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The set 2N of even integers is ['-recognizable or F-automatic, i.e.,
the language repp(2N) = {¢,10, 101, 1001, 10000, ...} is accepted
by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Zeckendorf system, any F-recognizable set can

be considered as a “particularly simple’ set of integers.

We get a similar definition for other numeration systems.



Zeckendorf (or Fibonacci) numeration system

> Fn+2:Fn+1+Fn
> F():l, F1:2

» Ap accepts all words that do not contain 11.



The ¢-bonacci numeration system

» Unye = Unqo—1 + Uppp—2+ -+ Un
» U;=2,i€{0,...,0—1}

» Ay accepts all words that do not contain 1.



U-recognizability of arithmetic progressions

Proposition

Let U = (U;)i>0 be a numeration system and let m,r € N.

If N is U-recognizable, then m N +r is U-recognizable and, given a
DFA accepting rep;;(N), a DFA accepting repy;(m N +7) can be
obtained effectively.

Consequently, any ultimately periodic set is U-recognizable.



U-recognizability of N
Is the set N U-recognizable? Otherwise stated, is the numeration

language repy;(N) regular? Not necessarily:

Theorem (Shallit 1994)
Let U be a PNS. If N is U-recognizable, then U is linear, i.e., it

satisfies a linear recurrence relation over Z.
The condition is not sufficient:
Example (U; = (i + 1)* for all i € N)
It is linear: UZ'+3 = 3UZ'+2 —3U;+1 + U; for all 7 € N, but:
repy; (N) N10*10% = {10°10°: Uyypr1 + Uy < Uaspin}
= {10%10°: b2 < 2a + 4}

Thus, repy;(N) is not regular.



Motivations

What is the “best automaton” we can get?

DFAs accepting the binary representations of 4N + 3.

Question
The general algorithm doesn’t provide a minimal automaton. What

is the state complexity of rep; (mN + r)?



A general upper bound

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010)
Let m,r € N withm > 2 and r < m.

If repy;(N) is accepted by a n-state DFA, then the minimal
automaton of rep;;(mN + ) has at most nm”" states.

NB: This result remains true for the larger class of abstract

numeration systems.



Integer base case

Theorem (Alexeev 2004)

Let b,m > 2. Let N, M be such that b < m < bV*! and
(m,1) < (m,b) < -+ < (m,bM) = (m,bM+1).

The minimal automaton recognizing m N in base b has exactly

. inf(N M1}
m + Z (m bt) states.
M t:() M

In particular, if m and b are coprime, then this number is just m.
Further, if m = b", then this number is n + 1.



Honkala’s decision procedure

Given any finite automaton recognizing a set X of integers written
in base b, it is decidable whether X is ultimately periodic.

» J. Honkala, A decision method for the recognizability of sets defined by number
systems, Theor. Inform. Appl. 20 (1986).

» A. Muchnick, The definable criterion for definability in Presburger arithmetic
and its applications, TCS 290 (2003).

» J. Leroux, A Polynomial Time Presburger Criterion and Synthesis for Number
Decision Diagrams, LICS 2005 (2005).

» J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits of
an automatic sequence, TCS 410 (2009).

> J. Bell, EC, A. Fraenkel, M. Rigo, A decision problem for ultimately periodic
sets in non-standard numeration systems, /JAC 19 (2009).

> F. Durand, Decidability of the HDOL ultimate periodicity problem, arXiv (2011).

» |. Mitrofanov, A proof for the decidability of HDOL ultimate periodicity, arXiv
(2011).



Information we are looking for

Consider a linear numeration system U such that N is

U-recognizable.

How many states does the trim minimal automaton A,
recognizing m N contain?

1. Give upper/lower bounds?

2. Study special cases, e.g., Zeckendorf numeration system.

3. Get information on the trim minimal automaton A;;
recognizing N.



A lower bound

Theorem (C-Rampersad-Rigo-Waxweiler 2011)

Let U be any numeration system (not necessarily linear). The
number of states of Ay, is at least | repy(m)|.



The Hankel matrix

v

Let U = (Uy)n>0 be a linear numeration system.

v

Let & = k7, be the length of the shortest linear recurrence

relation satisfied by (U; mod m);>o.

» For t > 1 define
Uy Uy - Ui
U U - U,
Hy = . . .
U1 U - U2

v

For m > 2, ky,, is also the largest ¢t such that det H; # 0

(mod m).



A system of linear congruences

> Let Sy, denote the number of k-tuples b in {0, ...

such that the system
Hipx=b (mod m)

has at least one solution x = (x1,..., k).

> Sum < mk.

7m_1}k



Calculating Sy

v

Un+2 = 2Uvn—i-l + Un, (U07Ul) = (173)
(Up)nso = 1,3,7,17,41,99, 239, . ..

v

v

Consider the system

lz1+3x2 = by (mod 4)
3x1+7x2 = by (mod 4)

v

2x1 = by — by (mod 4)

v

For each value of b; there are at most 2 values for bs.

v

Hence Sy 4 = 8.



General state complexity result

Theorem
Let m > 2 be an integer. Let U = (U, )n>0 be a linear numeration

system such that

(a) N is U-recognizable and Ay satisfies (H.1) and (H.2),

(b) (U, mod m),>¢ is purely periodic.

The number of states of Ay, from which infinitely many words

are accepted is
ICu| Su,m.-

(H.1) Ay has a single strongly connected component Cy;.

(H.2) For all states p, ¢ in Cyy with p # g, there exists a word z,,
such that 0y (p, zpq) € Cu and 0y (g, zpq) & Cu, or vice-versa.



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and Ay is
strongly connected, then the number of states of Ay, is
| A | Sum.



Result for the f-bonacci system

Corollary

For U the /-bonacci system, the number of states of Ay, is ¢mt.
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Further work for state complexity

» Analyze the structure of Ay for systems with no dominant
root.

» Remove the assumption that (U, mod m),>0 is purely

periodic in the state complexity result.

» Look at any arithmetic progressions X = m N +r.



Transition to syntactic complexity

Let Nyy(m) € {1,...,m} denote the number of values that are
taken infinitely often by the sequence (U; mod m);>o.

Example (Zeckendorf system)

(F, mod 4) = (1,2,3,1,0,1,1,2,3,...) and Nr(4) = 4.
(F, mod 11) = (1,2,3,5,8,2,10,1,0,1,1,2,3,...) and
Np(11) = 7.

Theorem (C-Rigo 2008)

Let U = (U;)i>0 be a numeration system satisfying
lim U;41 — U; = 4o00.

i——+00
If X C N is an ultimately periodic U-recognizable set of period p,
then any DFA accepting repy;(X) has at least Ny (p) states.



v

v

v

v

If Niy(m) — +o0 as m — +00, then we obtain a decision
procedure to the periodicity problem.

If U is a LNS satisfying
Uisk = a1 Uip—1 + -+ axU;, 0 > 0, with ap = +1,

then lim,,—, + o Ny(m) = +o0.
Works for the Zeckendorf system.
Not true for integer base b: N (") =1 for all n > 0.



» The formula for the state complexity of m N for the
Zeckendorf system is much simpler than the formula for

integer base b systems.

» In this point of view, state complexity is not completely
satisfying.

» Hope: Find a complexity that would handle all these systems

in a kind of uniform way.



Syntactic complexity

» Let L be a language over the finite alphabet ¥.

» Myhill-Nerode equivalence relation for L: u ~7, v means that
forally € ¥* uy € L < vy € L.

» Leads to the minimal automaton of L: |Az| = |X*/~p] is the
state complexity of L.

» Syntactic congruence for L: u =p, v means that for all
x,y € X5, zuy € L & zvy € L.

» Leads to the syntactic monoid of L: |Hp| = |¥*/=] is the
syntactic complexity of L.

Theorem
A language L is regular if and only if ¥* /=y, is finite.



Syntactic complexity for integer bases

The syntactic complexity of X C N is the syntactic complexity of
the language 0" rep;; (X).

Let ord,,(b) = min{j € No: ¥/ =1 (mod m)}.
Theorem (Rigo-Vandomme 2011)
> Let m,b > 2 be coprime integers.

If X C N is periodic of minimal period m, then the syntactic
complexity of X is equal to m ord,,(b).



Theorem (continued)

> Lletb>2and m =0b" withn > 1.
(a) The syntactic complexity of mN is equal to 2n + 1.
(b) If X C N is periodic of minimal period m, then the syntactic
complexity of X is > n+ 1.
» Letb>2 and m =0b"qg withn >1 and (b,q) = 1.
Then the syntactic complexity of m N is equal to
(n+ 1) gord,(b) + n.



A general lower bound for the integer base case

Theorem (Lacroix-Rampersad-Rigo-Vandomme, to appear)
Letb>2 and m = db"q withn > 1 and (b,q) = 1 and where n
and q are chosen to be maximal.

If X C N is periodic of minimal period m, then the syntactic
complexity of X is

7+1
> d,(b), ————
> s (st ) 2 )

where v — +00 asn or d — +00.



Zeckendorf numeration system and further work

Theorem

The syntactic complexity of mN is
4m2pp(m) + 2

where pr(m) is the minimal period of (F; mod m);>q.

Further work for syntactic complexity:

» Try to estimate the syntactic complexity of periodic sets for a

larger class of numeration systems.

Syntactic complexity seems to allow us to handle integer bases and
the Zeckendorf system at once.



