Permutation groups and The Morse-Hedlund Theorem

Émilie Charlier joint work with Svetlana Puzynina and Luca Zamboni

Département de Mathématique, Université de Liège

Worskshop "Ergodic Theory & Symbolic Dynamics" London, September 14, 2017

Factor complexity of infinite words

The Fibonacci word

$$f = 01001010010010100101001001010010...$$

is the fixed point of the morphism $0\mapsto 01$ and $1\mapsto 0.$

Factors of length n:

1	0,1
2	00,01,10
3	001,010,100,101
4	0010,0100,0101,1001,1010
÷	

It can be shown that there are exactly n+1 factors of length n in f.

Notation

- ► Alphabet: finite non-empty set, usually denoted by A.
- ▶ Word over *A*:

```
x = x_0 x_1 x_2 \cdots (infinite word)

x = x_0 x_1 \cdots x_{n-1} (finite word of length |x| = n).
```

- $ightharpoonup A^n$ is the set of all words of length n over A.
- ► Factor u of an infinite word w: $u = x_i \dots x_{i+j}$ for some $i, j \in \mathbb{N}$.
- ▶ $Fac_n(x)$ is the set of the factors of x of length n.

Factor complexity

The factor complexity of an infinite word x is the function $p_x : \mathbb{N} \to \mathbb{N}$ which counts the number of factors of length n of x:

$$\forall n \in \mathbb{N}, \ p_{x}(n) = \big| \operatorname{\mathsf{Fac}}_{n}(x) \big|.$$

Some properties:

- $\forall n \in \mathbb{N}, \ p_X(n) \leq |A|^n.$
- $\triangleright p_{x}(n)$ is a non-decreasing function.

Some more examples

► The (binary) Champernowne word

$$c = 0 \ 1 \ 10 \ 11 \ 100 \ 101 \ 110 \ 111 \ 1000 \cdots$$

has maximal factor complexity 2^n .

▶ The Thue-Morse word is the fixed point of the morphism $0 \mapsto 01, 1 \mapsto 10$ beginning with 0:

$$t = 0110100110010110 \cdots$$

We have $p_t(3) = 6$: no factors 000, 111. The factor complexity of Thue-Morse is computed in [Brlek 1987].

Complexity and periodicity

- Purely periodic word: $x = v^{\omega} = vvv \cdots$
- Ultimately periodic word: $x = uv^{\omega} = uvvv \cdots$
- ► Aperiodic means not ultimately periodic.

Theorem (Hedlund-Morse 1940, first part)

An infinite word x is aperiodic iff $\forall n \in \mathbb{N}, \ p_x(n) \geq n+1$.

Sturmian words and balance

An infinite word over A is C-balanced if for all factors u, v of the same length and for each $a \in A$, we have $||u|_a - |v|_a| \le C$.

Theorem (Hedlund-Morse 1940, second part)

An infinite word x is such that $\forall n \in \mathbb{N}, p_x(n) = n + 1$ iff it is binary, aperiodic and 1-balanced.

- ► Aperiodic binary infinite word of minimal complexity are called Sturmian words.
- We have already seen that the Fibonacci word is Sturmian.

Several generalizations of Morse-Hedlund

Other complexity functions, and their links with periodicity.

- ► Abelian complexity, which counts the number of abelian classes of words of each length *n* occurring in *x*: [Coven-Hedlund 1973], [Richomme-Saari-Zamboni 2011].
- ► Palindrome complexity, which counts the number of palindromes of each length *n* occurring in *x*: [Allouche-Baake-Cassaigne-Damanik 2003].
- Cyclic complexity, which counts the number of conjugacy classes of factors of each length n occurring in x: [Cassaigne-Fici-Sciortino-Zamboni 2017].
- ► Maximal pattern complexity: [Kamae-Zamboni 2002].

Several generalizations of Morse-Hedlund

Higher dimensions:

- Nivat conjecture: Any 2-dimensional word having at most mn rectangular blocks of size $m \times n$ must be periodic.
- ▶ It is known that the converse is not true.
- ► [Durand-Rigo 2013], in which they re-interpret the notion of periodicity in terms of Presburger arithmetic.

Our contribution

- ▶ New notion of complexity by group actions.
- ► Encompass most complexity functions studied so far.

Abelian complexity

- ▶ Two finite words are abelian equivalent if they contain the same numbers of occurrences of each letter: $00111 \sim_{ab} 01101$.
- ▶ The abelian complexity function $a_x(n)$ counts the number of abelian classes of words of length n occurring in x.

For the Thue-Morse word $t=01101001100110110\cdots$, we have

$$a_t(n) = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 3 & \text{if } n \text{ is even} \end{cases}$$

We have $a_t(3) = 2$ since there are 2 abelian classes of factors of length 3:

$$\{001, 010, 100\}$$
 and $\{011, 101, 110\}$.

Abelian complexity and periodicity

We clearly have the following implications:

ultimate periodicity \Rightarrow bounded factor complexity \Rightarrow bounded abelian complexity.

However, we have just seen that the converse is not true: the Thue-Morse word is aperiodic and its abelian complexity function is bounded by 3.

Theorem (Coven-Hedlund 1973, part 1)

An infinite word x is purely periodic iff $\exists n \geq 1$, $a_x(n) = 1$.

In particular, if x is aperiodic then $\forall n \geq 1$, $a_x(n) \geq 2$. The converse is false: take $x = 01^{\omega}$.

Abelian complexity and balance

We clearly have the following implications:

ultimate periodicity \Rightarrow bounded factor complexity \Rightarrow bounded abelian complexity.

Theorem (Coven-Hedlund 1973, part 2)

An infinite aperiodic word x is Sturmian iff $\forall n \geq 1$, $a_x(n) = 2$.

Theorem (Richomme-Saari-Zamboni 2011)

An infinite word has bounded abelian complexity iff it is C-balanced for some $C \ge 1$.

Cyclic complexity

- Two finite words u and v are conjugate if there exist words w_1 , w_2 such that $u = w_1 w_2$ and $v = w_2 w_1$.
- ▶ The cyclic complexity function $c_x(n)$ counts the number of conjugacy classes of words of length n occurring in x.

For the Thue-Morse word $t=0110100110010110\cdots$, we have $c_t(4)=4$ since there are 4 conjugacy classes of factors of length 4:

```
{0010,0100}
{0110,1001,1100,0011}
{0101,1010}
{1011,1101}
```

Cyclic complexity, periodicity and Sturmian words

Theorem (Cassaigne-Fici-Sciortino-Zamboni 2014)

An infinite word is ultimately periodic iff it has bounded cyclic complexity.

One always has

$$a_X(n) \leq c_X(n) \leq p_X(n)$$
.

Hence $c_x(n) = 1$ for some $n \ge 1$ implies that x is purely periodic.

In [Cassaigne-Fici-Sciortino-Zamboni 2014] they consider $\liminf c_x(n)$:

- ▶ Sturmian words satisfy lim inf $c_x(n) = 2$.
- ▶ But this is not a characterization of Sturmian words since the period-doubling word also has $\lim \inf c_x(n) = 2$.

Generalization via group actions

- ▶ Let G be a subgroup of the symmetric group S_n : $G \leq S_n$.
- ▶ G acts on A^n by permuting the letters:

$$G \times A^n \to A^n, \ (g, u) \mapsto g * u = u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}.$$

- ▶ We write $u_1 \cdots u_n \overset{g}{\curvearrowright} u_{g^{-1}(1)} u_{g^{-1}(2)} \cdots u_{g^{-1}(n)}$.
- ► $0100 \stackrel{(1234)}{\frown} 0010.$
- ▶ abcab (123)(45) cabba.
- ▶ In particular $g * u \sim_{ab} u$.
- ▶ G-equivalence relation on A^n : for $u, v \in A^n$, $u \sim_G v$ if $\exists g \in G, g * u = v$.
- $ightharpoonup u \sim_G v$ implies $u \sim_{ab} v$.

Complexity by actions of groups

- Now we consider a sequence of subgroups $\omega = (G_n)_{n\geq 1}$: for each $n\geq 1,\ G_n\leq S_n$.
- ► The group complexity $p_{\omega,x}(n)$ of x counts the number of G_n -classes of words of length n occurring in x.

For the Thue-Morse word $t = 0110100110010110 \cdots$ and $G_4 = \langle (13), (24) \rangle$, we have $p_{\omega,t}(4) = 7$ while $p_t(4) = 10$.

We have six singleton classes of length 4:

$$[0010], [0100], [0101], [1010], [1011], [1101]$$

and one class of order 4:

$$[0110 \overset{(13)(24)}{\frown} 1001 \overset{(24)}{\frown} 1100 \overset{(13)}{\frown} 0011].$$

Group actions: generalization of factor, abelian and cyclic complexities

Each choice of sequence $\omega = (G_n)_{n\geq 1}$ defines a unique complexity which reflects a different combinatorial property of an infinite word.

As particular cases, we recover

- factor complexity: if $\omega = (Id_n)_{n \geq 1}$ then $p_{\omega,x}(n) = p_x(n)$
- lacktriangle abelian complexity: if $\omega=(S_n)_{n\geq 1}$ then $p_{\omega,x}(n)=a_x(n)$
- cyclic complexity: if $\omega = <(12\cdots n)>_{n\geq 1}$ then $p_{\omega,x}(n)=c_x(n)$.

The quantity $\varepsilon(G)$

▶ For $G \leq S_n$ and $i \in \{1, 2, ..., n\}$, the G-orbit of i is

$$G(i) = \{g(i) \mid g \in G\}.$$

The number of distinct G-orbits is denoted

$$\varepsilon(G) = |\{G(i) \mid i \in \{1, 2, \dots, n\}\}|.$$

▶ For n = 6 and G = <(13), (256) >, we have $\varepsilon(G) = 3$:

- ▶ If G = Id, then $\varepsilon(G) = n$.
- ▶ If G contains an *n*-cycle, then $\varepsilon(G) = 1$.

Complexity by group actions: $\varepsilon(G)$

▶ For $G \leq S_n$, $\varepsilon(G)$ is the number of G-orbits of $\{1, \ldots, n\}$.

```
Example (The Klein group \mathbb{Z} /2 \mathbb{Z} × \mathbb{Z} /2 \mathbb{Z})
First take G = \{ \mathrm{id}, (12), (34), (12)(34) \}.
Then the G-orbits are \{1,2\} and \{3,4\}, hence \varepsilon(G) = 2.
Second, consider G' = \{ \mathrm{id}, (12)(34), (13)(24), (14)(23) \}.
Then the only G'-orbit is \{1,2,3,4\}, hence \varepsilon(G') = 1.
```

▶ This shows an interesting phenomenon: the quantity $\varepsilon(G)$ depends on the embedding of G into S_n .

Generalisation of the Morse-Hedlund theorem

Theorem 1 (Charlier-Puzynina-Zamboni 2017)

Let x be an infinite aperiodic word, $\omega = (G_n)_{n \geq 1}$, $G_n \leq S_n$.

- ▶ Then $\forall n \geq 1$, $\rho_{\omega,x}(n) \geq \varepsilon(G_n) + 1$.
- ▶ If $\forall n \geq 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

Corollary

An infinite aperiodic word is Sturmian iff there exists $\omega=(G_n)_{n\geq 1}$, $G_n\leq S_n$ such that $\forall n\geq 1,\ p_{\omega,x}(n)=\varepsilon(G_n)+1$.

Sketch of the proof

Theorem 1, second part

Let x be an infinite aperiodic word, $\omega = (G_n)_{n \geq 1}$, $G_n \leq S_n$. If $\forall n \geq 1$, $p_{\omega,x}(n) = \varepsilon(G_n) + 1$ then x is Sturmian.

- ▶ Since $\varepsilon(G_1)=1$, then $p_{\omega,x}(1)=2$, and hence x is binary.
- ► Suppose that x is not Sturmian, that is, not 1-balanced.
- ▶ Key lemma: $\exists n \geq 2$, a Sturmian word y and a bispecial factor $u \in \{0,1\}^{n-2}$ of y s.t. $\operatorname{Fac}_n(x) = \operatorname{Fac}_n(y) \cup \{0u0,1u1\}$.
- ▶ u is a bispecial factor of y means that u0, u1, 0u, 1u are factors of y.
- ▶ Since y is Sturmian, exactly one of 0u0 and 1u1 is a factor of y, hence $p_{\omega,x}(n) \ge p_{\omega,y}(n) + 1$.
- ▶ Apply first part of the theorem to y to get $p_{\omega,x}(n) \ge p_{\omega,y}(n) + 1 \ge \epsilon(G_n) + 2$, a contradiction.

Generalisation of the Morse-Hedlund theorem

Partial converse:

Theorem 2 (Charlier-Puzynina-Zamboni 2017)

Let x be a Sturmian word and $\omega = (G_n)_{n\geq 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n\geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$,

- G'_n is isomorphic to G_n
- $p_{\omega',x}(n) = \varepsilon(G'_n) + 1.$

As particular cases, we recover:

- Morse-Hedlund theorem: $\omega = (Id_n)_{n\geq 1}$, $p_{\omega,x}(n) = p_x(n)$, $\varepsilon(G_n) = n$.
- ▶ Abelian complexity: $\omega = (S_n)_{n \geq 1}$, $p_{\omega,x}(n) = a_x(n)$, $\varepsilon(G_n) = 1$.

We cannot always take G' = G

Theorem 2

Let x be a Sturmian word and $\omega=(G_n)_{n\geq 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega'=(G'_n)_{n\geq 1}$, $G'_n\leq S_n$, such that $\forall n\geq 1$, G'_n is isomorphic to G_n and $p_{\omega',x}(n)=\varepsilon(G'_n)+1$.

Consider the factors of length 4 of the Fibonacci word: 0010,0100,0101,1001,1010.

Let
$$G_4=\langle (1234)\rangle$$
. Then $\varepsilon(G_4)=1$ and $\rho_{\omega,f}(4)=3>\varepsilon(G_4)+1$:
$$[0100 \overset{(1234)}{\frown} 0010], \quad [0101 \overset{(1234)}{\frown} 1010], \quad [1001].$$

But we can take $G_4'=\langle (1324)\rangle$. Then $\varepsilon(G_4')=1$ and $p_{\omega',f}(4)=2=\varepsilon(G_4')+1$:

$$[0010 \overset{(1324)}{\curvearrowright} 0100], \quad [0101 \overset{(1324)}{\curvearrowright} 1001 \overset{(1324)}{\curvearrowright} 1010].$$

We cannot replace "isomorphic" by "conjugate"

Theorem 2

Let x be a Sturmian word and $\omega=(G_n)_{n\geq 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega'=(G'_n)_{n\geq 1}, \ G'_n\leq S_n$, such that $\forall n\geq 1, \ G'_n$ is isomorphic to G_n and $p_{\omega',x}(n)=\varepsilon(G'_n)+1$.

Let $G=<(123)(456)>\leq S_6$. This is a cyclic subgroup of order 3. Then $\varepsilon(G)=2$ and we can show that

$$\left|\operatorname{\mathsf{Fac}}_6(f)/_{\sim_{G'}}\right| \geq 4$$

for each subgroup G' of S_6 which is conjugate to G.

Sketches of proof

Theorem 2

Let x be a Sturmian word and $\omega = (G_n)_{n \geq 1}$, where G_n is an abelian subgroup of S_n . Then $\exists \omega' = (G'_n)_{n \geq 1}$, $G'_n \leq S_n$, such that $\forall n \geq 1$,

- $ightharpoonup G'_n$ is isomorphic to G_n

First we prove Theorem 2 for an n-cycle.

abc-permutation [Pak-Redlich 2008]: The numbers 1, 2, ..., n are divided into three subintervals of length a, b and c which are rearranged in the order c, b, a:

$$1,2,\ldots,n\mapsto c+b+1,c+b+2,\ldots,n,c+1,c+2,\ldots,c+b,1,2,\ldots,c$$

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with $a=1,\ b=2,\ c=3$ on the lexicographic array of length 6.

This abc-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with $a=1,\ b=2,\ c=3$ on the lexicographic array of length 6.

This abc-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

Factors of length 6 in Fibonacci

Consider the *abc*-permutation with $a=1,\ b=2,\ c=3$ on the lexicographic array of length 6.

This *abc*-permutation can be seen as a 6-cycle: (163524).

For $G \leq S_n$, we say that \sim_G is abelian transitive on x if $\forall u, v \in \operatorname{Fac}_n(x)$: $u \sim_{ab} v \Leftrightarrow u \sim_G v$.

(abc)-permutations

Lemma

Let x be a Sturmian word. Then for each $n \geq 1$ there exists an (a,b,c)-permutation on $\{1,2,\ldots,n\}$ which is an n-cycle σ such that $\sim_{\langle\sigma\rangle}$ is abelian transitive on x.

Comments:

- We exhibit our (a, b, c)-permutation candidate.
- ▶ We show that it is actually an *n*-cycle [Pak, Redlich, 2008].
- ► We use lexicographic arrays for the proof of the abelian transitivity.
- ▶ In fact, we prove that $w_{(i+1)} = \sigma(w_{(i)})$ in each abelian class, where $w_{(i)}$ are ordered lexicographically.

A corollary

Corollary

If x is a Sturmian word then for each n there exists a cyclic group G_n generated by an n-cycle such that $|\operatorname{Fac}_n(x)|_{\sim G_n}|=2$.

In contrast, if we set $G_n=\langle (1,2,\ldots,n)\rangle$ for each $n\geq 1$, then $\limsup p_{\omega,x}(n)=+\infty$, while $\liminf p_{\omega,x}=2$. [Cassaigne, Fici, Sciortino, Zamboni, 2015]

Theorem 2: construction for abelian groups

Theorem (Fundamental theorem of finite abelian groups)

Every finite abelian group G can be written as a direct product of cyclic groups $\mathbb{Z}/m_1\mathbb{Z}\times\mathbb{Z}/m_2\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}$ where the m_i are prime powers.

- ▶ The sequence $(m_1, m_2, ..., m_k)$ determines G up to isomorphism.
- ▶ The trace of G is given by $T(G) = m_1 + m_2 + \cdots + m_k$.

Proposition (Hoffman 1987)

If an abelian group G is embedded in S_n , then $T(G) \leq n$.

Open problem

Does Theorem 2 hold for non-abelian groups?

Question

Let x be a Sturmian word and $\omega=(G_n)_{n\geq 1}$, where $G_n\leq S_n$. Does there exist $\omega'=(G'_n)_{n\geq 1}$, $G'_n\leq S_n$, such that for all $n\geq 1$,

- $ightharpoonup G'_n$ is isomorphic to G_n
- $p_{\omega',x}(n) = \varepsilon(G'_n) + 1.$

Minimal complexity

complexity type	minimal complexity	words family
factor	n+1	Sturmian
abelian	2	Sturmian
cyclic	lim inf = 2	Sturmian+
group	$\varepsilon(G_n)+1$	Sturmian
maximal pattern	2n+1	Sturmian+
arithmetical	linear	(asymptotically) Toeplitz

Arithmetical complexity: [Avgustinovich-Cassaigne-Frid 2006]