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Motivation

In base 2, we write 78 as 1001110 and 7/3 as 10 ¢ 01010101 - - - .

| Integer bases b |

[Frougny 1992]

[Bruyére & Hansel 1997] / \ [Rényi 1959]

[Hollander 1998] [Parry 1960]

Representing integers

K K Representing real numbers
via an integer

via a real base 8
base sequence U

Do greedy representations
form a regular language? \/
Unt1

T, P

[Bertrand-Mathis 1989]

Identifying integers?

When i'f” has a limit when n — oo, there is a similar relationship with representations of real
n
numbers via some alternate base B = (8p—1, ..., 00)-
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Cantor real numeration systems

A Cantor real base is a biinfinite sequence B = (3,),cz of bases such that

> ﬁn S R>1 for all n
> Hﬁn = H/Bfn = +o0.

n>0 n>1

We consider biinfinite sequences a = (an)pcz over N having a left tail of zeros, that is, there
exists some N € Z such that a, = 0 for all n > N.
ay_1---ap®a_ia_on--- iftN>1

0e0 MNay_qan_p--- if N<o0.

The associated value map is defined as

a_ a_
valg(a) = - - + 23528180 + a2B150 + 2180 + 3 + o+ + ——— ..
B-1  B-1B-2

provided that the series is convergent.

If x = valg(a), we say that a is a B-representation of x.
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Greedy digits

A distinguished B-representation, called the B-expansion, is obtained by using the greedy
algorithm.

In particular:
> The greedy digits a, belong to the alphabet {0, ..., [8,] — 1} for all n.
> We have dg(1) =1 e0%.
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Let's look at a few examples

> B = (1+2")nez is not a Cantor real base since (1 + %n) ~ 2.38423.
n>1

If we perform the greedy algorithm on x = % then we obtain the digits 0 e 0010%,
although valg(0 @ 0010%) = 24 £ 1.
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Let's look at a few examples

> B = (1+2")nez is not a Cantor real base since (1 + %n) ~ 2.38423.
n>1

If we perform the greedy algorithm on x = % then we obtain the digits 0 e 0010%,
although valg(0 @ 0010%) = 24 £ 1.

> B = (2+2")nez is a Cantor real base since [](2 4 2") = oo and J](2 + 2%) = oo.

n>0 n>1

> |If there are only finitely many bases involved, both infinite products are trivially infinite.
» An alternate base is a periodic Cantor real base. In this case, we simply write

B =(Bp-1,---,P)

and we use the convention that 8, = 8, mod p for all n.
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Parry’s theorem for Cantor real bases
Theorem (C. & Cisternino 2021)

A sequence 0 @ a_1a_p--- is the B-expansion of some number x € [0,1) if and only if
an—1an—2 - <lex d;,,(B)(l) for all n.

Here we used the shifted bases SN(B) = (8,+n)ncz and the notion of quasi-greedy
B-expansion of 1, which is given by

di(1) = didhds - - -

where lim dg(x) =0e didrds---.

x—1-
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Parry’s theorem for Cantor real bases
Theorem (C. & Cisternino 2021)

A sequence 0 @ a_1a_p--- is the B-expansion of some number x € [0,1) if and only if
an—1an—2 - <lex d;,,(B)(l) for all n.

Here we used the shifted bases SN(B) = (8,+n)ncz and the notion of quasi-greedy
B-expansion of 1, which is given by

di(1) = didhds - - -

where lim dg(x) =0e didrds---.

x—1-
, we have S(B) = (5+g/ﬁ, H;/ﬁ) and we can compute
dj(1) = 20(01)* = 20010101+ and  dfg)(1) = (10)* = 101010 - .

The sequence
0 ¢ 20001020(001)%

is the B-expansion of some x € [0, 1), whereas it is not the case of the sequence

0  2000120(001).
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The B-integers

A real number x > 0 is a B-integer if its B-expansion is of the form
dg(x) = ap—1---ape0“ with n € N.

The set of all B-integers is denoted by Ng.
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B-integers introduced in [Gazeau 1997].

> We have Ng = N if and only if all products H?:o Bi are integers.

» The set Ng is unbounded and has no accumulation point in R.
Proof of dicreteness: The B-expansion of a B-integer smaller than 3,1 --- 5p is of the form

am—1--+ap ® 0% with m < n. Since a; < [3; for each i, there are only finitely many
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The B-integers

A real number x > 0 is a B-integer if its B-expansion is of the form
dg(x) = ap—1---ape0“ with n € N.

The set of all B-integers is denoted by Ng.

» In the case where 8, = 3 for all n € N, the B-integers coincide with the classical
B-integers introduced in [Gazeau 1997].

> We have Ng = N if and only if all products H?:o Bi are integers.

» The set Ng is unbounded and has no accumulation point in R.

Proof of dicreteness: The B-expansion of a B-integer smaller than 3,1 --- 5p is of the form
am—1--+ap ® 0% with m < n. Since a; < [3; for each i, there are only finitely many
B-expansions having this property.

Let (xx)ken be the increasing sequence of B-integers:

NB:{Xk:kEN}.

7/22



For every n € N, we define Mg , = max{x € Ng : x < B,_1---fo}.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all n € N, if we write d.

Sn(B)(l) - n,ldn72dn73 ey, then dB(MB,n) =dp1--- dn,n o 0w,
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For every n € N, we define Mg , = max{x € Ng : x < B,_1---fo}.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all n € N, if we write d;,,(B)

Since dj5(1) = 20(01)* = 20010101--- and d (1) = (10)* = 101010---,

we can compute the numbers Mg , as follows:

(1) = dn,1dn2dn3 -+, then dg(Mp ) = dp1---dnne 0.

n | dg(Mg,,) Mg,
0 5 0
1 1 1
2 20 S+y13
5+113
3 101 ¥
4 2001 | 174V
5 10101 84213
6| 200101 | 100+20V13
7| 1010101 | 26+7vi3
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Let us now compute the first B-integers x:

k Xk dB(Xk) k Xk dB(Xk) k X dB(Xk)
0 0 £ 12 8.03 1100 24 | 16.64 | 100001
1 1 1 13 9.03 1101 25 | 17.07 | 100010
2 1.43 10 14 9.47 2000 26 | 18.07 | 100011
3 2.43 11 15 | 10.47 2001 27 | 18.51 | 100020
4 2.86 20 16 | 10.90 10000 28 | 18.94 | 100100
5 3.30 100 17 | 11.90 10001 29 | 19.94 | 100101
6 4.30 101 18 | 12.34 10010 30 | 20.38 | 101000
7 4.73 1000 19 | 13.34 10011 31 | 21.38 | 101001
8 5.73 1001 20 | 13.77 10020 32 | 21.81 | 101010
9 6.17 1010 21 | 14.21 10100 33 | 22.81 | 101011
10 | 7.17 1011 22 | 15.21 10101 34 | 23.25 | 101020
11 | 7.60 1020 23 | 15.64 | 100000 35 | 23.68 | 101100

d%(1) = 20010101 - - -,

20

d5 (1) = 101010---

25
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Distances between B-integers

» How many values can be taken by xx11 — xx?

» What are the possible values?
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Distances between B-integers

» How many values can be taken by xx11 — xx?

» What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

AB.,n = /anl t '/80 - MB,n

accordingly to the first position n > 0 where their B-expansions differ (from left to right).

Note that:
> Ago=1and Ag, <1 forall n#0.
> It may happen that Ag , = Ag v even though n # n’.

We consider the infinite sequence
wg = (Wk)ken
where
Wi =n
if dg(xx) and dg(xk41) differ at index n and not at greater indices.
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We can compute a prefix of wg by looking at the first position where consecutive B-integers
differ:

k Xk dB(Xk) wgp k Xk dB(Xk) wgB k Xk dB(Xk) wgp
0 0 € 0 12 | 8.03 1100 0 24 | 16.64 | 100001 1
1 1 1 1 13 | 9.03 1101 3 25 | 17.07 | 100010 0
2 1.43 10 0 14 | 9.47 2000 0 26 | 18.07 | 100011 1
3 2.43 11 1 15 | 10.47 2001 4 27 | 18.51 | 100020 2
4 | 2.86 20 2 16 | 10.90 10000 0 28 | 18.94 | 100100 0
5 | 3.30 100 0 17 | 11.90 10001 1 29 | 19.94 | 100101 3
6 | 4.30 101 3 18 | 12.34 10010 0 30 | 20.38 | 101000 0
7 | 473 1000 0 19 | 13.34 10011 1 31 | 21.38 | 101001 1
8 5.73 1001 1 20 | 13.77 10020 2 32 | 21.81 | 101010 0
9 6.17 1010 0 21 | 14.21 10100 0 33 | 22.81 | 101011 1
10 | 7.17 1011 1 22 | 15.21 10101 5 34 | 23.25 | 101020 2
11 | 7.60 1020 2 23 | 15.64 | 100000 0 35 | 23.68 | 101100 0

wp = 010120301012030401012050101203010120 - - -
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The sequence wg is S-adic

Proposition
We have 1g(ws(g)) = wg where ¥g is the substitution over N defined by

1g: N — N*, n— 0%+1(n+1)

where a, is the least significant digit of dg(Mp ,).

By the term substitution, we mean that ¥g(wowiws - - - ) = Yg(wo)Ye(wi)e(ws) - - -.
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The sequence wg is S-adic

Proposition
We have 1g(ws(g)) = wg where ¥g is the substitution over N defined by

1g: N — N*, n— 0%+1(n+1)

where a, is the least significant digit of dg(Mp ,).

By the term substitution, we mean that ¥g(wowiws - - - ) = Yg(wo)Ye(wi)e(ws) - - -.
Corollary

» For an alternate base B = (8p—1, ..., /), the sequence wg is fixed by the composition
Ypgo---o0 ¢5P—1(B)-
» In general, the sequence wg is the S-adic sequence given by the sequence of substitutions

(vsn(B))nen applied on the letter 0:

wg = lim Ypgo 1#5(3) 0:--0 ¢S"(B)(0)~
n—+o0o

12/22



Computing ¢¥g: N — N*, n— 0%+1(n4+1) for
We get that
dg(Msg 2n) and ds(g)(Ms(g),2n41) are prefixes of dg(1) = 20010101 - - -
and
dg(Mp 2n11) and dsgy(Ms(g),2n) are prefixes of d;(B)(l)) =101010--- .
We then obtain the two substitutions

0+ 01
P Q12 and  Ysp):
n+— 0(n+1) forn>2

0 +— 001
n— n+l forn>1.
and their composition

0+— 01012

Pp = ppopsp):
&) n— 0(n+2) forn>1

fixes wg:
wg = ®%(0) = (01012)(03)(01012)(03)(04)(01012)(05)(01012)(03)(01012)(03)(04) - - -
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More can be said for alternate bases

Theorem (C., Cisternino, Masakova & Pelantové 2024+)

Let B=(Bp—1,...,P0) be an alternate base. There are finitely many possible distances
between consecutive B-integers if and only if the base B is Parry, meaning that
d;,.(B)(l) is eventually periodic for each i.

For such a base B, we can encode the distances between consecutive B-integers by a sequence
taking only finitely many values.

For , we consider the writings
dg(1) = 20(01)*, dg(B)(l) = (10)* = 10(10)~.

in order to obtain common preperiods and periods multiple that are multiple of p = 2, and the

projection
n, ifne{0,1}
m:N—{0,1,2,3}, n— ¢ 2, if n> 2, even;
3, ifn>2 odd.
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The projected sequence vg = m(wg) also codes the distances between consecutive B-integers:

Vk = Vit == Xk+1 — Xk = Xp/p1 — Xg! -

k Xk dB(Xk) wg vB k Xk dB(Xk) wg VB k Xk dB(Xk) wg VB
0 0 £ 0 0 12 | 8.03 1100 0 0 24 | 16.64 | 100001 1 1
1 1 1 1 1 13 | 9.03 1101 3 3 25 | 17.07 | 100010 0 0
2 1.43 10 0 0 14 | 9.47 2000 0 0 26 | 18.07 | 100011 1 1
3 | 243 11 1 1 15 | 10.47 2001 4 2 27 | 18.51 | 100020 2 2
4 | 2.86 20 2 2 16 | 10.90 10000 0 0 28 | 18.94 | 100100 0 0
5 3.30 100 0 0 17 | 11.90 10001 1 1 29 | 19.94 | 100101 3 3
6 | 4.30 101 3 3 18 | 12.34 10010 0 0 30 | 20.38 | 101000 0 0
7 4.73 1000 0 0 19 | 13.34 10011 1 1 31 | 21.38 | 101001 1 1
8 | 5.73 1001 1 1 20 | 13.77 10020 2 2 32 | 21.81 | 101010 0 0
9 | 6.17 1010 0 0 21 | 14.21 10100 0 0 33 | 22.81 | 101011 1 1
10 | 7.17 1011 1 1 22 | 15.21 10101 5 3 34 | 23.25 | 101020 2 2
11 | 7.60 1020 2 2 23 | 15.64 | 100000 0 0 35 | 23.68 | 101100 0 0

wpg = 010120301012030401012050101203010120 - - -
vg = 010120301012030201012030101203010120 - - -
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The two projected substitutions over the finite alphabet {0,1,2,3} are

0+~ 01 0 +— 001
1+—2 1+—2
B! and  p5(p):
2+— 03 2—3
3+—02 32
and their composition
0 +— 01012
1—03
Pg = ppoysp):
2+ 02
3+—03

is a primitive substitution that fixes vg:

vg = ®%(0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) - - -
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The two projected substitutions over the finite alphabet {0,1,2,3} are

0+~ 01 0 +— 001
1+—2 1+—2
B! and  p5(p):
2+— 03 2—3
3+—02 32
and their composition
0 +— 01012
1—03
Pg = ppoysp):
2+ 02
3+—03

is a primitive substitution that fixes vg:

vg = ®%(0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) - - -

NB: For an arbitrary sustitution ¢ with a fixed point ©“(a), we don’t necessarily have

(¢ (a)) = (w0 ©)(a).
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Suppose that all dsi(B)(l) have the same preperiod ¢ and period m, which are multiple of p.

We define a projection

n, ifo<n<fl+m-1,

mN—={0,....4+m—1}, n—
L+ ((n—€) mod m), ifn>C+m.

Then we consider the projected sequence vg = m(wg) and the substitution ¢g defined by
eg(n) = w(¢g(n)) for ne {0,..., 0+ m—1}.

Theorem (C., Cisternino, Masakové & Pelantova 2024+)

The composition @g o @sg)© -+ 0 Psp—1(B) is a primitive substitution which fixes vg.
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A graph associated with is built from the quasi-greedy expansions

(8)

d(1) = 20(01)“ and df (1) = 10(10)“.

> We can see the subtitutions g and ¢s(g) in this graph.

» The primitiveness of the composition ¢ o ¢s(B) can be obtained from the properties of
the graph.
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Combinatorial properties of vg

A sequence ajapasz - - - is sturmian if it has exactly n+ 1 length-n factors a; - - - aj1p—1 for all n.

Proposition (C., Cisternino, Masdkova & Pelantova 2024+)

Let B=(Bp—1,-.-,P0) be a Parry alternate base. The sequence vg is sturmian if and only if
one of the following cases is satisfied.

Case 1. p=1 and d}(1) = (d0)¥ with d > 1.
Case 2. p=1 and dj(1) = (d +1)d“ withd > 1.

Case 3. p =2, dj(1) = (d0) and d g (1) = (€0) with d,e > 1.
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In all cases, one can derive frequencies pg, p1 of letters 0 and 1 in the sturmian sequence vg

from the primitive substitution.

We write x = [ag, a1, a2, .. .] if
1
vy= lim ag+
n—+o00 1
at+——"
1
Ht——
. 1
a1+ —
an
and ap € Z and ap, € N, for every n > 0.
If the sequence ap, a1, a2, . . . is eventually periodic, then we use the notation
l20; a1, - - -5 @i, @it1; @2, - - -, Bitk]-
Proposition (Continued)
Case 1. We have (po, p1) = (%, ﬁ) and po = [0,1,d].
—1 7
Case 2. We have (po, p1) = (B%O , /Tlo) and po = [0,1, d].
Case 3. We have (po, p1) = (ﬂﬁl’ 511+1) and pp = [0,1, e, d].
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Surprisingly, one can obtain a sturmian sequence vg with frequency pg = [0, 1, a] in different
numeration systems.

1+v5

» For p = 1, this is only possible for a = 1 and the real bases 7 and 72 where T = 3

» 7 belongs to Case 1 with d = 1.

> 72 belongs to Case 2 with d = 1.

> If we allow p € {1,2} then there are infinitely many pairs of numeration systems giving
the same frequency po = [0, 1, a].

> p=1with dj(1) = (a+ 1)a*.

For a = 2, we obtain the real base (2 + v/3).
The sequence vp is fixed by the substitution 0 — 0001 and 1 +— 001.

> p =2 with dj(1) = (10)* and dg(1) = (a0)*.

For a = 2, we get the alternate base B = (31, Bo) = (”T‘ﬁ, 14+ V3).
The sequence vg is fixed by another substitution, namely, 0 — 0010 and 1 — 001.
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Minimal alphabet
(1413 5++/13

In our specific example B = ( . 5

), since Ag 1 = Ay = Ap 3, the image
o(vg) = 0101101010110101 - - -

under the projection
0—0

0:4{0,1,2,3}* — {0,1}",
1,2,3 1

contains enough information to encode the distances between consecutive B-integers.

-
0 5 10 15 20 25

This new infinite sequence o(vg) is the fixed point of the projected substitution

0+~ 01011
1+— 01.

and hence is sturmian.
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Minimal alphabet
(1413 5++/13

In our specific example B = ( . 5

), since Ag 1 = Ay = Ap 3, the image
o(vg) = 0101101010110101 - - -

under the projection
0—0

0:4{0,1,2,3}* — {0,1}",
1,2,3 1

contains enough information to encode the distances between consecutive B-integers.

-
0 5 10 15 20 25

This new infinite sequence o(vg) is the fixed point of the projected substitution

0+~ 01011
1+— 01.

and hence is sturmian.

Thank you!
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