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The set 2N of even integers is F -recognizable or F -automatic, i.e.,the language repF (2N) = {ε, 10, 101, 1001, 10000, . . .} is acceptedby some �nite automaton.Remark (in terms of the Chomsky hierarchy)With respect to the Zeckendorf system, any F -recognizable set canbe considered as a �particularly simple� set of integers.We get a similar de�nition for other numeration systems.



Zeckendorf (or Fibonacci) numeration system
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I Fn+2 = Fn+1 + Fn

I F0 = 1, F1 = 2

I AF accepts all words that do not contain 11.



The `-bonacci numeration system
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I Un+` = Un+`−1 + Un+`−2 + · · ·+ Un

I Ui = 2i, i ∈ {0, . . . , `− 1}

I AU accepts all words that do not contain 1`.



U -recognizability of arithmetic progressions
PropositionLet U = (Ui)i≥0 be a numeration system and let m, r ∈ N.If N is U -recognizable, then mN+r is U -recognizable and, given aDFA accepting repU(N), a DFA accepting repU (mN+r) can beobtained e�ectively.Consequently, any ultimately periodic set is U -recognizable.



U -recognizability of NIs the set N U -recognizable? Otherwise stated, is the numerationlanguage repU (N) regular? Not necessarily:Theorem (Shallit 1994)Let U be a PNS. If N is U -recognizable, then U is linear, i.e., itsatis�es a linear recurrence relation over Z.The condition is not su�cient:Example (Ui = (i+ 1)2 for all i ∈ N)It is linear: Ui+3 = 3Ui+2 − 3Ui+1 + Ui for all i ∈ N, but:
repU (N) ∩ 10∗10∗ = {10a10b : Ua+b+1 + Ub < Ua+b+2}

= {10a10b : b2 < 2a+ 4}Thus, repU (N) is not regular.



MotivationsWhat is the �best automaton� we can get?
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1DFAs accepting the binary representations of 4N+ 3.QuestionThe general algorithm doesn't provide a minimal automaton. Whatis the state complexity of repU (mN+ r)?



A general upper bound
Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010)Let m, r ∈ N with m ≥ 2 and r < m.If repU (N) is accepted by a n-state DFA, then the minimalautomaton of repU (mN+ r) has at most nmn states.NB: This result remains true for the larger class of abstractnumeration systems.



Integer base caseTheorem (Alexeev 2004)Let b,m ≥ 2. Let N,M be such that bN < m ≤ bN+1 and
(m, 1) < (m, b) < · · · < (m, bM ) = (m, bM+1).The minimal automaton recognizing mN in base b has exactly

m

(m, bN+1)
+

inf{N,M−1}
∑

t=0

bt

(m, bt)
states.In particular, if m and b are coprime, then this number is just m.Further, if m = bn, then this number is n+ 1.



Honkala's decision procedureGiven any �nite automaton recognizing a set X of integers writtenin base b, it is decidable whether X is ultimately periodic.
I J. Honkala, A decision method for the recognizability of sets de�ned by numbersystems, Theor. Inform. Appl. 20 (1986).
I A. Muchnick, The de�nable criterion for de�nability in Presburger arithmeticand its applications, TCS 290 (2003).
I J. Leroux, A Polynomial Time Presburger Criterion and Synthesis for NumberDecision Diagrams, LICS 2005 (2005).
I J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits ofan automatic sequence, TCS 410 (2009).
I J. Bell, ÉC, A. Fraenkel, M. Rigo, A decision problem for ultimately periodicsets in non-standard numeration systems, IJAC 19 (2009).
I F. Durand, Decidability of the HD0L ultimate periodicity problem, arXiv (2011).
I I. Mitrofanov, A proof for the decidability of HD0L ultimate periodicity, arXiv(2011).



Information we are looking forConsider a linear numeration system U such that N is
U -recognizable.How many states does the trim minimal automaton AU,mrecognizing mN contain?1. Give upper/lower bounds?2. Study special cases, e.g., Zeckendorf numeration system.3. Get information on the trim minimal automaton AUrecognizing N.



A lower bound
Theorem (C-Rampersad-Rigo-Waxweiler 2011)Let U be any numeration system (not necessarily linear). Thenumber of states of AU,m is at least | repU (m)|.



The Hankel matrix
I Let U = (Un)n≥0 be a linear numeration system.
I Let k = kU,m be the length of the shortest linear recurrencerelation satis�ed by (Ui mod m)i≥0.
I For t ≥ 1 de�ne

Ht :=













U0 U1 · · · Ut−1

U1 U2 · · · Ut... ... . . . ...
Ut−1 Ut · · · U2t−2













.

I For m ≥ 2, kU,m is also the largest t such that detHt 6≡ 0

(mod m).



A system of linear congruences
I Let SU,m denote the number of k-tuples b in {0, . . . ,m− 1}ksuch that the system

Hk x ≡ b (mod m)has at least one solution x = (x1, . . . , xk).
I SU,m ≤ mk.



Calculating SU,m

I Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

I (Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

I Consider the system
{

1x1 + 3x2 ≡ b1 (mod 4)

3x1 + 7x2 ≡ b2 (mod 4)

I 2x1 ≡ b2 − b1 (mod 4)

I For each value of b1 there are at most 2 values for b2.
I Hence SU,4 = 8.



General state complexity resultTheoremLet m ≥ 2 be an integer. Let U = (Un)n≥0 be a linear numerationsystem such that(a) N is U -recognizable and AU satis�es (H.1) and (H.2),(b) (Un mod m)n≥0 is purely periodic.The number of states of AU,m from which in�nitely many wordsare accepted is
|CU |SU,m.(H.1) AU has a single strongly connected component CU .(H.2) For all states p, q in CU with p 6= q, there exists a word xpqsuch that δU (p, xpq) ∈ CU and δU (q, xpq) 6∈ CU , or vice-versa.



Result for strongly connected automata
CorollaryIf U satis�es the conditions of the previous theorem and AU isstrongly connected, then the number of states of AU,m is
|AU |SU,m.



Result for the `-bonacci system
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CorollaryFor U the `-bonacci system, the number of states of AU,m is `m`.
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Further work for state complexity
I Analyze the structure of AU for systems with no dominantroot.
I Remove the assumption that (Un mod m)n≥0 is purelyperiodic in the state complexity result.
I Look at any arithmetic progressions X = mN+r.



Transition to syntactic complexityLet NU (m) ∈ {1, . . . ,m} denote the number of values that aretaken in�nitely often by the sequence (Ui mod m)i≥0.Example (Zeckendorf system)
(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .) and NF (4) = 4.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .) and
NF (11) = 7.Theorem (C-Rigo 2008)Let U = (Ui)i≥0 be a numeration system satisfying
lim

i→+∞
Ui+1 − Ui = +∞.If X ⊆ N is an ultimately periodic U -recognizable set of period p,then any DFA accepting repU (X) has at least NU (p) states.



I If NU (m) → +∞ as m → +∞, then we obtain a decisionprocedure to the periodicity problem.
I If U is a LNS satisfying

Ui+k = a1Ui+k−1 + · · ·+ akUi, i ≥ 0, with ak = ±1,then limm→+∞NU (m) = +∞.
I Works for the Zeckendorf system.
I Not true for integer base b: N(bn) = 1 for all n ≥ 0.



I The formula for the state complexity of mN for theZeckendorf system is much simpler than the formula forinteger base b systems.
I In this point of view, state complexity is not completelysatisfying.
I Hope: Find a complexity that would handle all these systemsin a kind of uniform way.



Syntactic complexity
I Let L be a language over the �nite alphabet Σ.
I Myhill-Nerode equivalence relation for L: u ∼L v means thatfor all y ∈ Σ∗, uy ∈ L ⇔ vy ∈ L.
I Leads to the minimal automaton of L: |AL| = |Σ∗/∼L| is thestate complexity of L.
I Syntactic congruence for L: u ≡L v means that for all

x, y ∈ Σ∗, xuy ∈ L ⇔ xvy ∈ L.
I Leads to the syntactic monoid of L: |HL| = |Σ∗/≡L| is thesyntactic complexity of L.TheoremA language L is regular if and only if Σ∗/≡L is �nite.



Syntactic complexity for integer basesThe syntactic complexity of X ⊆ N is the syntactic complexity ofthe language 0∗ repU (X).Let ordm(b) = min{j ∈ N0 : b
j ≡ 1 (mod m)}.Theorem (Rigo-Vandomme 2011)

I Let m, b ≥ 2 be coprime integers.If X ⊆ N is periodic of minimal period m, then the syntacticcomplexity of X is equal to m ordm(b).



Theorem (continued)
I Let b ≥ 2 and m = bn with n ≥ 1.(a) The syntactic complexity of mN is equal to 2n+ 1.(b) If X ⊆ N is periodic of minimal period m, then the syntacticcomplexity of X is ≥ n+ 1.
I Let b ≥ 2 and m = bnq with n ≥ 1 and (b, q) = 1.Then the syntactic complexity of mN is equal to

(n+ 1) q ordq(b) + n.



A general lower bound for the integer base caseTheorem (Lacroix-Rampersad-Rigo-Vandomme, to appear)Let b ≥ 2 and m = dbnq with n ≥ 1 and (b, q) = 1 and where nand q are chosen to be maximal.If X ⊆ N is periodic of minimal period m, then the syntacticcomplexity of X is
≥ max

(

q ordq(b),
γ + 1

q ordq(b)

)

,where γ → +∞ as n or d → +∞.



Zeckendorf numeration system and further workTheoremThe syntactic complexity of mN is
4m2pF (m) + 2where pF (m) is the minimal period of (Fi mod m)i≥0.Further work for syntactic complexity:

I Try to estimate the syntactic complexity of periodic sets for alarger class of numeration systems.Syntactic complexity seems to allow us to handle integer bases andthe Zeckendorf system at once.


