever \mathbb{K} is finite or is a ring)

Since $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{K}}$ is stable, it is the smallest stable \mathbb{K}-submodule of $\mathbb{K}^{\mathbb{N}^{d}}$ containing f.

For an arbitrary commutative semiring \mathbb{K}, the fact that f is a $(\mathcal{S}, \mathbb{K})$-regular sequence does not imply that $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{K}}$ is finitely generated.

The following theorem provides us with some cases where $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{K}}$ is indeed finitely generated.

Theorem (Charlier-Cisternino-Stipulanti 2020) Let $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ be a sequence.

- If $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{K}}$ is finitely generated then f is $(\mathcal{S}, \mathbb{K})$-regular.
- If f is $(\mathcal{S}, \mathbb{K})$-regular and if moreover \mathbb{K} is finite or is a ring, then $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{K}}$ is finitely generated.

Running Example

The kernel $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{N}}$ is not finitely generated.

- For $\boldsymbol{w} \in \boldsymbol{A}^{*} \backslash\binom{a}{a}^{*}\binom{b}{b}^{*}$, we have $f \circ \boldsymbol{w}=0$.
- For $k \in \mathbb{N}$, we have $f \circ\binom{b}{b}^{k}=f+k$.
- For $k, k^{\prime} \in \mathbb{N}$ with $k \geq 1$, we have

$$
\left(f \circ\binom{a}{a}^{k}\binom{b}{b}^{k^{\prime}}\right)(\boldsymbol{n})= \begin{cases}f(\boldsymbol{n})+k+k^{\prime} & \text { if } \boldsymbol{n} \in\left(\operatorname{val}_{\mathcal{S}}\left(a^{*}\right)\right)^{2} \\ 0 & \text { else. }\end{cases}
$$

However, since f is $(\mathcal{S}, \mathbb{N})$-regular, hence also $(\mathcal{S}, \mathbb{Z})$-regular, our third characterization implies that $\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{Z}}$ is finitely generated.

Indeed, it is easily seen that

$$
\left\langle\operatorname{ker}_{\mathcal{S}}(f)\right\rangle_{\mathbb{Z}}=\left\langle f, f \circ\binom{a}{a}, f \circ\binom{b}{b}, f \circ\binom{a a}{a a}\right\rangle_{\mathbb{Z}} .
$$

Part 3

\mathcal{S}-Automatic sequences

Characterization of \mathcal{S}-automatic sequences

A sequence $f: \mathbb{N}^{d} \rightarrow \Delta$ is called \mathcal{S}-automatic if there exists a DFAO $\mathcal{A}=\left(Q, q_{0}, \delta, \boldsymbol{A}, \tau, \Delta\right)$ such that

$$
\forall \boldsymbol{n} \in \mathbb{N}^{d}, \quad f(\boldsymbol{n})=\tau\left(\delta\left(q_{0}, \operatorname{rep}_{\boldsymbol{\mathcal { S }}}(\boldsymbol{n})\right)\right)
$$

This definition was introduced in Rigo 2000.
In this work, we consider sequences f with images in \mathbb{K}, so the output alphabet Δ is seen as a subset of \mathbb{K}.

Theorem (Charlier-Cisternino-Stipulanti 2020)
A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is \mathcal{S}-automatic if and only if $\operatorname{ker}_{\mathcal{S}}(f)$ is finite.

Even though, for $d=1$, the statement of this result coincide with that of a result from Rigo \& Maes 2002, this is indeed a new result since we are working with a different notion of \mathcal{S}-kernel.

As a consequence, we obtain that, for any given sequence f, both kernels are simultaneously finite.

Characterization of \mathcal{S}-automatic sequences among

 $(\mathcal{S}, \mathbb{K})$-regular sequences (whenever \mathbb{K} is finite or is a ring)Theorem (Charlier-Cisternino-Stipulanti 2020) Let $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$.

- If f is \mathcal{S}-automatic then it is $(\mathcal{S}, \mathbb{K})$-regular.
- If f is $(\mathcal{S}, \mathbb{K})$-regular and takes only finitely many values, and if moreover \mathbb{K} is finite or is a ring, then f is \mathcal{S}-automatic.

Part 4

Enumerating \mathcal{S}-recognizable properties of \mathcal{S}-automatic sequences give rise to $(\mathcal{S}, \mathbb{N})$-regular sequences

First ingredient: generating $(\mathcal{S}, \mathbb{N})$-regular sequences from $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-recognizable sets

In this part, we focus on the semirings \mathbb{N} and $\mathbb{N}_{\infty}=\mathbb{N} \cup\{\infty\}$.
A subset X of \mathbb{N}^{d} is \mathcal{S}-recognizable if the language $\operatorname{rep}_{\mathcal{S}}(X)$ is regular.
Ingredient 1 (Charlier-Cisternino-Stipulanti 2020)
Let \mathcal{S} and \mathcal{S}^{\prime} be d - and d^{\prime}-dimensional ANS respectively.
If X is an $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-recognizable subset of $\mathbb{N}^{d+d^{\prime}}$, then the sequence

$$
f: \mathbb{N}^{d} \rightarrow \mathbb{N}_{\infty}, \boldsymbol{n} \mapsto \operatorname{Card}\left\{\boldsymbol{n}^{\prime} \in \mathbb{N}^{d^{\prime}}:\binom{\boldsymbol{n}}{n^{\prime}} \in X\right\}
$$

is $\left(\mathcal{S}, \mathbb{N}_{\infty}\right)$-regular. If moreover $f(\mathbb{N}) \subseteq \mathbb{N}$ then f is $(\mathcal{S}, \mathbb{N})$-regular.

Second ingredient: \mathcal{S}-recognizable enumerations of \mathbb{N}^{d}

We define an enumeration $E_{\mathcal{S}}: \mathbb{N}^{d} \rightarrow \mathbb{N}$ recursively as follows.
We fix a total order on \boldsymbol{A} and we consider the induced radix order on \boldsymbol{A}^{*}.
Then we define a total order $<_{\mathcal{S}}$ on \mathbb{N}^{d} by declaring that

$$
\forall \boldsymbol{m}, \boldsymbol{n} \in \mathbb{N}^{d}, \quad \boldsymbol{m}<_{\mathcal{S}} \boldsymbol{n} \Longleftrightarrow \operatorname{rep}_{\mathcal{S}}(\boldsymbol{m})<_{\mathrm{rad}} \operatorname{rep}_{\mathcal{S}}(\boldsymbol{n})
$$

For all $\boldsymbol{n} \in \mathbb{N}^{d}$, we define

$$
E_{\mathcal{S}}(\boldsymbol{n})=i
$$

if \boldsymbol{n} is the i-th element of \mathbb{N}^{d} w.r.t. $<\boldsymbol{\mathcal { S }}$.

Ingredient 2
For each $\diamond \in\{=,>,<\}$, the set

$$
\left\{\binom{\boldsymbol{m}}{\boldsymbol{n}} \in \mathbb{N}^{2 d}: E_{\mathcal{S}}(\boldsymbol{m}) \diamond E_{\mathcal{S}}(\boldsymbol{n})\right\}
$$

is $(\mathcal{S}, \mathcal{S})$-recognizable.

Running Example

Assuming $\binom{\#}{a}<\binom{\#}{b}<\binom{$ a }{$\#}<\binom{a}{a}<\binom{a}{b}<\binom{b}{\#}<\binom{b}{a}<\binom{b}{b}$, we obtain

bb	15	16	17	28	29	35	
$a b$	10	12	14	25	27	34	
a ${ }^{\text {a }}$	9	11	13	24	26	33	
b	2	5	8	20	23	32	
a	1	4	7	19	22	31	
ε	0	3	6	18	21	30	
	ε	a	b	aa	$a b$	bb	

Third ingredient: \mathcal{S}-recognizable predicates

A predicate P on $\mathbb{N}^{m d}$ is \mathcal{S}-recognizable is the set

$$
\left\{\boldsymbol{n} \in \mathbb{N}^{m d}: P(\boldsymbol{n}) \text { is true }\right\}
$$

is ($\mathcal{S}, \ldots, \mathcal{S}$)-recognizable (where \mathcal{S} is repeated m times).
The following result generalizes ideas from Bruyère, Hansel, Michaux \& Villemaire 1996 and Charlier, Rampersad \& Shallit 2012 to ANS.

Ingredient 3
Any predicate on $\mathbb{N}^{m d}$ that is defined recursively from \mathcal{S}-recognizable predicates by only using the logical connectives $\wedge, \vee, \neg, \Longrightarrow, \Longleftrightarrow$ and the quantifiers \forall and \exists on variables describing elements of \mathbb{N}^{d}, is \mathcal{S}-recognizable.

Corollary
If P a such a predicate on \mathbb{N}^{d} then the closed predicates $\forall \boldsymbol{x} P(\boldsymbol{x}), \exists \boldsymbol{x} P(\boldsymbol{x})$ and $\exists^{\infty} \boldsymbol{x} P(\boldsymbol{x})$ are decidable.

Application to factor complexity

The factor complexity of $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is the function $\rho_{f}: \mathbb{N}^{d} \mapsto \mathbb{N}_{\infty}$ that maps each $\boldsymbol{s} \in \mathbb{N}^{d}$ to the number of factors of size \boldsymbol{s} occurring in f.

If the sequence f has a finite image (as is the case for automatic sequences) then for all $\boldsymbol{s} \in \mathbb{N}^{d}, \rho_{f}(\boldsymbol{s}) \in \mathbb{N}$.

Theorem (Charlier-Cisternino-Stipulanti 2020)
Let \mathcal{S} be an $A N S$ such that addition is \mathcal{S}-recognizable, i.e., the $3 d$-ary predicate $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{z}$ is \mathcal{S}-recognizable. Then the factor complexity of an \mathcal{S}-automatic sequence is an $(\mathcal{S}, \mathbb{N})$-regular sequence.

Proof.

Let f be an \mathcal{S}-automatic d-dimensional sequence.
For all $\boldsymbol{s} \in \mathbb{N}^{d}, \rho_{f}(\boldsymbol{s})$ is equal to

$$
\operatorname{Card}\left\{\boldsymbol{p} \in \mathbb{N}^{d}: \forall \boldsymbol{p}^{\prime} \in \mathbb{N}^{d}\left(E_{\mathcal{S}}\left(\boldsymbol{p}^{\prime}\right)<E_{\boldsymbol{\mathcal { S }}}(\boldsymbol{p}) \Longrightarrow \exists \boldsymbol{i}<\boldsymbol{s}, f\left(\boldsymbol{p}^{\prime}+\boldsymbol{i}\right) \neq f(\boldsymbol{p}+\boldsymbol{i})\right)\right\} .
$$

By Ingredient 1, it suffices to prove that the set

$$
X:=\left\{(\boldsymbol{s}, \boldsymbol{p}) \in \mathbb{N}^{2 d}: \forall \boldsymbol{p}^{\prime} \in \mathbb{N}^{d}\left(E_{\mathcal{S}}\left(\boldsymbol{p}^{\prime}\right)<E_{\boldsymbol{\mathcal { S }}}(\boldsymbol{p}) \Longrightarrow \exists \boldsymbol{i}<\boldsymbol{s}, f\left(\boldsymbol{p}^{\prime}+\boldsymbol{i}\right) \neq f(\boldsymbol{p}+\boldsymbol{i})\right)\right\}
$$

is $(\mathcal{S}, \mathcal{S})$-recognizable.
By Ingredient 2, the predicate $E_{\mathcal{S}}\left(\boldsymbol{p}^{\prime}\right)<E_{\mathcal{S}}(\boldsymbol{p})$ is \mathcal{S}-recognizable.
By Ingredient 3, since f is \mathcal{S}-automatic and addition is \mathcal{S}-recognizable, we get that X is \mathcal{S}-recognizable.

Part 5

$\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-Synchronized sequences

$\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-Synchronized sequences

In this section, we consider a $\left(d+d^{\prime}\right)$-dimensional ANS
$\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{d}, \mathcal{S}_{1}^{\prime}, \ldots, \mathcal{S}_{d^{\prime}}^{\prime}\right)$.
A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ is $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized if its graph

$$
\mathcal{G}_{f}=\left\{\left(\begin{array}{c}
\boldsymbol{n}(\boldsymbol{n})
\end{array}\right): \boldsymbol{n} \in \mathbb{N}^{d}\right\}
$$

is an $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-recognizable subset of $\mathbb{N}^{d+d^{\prime}}$.

Running Example

By a pumping argument, it is easily seen that the sequence f is not $(\mathcal{S}, \mathcal{S})$-synchronized.

However, the sequence f is $\left(\mathcal{S}, \mathcal{S}_{c}\right)$-synchronized where $\mathcal{S}_{c}=\left(c^{*}, c\right)$.

Proposition

- For all $\boldsymbol{k} \in \mathbb{N}^{d}$, the sequence $\mathbb{N}^{d} \rightarrow \mathbb{N}^{d}, \boldsymbol{n} \mapsto \boldsymbol{n}+\boldsymbol{k}$ is $(\mathcal{S}, \mathcal{S})$-synchronized.
- Any \mathcal{S}-automatic sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ is $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized.
- Any $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$ is $(\mathcal{S}, \mathbb{N})$-regular.

Sketch of the proof
The 1st item generalizes a result from Charlier, Lacroix \& Rampersad 2011.
The 3rd item follows from Ingredient 3 since for any $f: \mathbb{N}^{d} \rightarrow \mathbb{N}$, we have

$$
\begin{aligned}
\forall \boldsymbol{n} \in \mathbb{N}^{d}, \quad f(\boldsymbol{n}) & =\operatorname{Card}\{\ell \in \mathbb{N}: \ell<f(\boldsymbol{n})\} \\
& =\operatorname{Card}\left\{\ell \in \mathbb{N}: \exists m,\binom{\boldsymbol{n}}{m} \in \mathcal{G}_{f} \wedge \ell<m\right\}
\end{aligned}
$$

Even though both families of \mathcal{S}-automatic sequences and $(\mathcal{S}, \mathbb{N})$-regular sequences are closed under sum, product and product by a constant, it is no longer the case of the family of $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized sequences.

For instance, the sequence $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto n$ is $(\mathcal{S}, \mathcal{S})$-synchronized for any abstract numeration system \mathcal{S}.

However, the sequence $\mathbb{N} \rightarrow \mathbb{N}, n \mapsto 2 n$ is not $(\mathcal{S}, \mathcal{S})$-synchronized in general.
For example, it is not for the unary system $\mathcal{S}=\left(c^{*}, c\right)$ since the language

$$
\left\{\binom{\#^{n} c^{n}}{c^{2 n}}: n \in \mathbb{N}\right\}
$$

is not regular.

Synchronized relations

The graph of a relation $R: A^{*} \rightarrow B^{*}$ (where A and B are arbitrary alphabets) is

$$
\mathcal{G}_{R}=\left\{\binom{u}{v} \in A^{*} \times B^{*}: u R v\right\} .
$$

Let $\$ \notin A \cup B$. A relation $R: A^{*} \rightarrow B^{*}$ is synchronized if the language

$$
\left(\mathcal{G}_{R}\right)^{\S}=\left\{\binom{u}{v}^{\S}:\binom{u}{v} \in \mathcal{G}_{R}\right\}
$$

is regular.
For a sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$, we define a relation $R_{f, \mathcal{S}, \mathcal{S}^{\prime}}: \boldsymbol{A}^{*} \rightarrow\left(\boldsymbol{A}^{\prime}\right)^{*}$ by

$$
\mathcal{G}_{R_{f, \boldsymbol{S}, \boldsymbol{s}^{\prime}}}=\left\{\binom{\boldsymbol{w}}{\boldsymbol{w}^{\prime}} \in \boldsymbol{L} \times \boldsymbol{L}^{\prime}: f\left(\operatorname{val}_{\mathcal{S}}(\boldsymbol{w})\right)=\operatorname{val}_{\mathcal{S}^{\prime}}\left(\boldsymbol{w}^{\prime}\right)\right\} .
$$

Proposition

A sequence $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ is $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized if and only if the relation $R_{f, \mathcal{S}, \mathcal{S}^{\prime}}$ is synchronized.

The composition of synchronized sequences is synchronized.

Since the composition of synchronized relations is synchronized (Frougny \& Sakarovitch 2010), we obtain the following result.

Proposition
Let $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ be an $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized sequence and $g: \mathbb{N}^{d^{\prime}} \rightarrow \mathbb{N}^{d^{\prime \prime}}$ be an $\left(\mathcal{S}^{\prime}, \mathcal{S}^{\prime \prime}\right)$-synchronized sequence. Then $g \circ f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime \prime}}$ is
($\mathcal{S}, \mathcal{S}^{\prime \prime}$)-synchronized.
This contrasts with the well-known fact that the family of regular sequences is not closed under composition (Allouche \& Shallit 1992).

Part 6

Mixing regular sequences and synchronized sequences

The composition of a synchronized relation and a \mathbb{K}-recognizable series is \mathbb{K}-recognizable.

For a relation $R: A^{*} \rightarrow B^{*}$ and a series $S: B^{*} \rightarrow \mathbb{K}$ such that for all $u \in A^{*}$, the language $\left\{v \in B^{*}: u R v\right\}$ is finite, we define

$$
S \circ R: A^{*} \rightarrow \mathbb{K}, u \mapsto \sum_{\substack{v \in B^{*} \\ u R v}}(S, v) .
$$

Theorem (Charlier-Cisternino-Stipulanti 2020) If R is synchronized and S is \mathbb{K}-recognizable, then $S \circ R$ is \mathbb{K}-recognizable.

The composition of a synchronized sequence and a regular one is regular.

Corollary

If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ is $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$-synchronized and $g: \mathbb{N}^{d^{\prime}} \rightarrow \mathbb{K}$ is $\left(\mathcal{S}^{\prime}, \mathbb{K}\right)$-regular, then $g \circ f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is $(\mathcal{S}, \mathbb{K})$-regular.

Corollary

Suppose that \mathbb{K} is finite or is a ring. If $f: \mathbb{N}^{d} \rightarrow \mathbb{N}^{d^{\prime}}$ is an \mathcal{S}-automatic sequence and $g: \mathbb{N}^{d^{\prime}} \rightarrow \mathbb{K}$ is an ($\left.\mathcal{S}^{\prime}, \mathbb{K}\right)$-regular sequence, then the sequence $g \circ f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is \mathcal{S}-automatic.

Part 7

Robustness of $(\boldsymbol{U}, \mathbb{K})$-regular sequences for Pisot numeration systems \boldsymbol{U}

Theorem (Charlier-Cisternino-Stipulanti 2020)

For $f: \mathbb{N}^{d} \rightarrow \mathbb{K}$ and a d-tuple $\boldsymbol{U}=\left(U_{1}, \ldots, U_{d}\right)$ of Pisot numeration systems, the following assertions are equivalent.

1. The sequence f is $(\boldsymbol{U}, \mathbb{K})$-regular.
2. For all finite alphabets $\boldsymbol{A} \subset \mathbb{Z}^{d}$, the series $\sum_{\boldsymbol{w} \in \boldsymbol{A}^{*}} f(\|\operatorname{val} \boldsymbol{U}(\boldsymbol{w})\|) \boldsymbol{w}$ is \mathbb{K}-recognizable.
3. The series $\sum_{\boldsymbol{w} \in \boldsymbol{A}_{U}^{*}} f\left(\operatorname{val}_{\boldsymbol{U}}(\boldsymbol{w})\right) \boldsymbol{w}$ is \mathbb{K}-recognizable.
4. There exists a \mathbb{K}-recognizable series $S: \boldsymbol{A}_{\boldsymbol{U}}^{*} \rightarrow \mathbb{K}$ such that for all $\boldsymbol{n} \in \mathbb{N}^{d}$, $\left(S, \operatorname{rep}_{\boldsymbol{U}}(\boldsymbol{n})\right)=f(\boldsymbol{n})$.

References

- Allouche and Shallit, The ring of k-regular sequences, TCS 98, 1992, 163-197.
- Allouche, Scheicher and Tichy, Regular maps in generalized number systems, Math. Slovaca 50, 2000, 41-58.
- Berstel and Reutenauer, Noncommutative rational series with applications, Encyclopedia of Mathematics and its Applications 137, Cambridge Univ. Press, 2011.
- Bruyère, Hansel, Michaux and Villemaire, Logic and p-Recognizable Sets of Integers, Bull. Belg. Math. Soc. Simon Stevin 1, 1994, 191-238.
- Charlier, Cisternino and Stipulanti, Robustness of Pisot-regular sequences, submitted.
- Charlier, Lacroix and Rampersad, Multi-dimensional sets recognizable in all abstract numeration systems, RAIRO Theor. Inform. Appl. 46, 2012, 51-65.
- Charlier, Rampersad and Shallit, Enumeration and decidable properties of automatic sequences, Internat. J. Found. Comput. Sci. 23, 2012, 1035-1066.
- Frougny and Sakarovitch, Number representation and finite automata, Combinatorics, automata and number theory, Encyclopedia Math. Appl. 135,34-107, Cambridge Univ. Press, Cambridge, 2010.
- Frougny and Solomyak, On representation of integers in linear numeration systems, Ergodic theory of \mathbb{Z}^{d} actions, London Math. Soc. Lecture Note Ser. 228, 345-368, Cambridge Univ. Press, Cambridge, 1996.
- Lecomte and Rigo, Numeration systems on a regular language, TCS 34, 2001, 27-44.
- Rigo and Maes, More on generalized automatic sequences, J. Autom. Lang. Comb. 7, 2002, 351-376.

