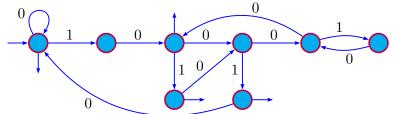
Syntactic complexity of recognizable sets

Émilie Charlier

Université libre de Bruxelles

1st Joint Conference of the Belgian, Royal Spanish and Luxembourg Mathematical Societies, June 2012, Liège

An example first



	1	2	3	5	8	13
2	0	1				
4	1	0	1			
6	1	0	0	1		
8	0	0	0	0	1	
10	0	1	0	0	1	
12	1	0	1	0	1	

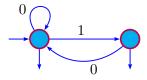
The set $2\mathbb{N}$ of even integers is *F*-recognizable or *F*-automatic, i.e., the language $\operatorname{rep}_F(2\mathbb{N}) = \{\varepsilon, 10, 101, 1001, 10000, \ldots\}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Zeckendorf system, any F-recognizable set can be considered as a "particularly simple" set of integers.

We get a similar definition for other numeration systems.

Zeckendorf (or Fibonacci) numeration system



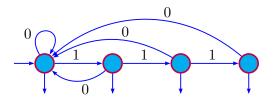
<ロ> (四) (四) (三) (三) (三) (三)

$$\blacktriangleright F_{n+2} = F_{n+1} + F_n$$

•
$$F_0 = 1, F_1 = 2$$

• \mathcal{A}_F accepts all words that do not contain 11.

The ℓ -bonacci numeration system



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

æ

•
$$U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$$

•
$$U_i = 2^i, i \in \{0, \dots, \ell - 1\}$$

• \mathcal{A}_U accepts all words that do not contain 1^{ℓ} .

$U\operatorname{-}\mathsf{recognizability}$ of arithmetic progressions

Proposition

Let $U = (U_i)_{i \ge 0}$ be a numeration system and let $m, r \in \mathbb{N}$.

If \mathbb{N} is U-recognizable, then $m \mathbb{N} + r$ is U-recognizable and, given a DFA accepting $\operatorname{rep}_U(\mathbb{N})$, a DFA accepting $\operatorname{rep}_U(m \mathbb{N} + r)$ can be obtained effectively.

Consequently, any ultimately periodic set is U-recognizable.

U-recognizability of $\mathbb N$

Is the set \mathbb{N} *U*-recognizable? Otherwise stated, is the numeration language $\operatorname{rep}_U(\mathbb{N})$ regular? Not necessarily:

Theorem (Shallit 1994)

Let U be a PNS. If \mathbb{N} is U-recognizable, then U is linear, i.e., it satisfies a linear recurrence relation over \mathbb{Z} .

The condition is *not* sufficient:

Example $(U_i = (i+1)^2 \text{ for all } i \in \mathbb{N})$

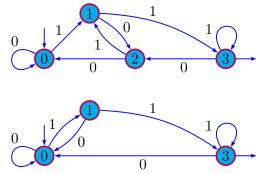
It is linear: $U_{i+3} = 3U_{i+2} - 3U_{i+1} + U_i$ for all $i \in \mathbb{N}$, but:

$$\operatorname{rep}_U(\mathbb{N}) \cap 10^* 10^* = \{10^a 10^b \colon U_{a+b+1} + U_b < U_{a+b+2}\}$$
$$= \{10^a 10^b \colon b^2 < 2a+4\}$$

Thus, $\operatorname{rep}_U(\mathbb{N})$ is not regular.

Motivations

What is the "best automaton" we can get?



DFAs accepting the binary representations of $4\mathbb{N}+3$.

Question

The general algorithm doesn't provide a minimal automaton. What is the state complexity of $\operatorname{rep}_U(m\mathbb{N}+r)$?

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010) Let $m, r \in \mathbb{N}$ with $m \ge 2$ and r < m. If $\operatorname{rep}_U(\mathbb{N})$ is accepted by a *n*-state DFA, then the minimal automaton of $\operatorname{rep}_U(m\mathbb{N} + r)$ has at most $n m^n$ states.

NB: This result remains true for the larger class of *abstract numeration systems*.

ション ふゆ くち くち くち くち

Integer base case

Theorem (Alexeev 2004)

Let $b, m \ge 2$. Let N, M be such that $b^N < m \le b^{N+1}$ and $(m, 1) < (m, b) < \cdots < (m, b^M) = (m, b^{M+1})$. The minimal automaton recognizing $m \mathbb{N}$ in base b has exactly

$$rac{m}{(m,b^{N+1})} + \sum_{t=0}^{\inf\{N,M-1\}} rac{b^t}{(m,b^t)}$$
 states.

In particular, if m and b are coprime, then this number is just m. Further, if $m = b^n$, then this number is n + 1.

Honkala's decision procedure

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

- J. Honkala, A decision method for the recognizability of sets defined by number systems, *Theor. Inform. Appl.* 20 (1986).
- A. Muchnick, The definable criterion for definability in Presburger arithmetic and its applications, TCS 290 (2003).
- J. Leroux, A Polynomial Time Presburger Criterion and Synthesis for Number Decision Diagrams, *LICS 2005* (2005).
- J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits of an automatic sequence, TCS 410 (2009).
- J. Bell, ÉC, A. Fraenkel, M. Rigo, A decision problem for ultimately periodic sets in non-standard numeration systems, *IJAC* 19 (2009).
- ▶ F. Durand, Decidability of the HD0L ultimate periodicity problem, arXiv (2011).
- I. Mitrofanov, A proof for the decidability of HD0L ultimate periodicity, arXiv (2011).

Information we are looking for

Consider a linear numeration system U such that $\mathbb N$ is U-recognizable.

How many states does the trim minimal automaton $\mathcal{A}_{U,m}$ recognizing $m \mathbb{N}$ contain?

- 1. Give upper/lower bounds?
- 2. Study special cases, e.g., Zeckendorf numeration system.

ション ふゆ くち くち くち くち

3. Get information on the trim minimal automaton \mathcal{A}_U recognizing \mathbb{N} .

A lower bound

Theorem (C-Rampersad-Rigo-Waxweiler 2011) Let U be any numeration system (not necessarily linear). The number of states of $\mathcal{A}_{U,m}$ is at least $|\operatorname{rep}_U(m)|$.

The Hankel matrix

- Let $U = (U_n)_{n \ge 0}$ be a linear numeration system.
- ▶ Let k = k_{U,m} be the length of the shortest linear recurrence relation satisfied by (U_i mod m)_{i>0}.
- ▶ For t ≥ 1 define

$$H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}$$

For m ≥ 2, k_{U,m} is also the largest t such that det H_t ≠ 0 (mod m).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A system of linear congruences

▶ Let S_{U,m} denote the number of k-tuples b in {0,...,m-1}^k such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

has at least one solution $\mathbf{x} = (x_1, \ldots, x_k)$.

►
$$S_{U,m} \leq m^k$$
.

Calculating $S_{U,m}$

•
$$U_{n+2} = 2U_{n+1} + U_n$$
, $(U_0, U_1) = (1, 3)$

- $(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, \dots$
- Consider the system

$$\begin{cases} 1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\ 3 x_1 + 7 x_2 \equiv b_2 \pmod{4} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\blacktriangleright 2x_1 \equiv b_2 - b_1 \pmod{4}$

For each value of b_1 there are at most 2 values for b_2 .

• Hence
$$S_{U,4} = 8$$

General state complexity result

Theorem

Let $m \geq 2$ be an integer. Let $U = (U_n)_{n \geq 0}$ be a linear numeration system such that

- (a) \mathbb{N} is U-recognizable and \mathcal{A}_U satisfies (H.1) and (H.2),
- (b) $(U_n \mod m)_{n \ge 0}$ is purely periodic.

The number of states of $\mathcal{A}_{U,m}$ from which infinitely many words are accepted is

$$|\mathcal{C}_U| S_{U,\boldsymbol{m}}.$$

(H.1) A_U has a single strongly connected component C_U.
(H.2) For all states p, q in C_U with p ≠ q, there exists a word x_{pq} such that δ_U(p, x_{pq}) ∈ C_U and δ_U(q, x_{pq}) ∉ C_U, or vice-versa.

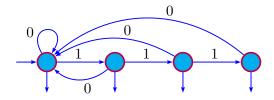
Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathcal{A}_U is strongly connected, then the number of states of $\mathcal{A}_{U,m}$ is $|\mathcal{A}_U| S_{U,m}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Result for the $\ell\text{-bonacci}$ system

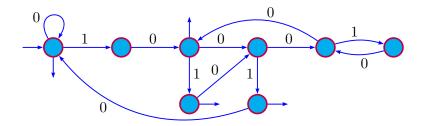


Corollary

For U the ℓ -bonacci system, the number of states of $\mathcal{A}_{U,m}$ is ℓm^{ℓ} .

< □ > < □ > < □ > < □ > < □ > < □ >

э



13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	1 0 0 0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12

Further work for state complexity

 Analyze the structure of A_U for systems with no dominant root.

- ▶ Remove the assumption that (U_n mod m)_{n≥0} is purely periodic in the state complexity result.
- Look at any arithmetic progressions $X = m \mathbb{N} + r$.

Transition to syntactic complexity

Let $N_U(m) \in \{1, \ldots, m\}$ denote the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i>0}$.

Example (Zeckendorf system)

 $\begin{array}{ll} (F_i \mod 4) = (1,2,3,1,0,1,1,2,3,\ldots) \text{ and } N_F(4) = 4. \\ (F_i \mod 11) = (1,2,3,5,8,2,10,1,0,1,1,2,3,\ldots) \text{ and } \\ N_F(11) = 7. \end{array}$

Theorem (C-Rigo 2008)

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty.$

If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p, then any DFA accepting $\operatorname{rep}_U(X)$ has at least $N_U(p)$ states.

- If N_U(m) → +∞ as m → +∞, then we obtain a decision procedure to the periodicity problem.
- If U is a LNS satisfying

$$U_{i+k} = a_1 U_{i+k-1} + \dots + a_k U_i, \ i \ge 0, \quad \text{with} \quad a_k = \pm 1,$$

then $\lim_{m\to+\infty} N_U(m) = +\infty$.

- Works for the Zeckendorf system.
- Not true for integer base b: $N(b^n) = 1$ for all $n \ge 0$.

- ► The formula for the state complexity of m N for the Zeckendorf system is much simpler than the formula for integer base b systems.
- In this point of view, state complexity is not completely satisfying.
- Hope: Find a complexity that would handle all these systems in a kind of uniform way.

Syntactic complexity

- Let L be a language over the finite alphabet Σ .
- Myhill-Nerode equivalence relation for L: u ∼_L v means that for all y ∈ Σ*, uy ∈ L ⇔ vy ∈ L.
- Leads to the minimal automaton of L: |A_L| = |Σ^{*}/∼_L| is the state complexity of L.
- Syntactic congruence for L: $u \equiv_L v$ means that for all $x, y \in \Sigma^*$, $xuy \in L \Leftrightarrow xvy \in L$.
- Leads to the syntactic monoid of L: |ℋ_L| = |Σ*/≡_L| is the syntactic complexity of L.

Theorem

A language L is regular if and only if $\Sigma^*/{\equiv_L}$ is finite.

Syntactic complexity for integer bases

The syntactic complexity of $X \subseteq \mathbb{N}$ is the syntactic complexity of the language $0^* \operatorname{rep}_U(X)$.

Let $\operatorname{ord}_m(b) = \min\{j \in \mathbb{N}_0 \colon b^j \equiv 1 \pmod{m}\}.$

Theorem (Rigo-Vandomme 2011)

Let m, b ≥ 2 be coprime integers.
 If X ⊆ N is periodic of minimal period m, then the syntactic complexity of X is equal to m ord_m(b).

Theorem (continued)

- Let $b \ge 2$ and $m = b^n$ with $n \ge 1$.
 - (a) The syntactic complexity of $m \mathbb{N}$ is equal to 2n + 1.
 - (b) If X ⊆ N is periodic of minimal period m, then the syntactic complexity of X is ≥ n + 1.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

▶ Let $b \ge 2$ and $m = b^n q$ with $n \ge 1$ and (b,q) = 1. Then the syntactic complexity of $m \mathbb{N}$ is equal to $(n+1) q \operatorname{ord}_q(b) + n$.

A general lower bound for the integer base case

Theorem (Lacroix-Rampersad-Rigo-Vandomme, to appear) Let $b \ge 2$ and $m = db^n q$ with $n \ge 1$ and (b,q) = 1 and where nand q are chosen to be maximal. If $X \subseteq \mathbb{N}$ is periodic of minimal period m, then the syntactic complexity of X is

$$\geq \max\left(q \operatorname{ord}_q(b), \frac{\gamma+1}{q \operatorname{ord}_q(b)}\right),$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

where $\gamma \to +\infty$ as n or $d \to +\infty$.

Zeckendorf numeration system and further work

Theorem

The syntactic complexity of $m \mathbb{N}$ is

 $4m^2p_F(m) + 2$

where $p_F(m)$ is the minimal period of $(F_i \mod m)_{i \ge 0}$.

Further work for syntactic complexity:

 Try to estimate the syntactic complexity of periodic sets for a larger class of numeration systems.

Syntactic complexity seems to allow us to handle integer bases and the Zeckendorf system at once.