Substitutions and Cantor real numeration systems

Émilie Charlier
joint work with Célia Cisternino, Zuzana Masáková and Edita Pelantová
Département de mathématiques, ULiège
JNIM 2024, Grenoble
2024, March 20

Motivation

In base 2, we write 78 as 1001110 and $7 / 3$ as $10 \bullet 01010101 \cdots$.
[Frougny 1992]
[Bruyère \& Hansel 1997]
[Hollander 1998]
[Rényi 1959]
[Parry 1960]

| Representing integers |
| :---: | :---: |
| via an integer |
| base sequence U |\quad| Representing real numbers |
| :---: |
| via a real base β |

Do greedy representations form a regular language?

[Bertrand-Mathis 1989]

When $\frac{U_{n+p}}{U_{n}}$ has a limit when $n \rightarrow \infty$, there is a similar relationship with representations of real numbers via some alternate base $B=\left(\beta_{p-1}, \ldots, \beta_{0}\right)$.

Cantor real numeration systems

A Cantor real base is a biinfinite sequence $B=\left(\beta_{n}\right)_{n \in \mathbb{Z}}$ of bases such that

- $\beta_{n} \in \mathbb{R}_{>1}$ for all n
- $\prod_{n \geq 0} \beta_{n}=\prod_{n \geq 1} \beta_{-n}=+\infty$.

We consider biinfinite sequences $a=\left(a_{n}\right)_{n \in \mathbb{Z}}$ over \mathbb{N} having a left tail of zeros, that is, there exists some $N \in \mathbb{Z}$ such that $a_{n}=0$ for all $n \geq N$.

$$
\begin{aligned}
a_{N-1} \cdots a_{0} \bullet a_{-1} a_{-2} \cdots & \text { if } N \geq 1 \\
0 \bullet 0^{-N} a_{N-1} a_{N-2} \cdots & \text { if } N \leq 0 .
\end{aligned}
$$

The associated value map is defined as

$$
\operatorname{val}_{B}(a)=\cdots+a_{3} \beta_{2} \beta_{1} \beta_{0}+a_{2} \beta_{1} \beta_{0}+a_{1} \beta_{0}+a_{0}+\frac{a_{-1}}{\beta_{-1}}+\frac{a_{-2}}{\beta_{-1} \beta_{-2}}+\cdots
$$

provided that the series is convergent.
If $x=\operatorname{val}_{B}(a)$, we say that a is a B-representation of x.

Greedy digits

A distinguished B-representation, called the B-expansion, is obtained by using the greedy algorithm.

In particular:

- The greedy digits a_{n} belong to the alphabet $\left\{0, \ldots,\left\lceil\beta_{n}\right\rceil-1\right\}$ for all n.
- We have $d_{B}(1)=1 \bullet 0^{\omega}$.

Let's look at a few examples

- $B=\left(1+2^{n}\right)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \geq 1}\left(1+\frac{1}{2^{n}}\right) \sim 2.38423$. If we perform the greedy algorithm on $x=\frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_{B}\left(0 \bullet 0010^{\omega}\right)=\frac{64}{135} \neq \frac{1}{2}$.

Let's look at a few examples

- $B=\left(1+2^{n}\right)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \geq 1}\left(1+\frac{1}{2^{n}}\right) \sim 2.38423$. If we perform the greedy algorithm on $x=\frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_{B}\left(0 \bullet 0010^{\omega}\right)=\frac{64}{135} \neq \frac{1}{2}$.
- $B=\left(2+2^{n}\right)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \geq 0}\left(2+2^{n}\right)=\infty$ and $\prod_{n \geq 1}\left(2+\frac{1}{2^{n}}\right)=\infty$.

Let's look at a few examples

- $B=\left(1+2^{n}\right)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \geq 1}\left(1+\frac{1}{2^{n}}\right) \sim 2.38423$. If we perform the greedy algorithm on $x=\frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_{B}\left(0 \bullet 0010^{\omega}\right)=\frac{64}{135} \neq \frac{1}{2}$.
- $B=\left(2+2^{n}\right)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \geq 0}\left(2+2^{n}\right)=\infty$ and $\prod_{n \geq 1}\left(2+\frac{1}{2^{n}}\right)=\infty$.
- If there are only finitely many bases involved, both infinite products are trivially infinite.

Let's look at a few examples

- $B=\left(1+2^{n}\right)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \geq 1}\left(1+\frac{1}{2^{n}}\right) \sim 2.38423$. If we perform the greedy algorithm on $x=\frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_{B}\left(0 \bullet 0010^{\omega}\right)=\frac{64}{135} \neq \frac{1}{2}$.
- $B=\left(2+2^{n}\right)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \geq 0}\left(2+2^{n}\right)=\infty$ and $\prod_{n \geq 1}\left(2+\frac{1}{2^{n}}\right)=\infty$.
- If there are only finitely many bases involved, both infinite products are trivially infinite.
- An alternate base is a periodic Cantor real base. In this case, we simply write

$$
B=\left(\beta_{p-1}, \ldots, \beta_{0}\right)
$$

and we use the convention that $\beta_{n}=\beta_{n \bmod p}$ for all n.

Parry's theorem for Cantor real bases

Theorem (C. \& Cisternino 2021)
A sequence $0 \bullet a_{-1} a_{-2} \cdots$ is the B-expansion of some number $x \in[0,1)$ if and only if $a_{n-1} a_{n-2} \cdots<_{\text {lex }} d_{S^{n}(B)}^{*}(1)$ for all n.

Here we used the shifted bases $S^{N}(B)=\left(\beta_{n+N}\right)_{n \in \mathbb{Z}}$ and the notion of quasi-greedy B-expansion of 1 , which is given by

$$
d_{B}^{*}(1)=d_{1} d_{2} d_{3} \cdots
$$

where $\lim _{x \rightarrow 1^{-}} d_{B}(x)=0 \bullet d_{1} d_{2} d_{3} \cdots$.

Parry's theorem for Cantor real bases

Theorem (C. \& Cisternino 2021)

A sequence $0 \bullet a_{-1} a_{-2} \cdots$ is the B-expansion of some number $x \in[0,1)$ if and only if $a_{n-1} a_{n-2} \cdots<_{\text {lex }} d_{S^{n}(B)}^{*}(1)$ for all n.

Here we used the shifted bases $S^{N}(B)=\left(\beta_{n+N}\right)_{n \in \mathbb{Z}}$ and the notion of quasi-greedy B-expansion of 1 , which is given by

$$
d_{B}^{*}(1)=d_{1} d_{2} d_{3} \cdots
$$

where $\lim _{x \rightarrow 1^{-}} d_{B}(x)=0 \bullet d_{1} d_{2} d_{3} \cdots$.
For $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have $S(B)=\left(\frac{5+\sqrt{13}}{6}, \frac{1+\sqrt{13}}{2}\right)$ and we can compute

$$
d_{B}^{*}(1)=20(01)^{\omega}=20010101 \cdots \quad \text { and } \quad d_{S(B)}^{*}(1)=(10)^{\omega}=101010 \cdots
$$

The sequence

$$
0 \bullet 20001020(001)^{\omega}
$$

is the B-expansion of some $x \in[0,1)$, whereas it is not the case of the sequence

$$
0 \bullet 2000120(001)^{\omega} .
$$

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N}
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N} .
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

- In the case where $\beta_{n}=\beta$ for all $n \in \mathbb{N}$, the B-integers coincide with the classical β-integers introduced in [Gazeau 1997].

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N} .
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

- In the case where $\beta_{n}=\beta$ for all $n \in \mathbb{N}$, the B-integers coincide with the classical β-integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_{B}=\mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_{i}$ are integers.

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N}
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

- In the case where $\beta_{n}=\beta$ for all $n \in \mathbb{N}$, the B-integers coincide with the classical β-integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_{B}=\mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_{i}$ are integers.
- The set \mathbb{N}_{B} is unbounded and has no accumulation point in \mathbb{R}.

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N}
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

- In the case where $\beta_{n}=\beta$ for all $n \in \mathbb{N}$, the B-integers coincide with the classical β-integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_{B}=\mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_{i}$ are integers.
- The set \mathbb{N}_{B} is unbounded and has no accumulation point in \mathbb{R}.

Proof of dicreteness: The B-expansion of a B-integer smaller than $\beta_{n-1} \cdots \beta_{0}$ is of the form $a_{m-1} \cdots a_{0} \bullet 0^{\omega}$ with $m \leq n$. Since $a_{i}<\beta_{i}$ for each i, there are only finitely many B-expansions having this property.

The B-integers

A real number $x \geq 0$ is a B-integer if its B-expansion is of the form

$$
d_{B}(x)=a_{n-1} \cdots a_{0} \bullet 0^{\omega} \quad \text { with } n \in \mathbb{N}
$$

The set of all B-integers is denoted by \mathbb{N}_{B}.

- In the case where $\beta_{n}=\beta$ for all $n \in \mathbb{N}$, the B-integers coincide with the classical β-integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_{B}=\mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_{i}$ are integers.
- The set \mathbb{N}_{B} is unbounded and has no accumulation point in \mathbb{R}.

Proof of dicreteness: The B-expansion of a B-integer smaller than $\beta_{n-1} \cdots \beta_{0}$ is of the form $a_{m-1} \cdots a_{0} \bullet 0^{\omega}$ with $m \leq n$. Since $a_{i}<\beta_{i}$ for each i, there are only finitely many B-expansions having this property.

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be the increasing sequence of B-integers:

$$
\mathbb{N}_{B}=\left\{x_{k}: k \in \mathbb{N}\right\}
$$

For every $n \in \mathbb{N}$, we define $M_{B, n}=\max \left\{x \in \mathbb{N}_{B}: x<\beta_{n-1} \cdots \beta_{0}\right\}$.
As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all $n \in \mathbb{N}$, if we write $d_{S^{n}(B)}^{*}(1)=d_{n, 1} d_{n, 2} d_{n, 3} \cdots$, then $d_{B}\left(M_{B, n}\right)=d_{n, 1} \cdots d_{n, n} \bullet 0^{\omega}$.

For every $n \in \mathbb{N}$, we define $M_{B, n}=\max \left\{x \in \mathbb{N}_{B}: x<\beta_{n-1} \cdots \beta_{0}\right\}$.
As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all $n \in \mathbb{N}$, if we write $d_{S^{n}(B)}^{*}(1)=d_{n, 1} d_{n, 2} d_{n, 3} \cdots$, then $d_{B}\left(M_{B, n}\right)=d_{n, 1} \cdots d_{n, n} \bullet 0^{\omega}$.
$B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$
Since $d_{B}^{*}(1)=20(01)^{\omega}=20010101 \cdots$ and $d_{S(B)}^{*}(1)=(10)^{\omega}=101010 \cdots$, we can compute the numbers $M_{B, n}$ as follows:

n	$d_{B}\left(M_{B, n}\right)$	$M_{B, n}$
0	ε	0
1	1	1
2	20	$\frac{5+\sqrt{13}}{3}$
3	101	$\frac{5+\sqrt{13}}{2}$
4	2001	$\frac{17+4 \sqrt{13}}{3}$
5	10101	$8+2 \sqrt{13}$
6	200101	$\frac{109+29 \sqrt{13}}{6}$
7	1010101	$26+7 \sqrt{13}$

Let us now compute the first B-integers x_{k} :

k	x_{k}	$d_{B}\left(x_{k}\right)$	k	x_{k}	$d_{B}\left(x_{k}\right)$	k	x_{k}	$d_{B}\left(x_{k}\right)$
0	0	ε	12	8.03	1100	24	16.64	100001
1	1	1	13	9.03	1101	25	17.07	100010
2	1.43	10	14	9.47	2000	26	18.07	100011
3	2.43	11	15	10.47	2001	27	18.51	100020
4	2.86	20	16	10.90	10000	28	18.94	100100
5	3.30	100	17	11.90	10001	29	19.94	100101
6	4.30	101	18	12.34	10010	30	20.38	101000
7	4.73	1000	19	13.34	10011	31	21.38	101001
8	5.73	1001	20	13.77	10020	32	21.81	101010
9	6.17	1010	21	14.21	10100	33	22.81	101011
10	7.17	1011	22	15.21	10101	34	23.25	101020
11	7.60	1020	23	15.64	100000	35	23.68	101100

$$
d_{B}^{*}(1)=20010101 \cdots, \quad d_{S(B)}^{*}(1)=101010 \cdots
$$

Distances between B-integers

- How many values can be taken by $x_{k+1}-x_{k}$?
- What are the possible values?

Distances between B-integers

- How many values can be taken by $x_{k+1}-x_{k}$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$
\Delta_{B, n}=\beta_{n-1} \cdots \beta_{0}-M_{B, n}
$$

accordingly to the first position $n \geq 0$ where their B-expansions differ (from left to right).

Distances between B-integers

- How many values can be taken by $x_{k+1}-x_{k}$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$
\Delta_{B, n}=\beta_{n-1} \cdots \beta_{0}-M_{B, n}
$$

accordingly to the first position $n \geq 0$ where their B-expansions differ (from left to right).

Note that:

- $\Delta_{B, 0}=1$ and $\Delta_{B, n}<1$ for all $n \neq 0$.
- It may happen that $\Delta_{B, n}=\Delta_{B, n^{\prime}}$ even though $n \neq n^{\prime}$.

Distances between B-integers

- How many values can be taken by $x_{k+1}-x_{k}$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$
\Delta_{B, n}=\beta_{n-1} \cdots \beta_{0}-M_{B, n}
$$

accordingly to the first position $n \geq 0$ where their B-expansions differ (from left to right).

Note that:

- $\Delta_{B, 0}=1$ and $\Delta_{B, n}<1$ for all $n \neq 0$.
- It may happen that $\Delta_{B, n}=\Delta_{B, n^{\prime}}$ even though $n \neq n^{\prime}$.

We consider the infinite sequence

$$
w_{B}=\left(w_{k}\right)_{k \in \mathbb{N}}
$$

where

$$
w_{k}=n
$$

if $d_{B}\left(x_{k}\right)$ and $d_{B}\left(x_{k+1}\right)$ differ at index n and not at greater indices.
$B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$
We can compute a prefix of w_{B} by looking at the first position where consecutive B-integers differ:

k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}	k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}	k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}
0	0	ε	0	12	8.03	1100	0	24	16.64	100001	1
1	1	1	1	13	9.03	1101	3	25	17.07	100010	0
2	1.43	10	0	14	9.47	2000	0	26	18.07	100011	1
3	2.43	11	1	15	10.47	2001	4	27	18.51	100020	2
4	2.86	20	2	16	10.90	10000	0	28	18.94	100100	0
5	3.30	100	0	17	11.90	10001	1	29	19.94	100101	3
6	4.30	101	3	18	12.34	10010	0	30	20.38	101000	0
7	4.73	1000	0	19	13.34	10011	1	31	21.38	101001	1
8	5.73	1001	1	20	13.77	10020	2	32	21.81	101010	0
9	6.17	1010	0	21	14.21	10100	0	33	22.81	101011	1
10	7.17	1011	1	22	15.21	10101	5	34	23.25	101020	2
11	7.60	1020	2	23	15.64	100000	0	35	23.68	101100	0

$w_{B}=010120301012030401012050101203010120 \cdots$

The sequence w_{B} is S-adic

Proposition

We have $\psi_{B}\left(w_{S(B)}\right)=w_{B}$ where ψ_{B} is the substitution over \mathbb{N} defined by

$$
\psi_{B}: \mathbb{N} \rightarrow \mathbb{N}^{*}, n \mapsto 0^{a_{n+1}}(n+1)
$$

where a_{n} is the least significant digit of $d_{B}\left(M_{B, n}\right)$.

By the term substitution, we mean that $\psi_{B}\left(w_{0} w_{1} w_{2} \cdots\right)=\psi_{B}\left(w_{0}\right) \psi_{B}\left(w_{1}\right) \psi_{B}\left(w_{2}\right) \cdots$.

The sequence w_{B} is S-adic

Proposition

We have $\psi_{B}\left(w_{S(B)}\right)=w_{B}$ where ψ_{B} is the substitution over \mathbb{N} defined by

$$
\psi_{B}: \mathbb{N} \rightarrow \mathbb{N}^{*}, n \mapsto 0^{a_{n+1}}(n+1)
$$

where a_{n} is the least significant digit of $d_{B}\left(M_{B, n}\right)$.

By the term substitution, we mean that $\psi_{B}\left(w_{0} w_{1} w_{2} \cdots\right)=\psi_{B}\left(w_{0}\right) \psi_{B}\left(w_{1}\right) \psi_{B}\left(w_{2}\right) \cdots$.

Corollary

- For an alternate base $B=\left(\beta_{p-1}, \ldots, \beta_{0}\right)$, the sequence w_{B} is fixed by the composition $\psi_{B} \circ \cdots \circ \psi_{S^{p-1}(B)}$.
- In general, the sequence w_{B} is the S-adic sequence given by the sequence of substitutions $\left(\psi_{S^{n}(B)}\right)_{n \in \mathbb{N}}$ applied on the letter 0 :

$$
w_{B}=\lim _{n \rightarrow+\infty} \psi_{B} \circ \psi_{S(B)} \circ \cdots \circ \psi_{S^{n}(B)}(0)
$$

Computing $\psi_{B}: \mathbb{N} \rightarrow \mathbb{N}^{*}, n \mapsto 0^{a_{n+1}}(n+1) \quad$ for $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$
We get that

$$
d_{B}\left(M_{B, 2 n}\right) \text { and } d_{S(B)}\left(M_{S(B), 2 n+1}\right) \text { are prefixes of } d_{B}^{*}(1)=20010101 \cdots
$$

and

$$
\left.d_{B}\left(M_{B, 2 n+1}\right) \text { and } d_{S(B)}\left(M_{S(B), 2 n}\right) \text { are prefixes of } d_{S(B)}^{*}(1)\right)=101010 \cdots .
$$

We then obtain the two substitutions

$$
\psi_{B}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
n \mapsto 0(n+1) \quad \text { for } n \geq 2
\end{array} \quad \text { and } \quad \psi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 001 \\
n \mapsto n+1 \quad \text { for } n \geq 1
\end{array}\right.\right.
$$

and their composition

$$
\Phi_{B}=\varphi_{B} \circ \varphi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 01012 \\
n \mapsto 0(n+2) \quad \text { for } n \geq 1
\end{array}\right.
$$

fixes w_{B} :

$$
w_{B}=\Phi_{B}^{\omega}(0)=(01012)(03)(01012)(03)(04)(01012)(05)(01012)(03)(01012)(03)(04) \cdots
$$

More can be said for alternate bases

Theorem (C., Cisternino, Masáková \& Pelantová 2024+)

Let $B=\left(\beta_{p-1}, \ldots, \beta_{0}\right)$ be an alternate base. There are finitely many possible distances between consecutive B-integers if and only if the base B is Parry, meaning that $d_{S^{i}(B)}^{*}(1)$ is eventually periodic for each i.

For such a base B, we can encode the distances between consecutive B-integers by a sequence taking only finitely many values.

For $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we consider the writings

$$
d_{B}^{*}(1)=20(01)^{\omega}, \quad d_{S(B)}^{*}(1)=(10)^{\omega}=10(10)^{\omega}
$$

in order to obtain common preperiods and periods multiple that are multiple of $p=2$, and the projection

$$
\pi: \mathbb{N} \rightarrow\{0,1,2,3\}, n \mapsto \begin{cases}n, & \text { if } n \in\{0,1\} \\ 2, & \text { if } n \geq 2, \text { even } \\ 3, & \text { if } n \geq 2, \text { odd }\end{cases}
$$

The projected sequence $v_{B}=\pi\left(w_{B}\right)$ also codes the distances between consecutive B-integers:

$$
v_{k}=v_{k^{\prime}} \Longrightarrow x_{k+1}-x_{k}=x_{k^{\prime}+1}-x_{k^{\prime}} .
$$

k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}	v_{B}	k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}	v_{B}	k	x_{k}	$d_{B}\left(x_{k}\right)$	w_{B}	v_{B}
0	0	ε	0	0	12	8.03	1100	0	0	24	16.64	100001	1	1
1	1	1	1	1	13	9.03	1101	3	3	25	17.07	100010	0	0
2	1.43	10	0	0	14	9.47	2000	0	0	26	18.07	100011	1	1
3	2.43	11	1	1	15	10.47	2001	4	2	27	18.51	100020	2	2
4	2.86	20	2	2	16	10.90	10000	0	0	28	18.94	100100	0	0
5	3.30	100	0	0	17	11.90	10001	1	1	29	19.94	100101	3	3
6	4.30	101	3	3	18	12.34	10010	0	0	30	20.38	101000	0	0
7	4.73	1000	0	0	19	13.34	10011	1	1	31	21.38	101001	1	1
8	5.73	1001	1	1	20	13.77	10020	2	2	32	21.81	101010	0	0
9	6.17	1010	0	0	21	14.21	10100	0	0	33	22.81	101011	1	1
10	7.17	1011	1	1	22	15.21	10101	5	3	34	23.25	101020	2	2
11	7.60	1020	2	2	23	15.64	100000	0	0	35	23.68	101100	0	0

$$
\begin{aligned}
w_{B} & =010120301012030401012050101203010120 \cdots \\
v_{B} & =010120301012030201012030101203010120 \cdots
\end{aligned}
$$

The two projected substitutions over the finite alphabet $\{0,1,2,3\}$ are

$$
\varphi_{B}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 03 \\
3 \mapsto 02
\end{array} \quad \text { and } \quad \varphi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 001 \\
1 \mapsto 2 \\
2 \mapsto 3 \\
3 \mapsto 2 .
\end{array}\right.\right.
$$

and their composition

$$
\Phi_{B}=\varphi_{B} \circ \varphi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 01012 \\
1 \mapsto 03 \\
2 \mapsto 02 \\
3 \mapsto 03
\end{array}\right.
$$

is a primitive substitution that fixes v_{B} :

$$
v_{B}=\Phi_{B}^{\omega}(0)=(01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) \cdots
$$

The two projected substitutions over the finite alphabet $\{0,1,2,3\}$ are

$$
\varphi_{B}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 03 \\
3 \mapsto 02
\end{array} \quad \text { and } \quad \varphi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 001 \\
1 \mapsto 2 \\
2 \mapsto 3 \\
3 \mapsto 2 .
\end{array}\right.\right.
$$

and their composition

$$
\Phi_{B}=\varphi_{B} \circ \varphi_{S(B)}:\left\{\begin{array}{l}
0 \mapsto 01012 \\
1 \mapsto 03 \\
2 \mapsto 02 \\
3 \mapsto 03
\end{array}\right.
$$

is a primitive substitution that fixes v_{B} :

$$
v_{B}=\Phi_{B}^{\omega}(0)=(01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) \cdots
$$

NB: For an arbitrary sustitution φ with a fixed point $\varphi^{\omega}(a)$, we don't necessarily have $\pi\left(\varphi^{\omega}(a)\right)=(\pi \circ \varphi)^{\omega}(a)$.

Suppose that all $d_{S^{i}(B)}(1)$ have the same preperiod ℓ and period m, which are multiple of p.
We define a projection

$$
\pi: \mathbb{N} \rightarrow\{0, \ldots, \ell+m-1\}, n \mapsto \begin{cases}n, & \text { if } 0 \leq n \leq \ell+m-1 \\ \ell+((n-\ell) \bmod m), & \text { if } n \geq \ell+m\end{cases}
$$

Then we consider the projected sequence $v_{B}=\pi\left(w_{B}\right)$ and the substitution φ_{B} defined by $\varphi_{B}(n)=\pi\left(\psi_{B}(n)\right)$ for $n \in\{0, \ldots, \ell+m-1\}$.

Theorem (C., Cisternino, Masáková \& Pelantová 2024+)
The composition $\varphi_{B} \circ \varphi_{S(B)} \circ \cdots \circ \varphi_{S^{p-1}(B)}$ is a primitive substitution which fixes v_{B}.

A graph associated with $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$ is built from the quasi-greedy expansions $d_{B}^{*}(1)=20(01)^{\omega}$ and $d_{S(B)}^{*}(1)=10(10)^{\omega}$.

- We can see the subtitutions φ_{B} and $\varphi_{S(B)}$ in this graph.
- The primitiveness of the composition $\varphi_{B} \circ \varphi_{S(B)}$ can be obtained from the properties of the graph.

Combinatorial properties of v_{B}

A sequence $a_{1} a_{2} a_{3} \cdots$ is sturmian if it has exactly $n+1$ length n factors $a_{i} \cdots a_{i+n-1}$ for all n. Proposition (C., Cisternino, Masáková \& Pelantová 2024+)
Let $B=\left(\beta_{p-1}, \ldots, \beta_{0}\right)$ be a Parry alternate base. The sequence v_{B} is sturmian if and only if one of the following cases is satisfied.
Case 1. $p=1$ and $d_{B}^{*}(1)=(d 0)^{\omega}$ with $d \geq 1$.
Case 2. $p=1$ and $d_{B}^{*}(1)=(d+1) d^{\omega}$ with $d \geq 1$.
Case 3. $p=2, d_{B}^{*}(1)=(d 0)^{\omega}$ and $d_{S(B)}^{*}(1)=(e 0)^{\omega}$ with $d, e \geq 1$.

In all cases, one can derive frequencies ρ_{0}, ρ_{1} of letters 0 and 1 in the sturmian sequence v_{B} from the primitive substitution.

We write $x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ if

$$
\gamma=\lim _{n \rightarrow+\infty} a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots a_{n-1}+\frac{1}{a_{n}}}}}
$$

and $a_{0} \in \mathbb{Z}$ and $a_{n} \in \mathbb{N}_{\geq 1}$ for every $n>0$.
If the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is eventually periodic, then we use the notation

$$
\left[a_{0}, a_{1}, \ldots, a_{i}, \overline{a_{i+1}, a_{i+2}, \ldots, a_{i+k}}\right] .
$$

Proposition (Continued)

Case 1. We have $\left(\rho_{0}, \rho_{1}\right)=\left(\frac{\beta_{0}}{\beta_{0}+1}, \frac{1}{\beta_{0}+1}\right)$ and $\rho_{0}=[0,1, \bar{d}]$.
Case 2. We have $\left(\rho_{0}, \rho_{1}\right)=\left(\frac{\beta_{0}-1}{\beta_{0}}, \frac{1}{\beta_{0}}\right)$ and $\rho_{0}=[0, \overline{1, d}]$.
Case 3. We have $\left(\rho_{0}, \rho_{1}\right)=\left(\frac{\beta_{1}}{\beta_{1}+1}, \frac{1}{\beta_{1}+1}\right)$ and $\rho_{0}=[0,1, \overline{e, d}]$.

Surprisingly, one can obtain a sturmian sequence v_{B} with frequency $\rho_{0}=[0, \overline{1, a}]$ in different numeration systems.

- For $p=1$, this is only possible for $a=1$ and the real bases τ and τ^{2} where $\tau=\frac{1+\sqrt{5}}{2}$.
- τ belongs to Case 1 with $d=1$.
- τ^{2} belongs to Case 2 with $d=1$.
- If we allow $p \in\{1,2\}$ then there are infinitely many pairs of numeration systems giving the same frequency $\rho_{0}=[0, \overline{1, a}]$.
- $p=1$ with $d_{B}^{*}(1)=(a+1) a^{\omega}$.

For $a=2$, we obtain the real base $(2+\sqrt{3})$.
The sequence v_{B} is fixed by the substitution $0 \mapsto 0001$ and $1 \mapsto 001$.

- $p=2$ with $d_{B}^{*}(1)=(10)^{\omega}$ and $d_{S(B)}^{*}(1)=(a 0)^{\omega}$.

For $a=2$, we get the alternate base $B=\left(\beta_{1}, \beta_{0}\right)=\left(\frac{1+\sqrt{3}}{2}, 1+\sqrt{3}\right)$.
The sequence v_{B} is fixed by another substitution, namely, $0 \mapsto 0010$ and $1 \mapsto 001$.

Minimal alphabet

In our specific example $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, since $\Delta_{B, 1}=\Delta_{B, 2}=\Delta_{B, 3}$, the image

$$
\sigma\left(v_{B}\right)=0101101010110101 \cdots
$$

under the projection

$$
\sigma:\{0,1,2,3\}^{*} \rightarrow\{0,1\}^{*},\left\{\begin{array}{l}
0 \mapsto 0 \\
1,2,3 \mapsto 1
\end{array}\right.
$$

contains enough information to encode the distances between consecutive B-integers.

This new infinite sequence $\sigma\left(v_{B}\right)$ is the fixed point of the projected substitution

$$
\left\{\begin{array}{l}
0 \mapsto 01011 \\
1 \mapsto 01 .
\end{array}\right.
$$

and hence is sturmian.

Minimal alphabet

In our specific example $B=\left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, since $\Delta_{B, 1}=\Delta_{B, 2}=\Delta_{B, 3}$, the image

$$
\sigma\left(v_{B}\right)=0101101010110101 \cdots
$$

under the projection

$$
\sigma:\{0,1,2,3\}^{*} \rightarrow\{0,1\}^{*},\left\{\begin{array}{l}
0 \mapsto 0 \\
1,2,3 \mapsto 1
\end{array}\right.
$$

contains enough information to encode the distances between consecutive B-integers.

This new infinite sequence $\sigma\left(v_{B}\right)$ is the fixed point of the projected substitution

$$
\left\{\begin{array}{l}
0 \mapsto 01011 \\
1 \mapsto 01 .
\end{array}\right.
$$

and hence is sturmian.

