Substitutions and Cantor real numeration systems

Émilie Charlier

joint work with Célia Cisternino, Zuzana Masáková and Edita Pelantová

Département de mathématiques, ULiège

JNIM 2024, Grenoble 2024, March 20

・ロ・・雪・・ヨ・・ヨ・ うへの

Motivation

In base 2, we write 78 as 1001110 and 7/3 as $10 \bullet 01010101 \cdots$.

When $\frac{U_{n+p}}{U_n}$ has a limit when $n \to \infty$, there is a similar relationship with representations of real numbers via some alternate base $B = (\beta_{p-1}, \dots, \beta_0)$.

イロン 不得 とうほう イロン 二日

Cantor real numeration systems

A Cantor real base is a biinfinite sequence $B = (\beta_n)_{n \in \mathbb{Z}}$ of bases such that

▶
$$\beta_n \in \mathbb{R}_{>1}$$
 for all *n*
▶ $\prod_{n>0} \beta_n = \prod_{n>1} \beta_{-n} = +\infty.$

 $n \ge 0$

We consider biinfinite sequences $a = (a_n)_{n \in \mathbb{Z}}$ over \mathbb{N} having a left tail of zeros, that is, there exists some $N \in \mathbb{Z}$ such that $a_n = 0$ for all $n \ge N$.

$$a_{N-1}\cdots a_0 \bullet a_{-1}a_{-2}\cdots$$
 if $N \ge 1$

$$0 \bullet 0^{-N} a_{N-1} a_{N-2} \cdots \qquad \text{if } N \le 0$$

The associated value map is defined as

$$\operatorname{val}_{B}(a) = \cdots + a_{3}\beta_{2}\beta_{1}\beta_{0} + a_{2}\beta_{1}\beta_{0} + a_{1}\beta_{0} + a_{0} + \frac{a_{-1}}{\beta_{-1}} + \frac{a_{-2}}{\beta_{-1}\beta_{-2}} + \cdots$$

provided that the series is convergent.

If $x = \operatorname{val}_B(a)$, we say that a is a *B*-representation of x.

A distinguished B-representation, called the B-expansion, is obtained by using the greedy algorithm.

In particular:

- ▶ The greedy digits a_n belong to the alphabet $\{0, \ldots, \lceil \beta_n \rceil 1\}$ for all n.
- We have $d_B(1) = 1 \bullet 0^{\omega}$.

► $B = (1 + 2^n)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \ge 1} (1 + \frac{1}{2^n}) \sim 2.38423$. If we perform the greedy algorithm on $x = \frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_B(0 \bullet 0010^{\omega}) = \frac{64}{135} \neq \frac{1}{2}$.

▶ $B = (1 + 2^n)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \ge 1} (1 + \frac{1}{2^n}) \sim 2.38423$. If we perform the greedy algorithm on $x = \frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_B(0 \bullet 0010^{\omega}) = \frac{64}{135} \neq \frac{1}{2}$.

▶ $B = (2 + 2^n)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \ge 0} (2 + 2^n) = \infty$ and $\prod_{n \ge 1} (2 + \frac{1}{2^n}) = \infty$.

▶ $B = (1 + 2^n)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \ge 1} (1 + \frac{1}{2^n}) \sim 2.38423$. If we perform the greedy algorithm on $x = \frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_B(0 \bullet 0010^{\omega}) = \frac{64}{135} \neq \frac{1}{2}$.

▶ $B = (2+2^n)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \ge 0} (2+2^n) = \infty$ and $\prod_{n \ge 1} (2+\frac{1}{2^n}) = \infty$.

If there are only finitely many bases involved, both infinite products are trivially infinite.

► $B = (1 + 2^n)_{n \in \mathbb{Z}}$ is not a Cantor real base since $\prod_{n \ge 1} (1 + \frac{1}{2^n}) \sim 2.38423$. If we perform the greedy algorithm on $x = \frac{1}{2}$ then we obtain the digits $0 \bullet 0010^{\omega}$, although $\operatorname{val}_B(0 \bullet 0010^{\omega}) = \frac{64}{135} \neq \frac{1}{2}$.

▶ $B = (2+2^n)_{n \in \mathbb{Z}}$ is a Cantor real base since $\prod_{n \ge 0} (2+2^n) = \infty$ and $\prod_{n \ge 1} (2+\frac{1}{2^n}) = \infty$.

If there are only finitely many bases involved, both infinite products are trivially infinite.

An alternate base is a periodic Cantor real base. In this case, we simply write

$$B = (\beta_{p-1}, \ldots, \beta_0)$$

and we use the convention that $\beta_n = \beta_{n \mod p}$ for all *n*.

・ロト・(日)・(日)・(日)・(日)・(日)

Parry's theorem for Cantor real bases

Theorem (C. & Cisternino 2021)

A sequence $0 \bullet a_{-1}a_{-2} \cdots$ is the B-expansion of some number $x \in [0,1)$ if and only if $a_{n-1}a_{n-2} \cdots <_{\text{lex}} d^*_{S^n(B)}(1)$ for all n.

Here we used the shifted bases $S^N(B) = (\beta_{n+N})_{n \in \mathbb{Z}}$ and the notion of quasi-greedy *B*-expansion of 1, which is given by

$$d_B^*(1) = d_1 d_2 d_3 \cdots$$

where $\lim_{x\to 1^-} d_B(x) = 0 \bullet d_1 d_2 d_3 \cdots$.

Parry's theorem for Cantor real bases

Theorem (C. & Cisternino 2021)

A sequence $0 \bullet a_{-1}a_{-2} \cdots$ is the B-expansion of some number $x \in [0,1)$ if and only if $a_{n-1}a_{n-2} \cdots <_{\text{lex}} d^*_{S^n(B)}(1)$ for all n.

Here we used the shifted bases $S^N(B) = (\beta_{n+N})_{n \in \mathbb{Z}}$ and the notion of quasi-greedy *B*-expansion of 1, which is given by

$$d_B^*(1) = d_1 d_2 d_3 \cdots$$

where
$$\lim_{x \to 1^{-}} d_B(x) = 0 \bullet d_1 d_2 d_3 \cdots$$
.
For $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we have $S(B) = \left(\frac{5+\sqrt{13}}{6}, \frac{1+\sqrt{13}}{2}\right)$ and we can compute $d_B^*(1) = 20(01)^{\omega} = 20010101 \cdots$ and $d_{S(B)}^*(1) = (10)^{\omega} = 101010 \cdots$.

The sequence

$$0 \bullet 20001020(001)^{\omega}$$

is the *B*-expansion of some $x \in [0, 1)$, whereas it is not the case of the sequence

 $0 \bullet 2000120(001)^{\omega}$.

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

 $d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$ with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

7/22

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

 $d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$ with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

▶ In the case where $\beta_n = \beta$ for all $n \in \mathbb{N}$, the *B*-integers coincide with the classical β -integers introduced in [Gazeau 1997].

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

$$d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$$
 with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

▶ In the case where $\beta_n = \beta$ for all $n \in \mathbb{N}$, the *B*-integers coincide with the classical β -integers introduced in [Gazeau 1997].

• We have $\mathbb{N}_B = \mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_i$ are integers.

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

$$d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$$
 with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

- ▶ In the case where $\beta_n = \beta$ for all $n \in \mathbb{N}$, the *B*-integers coincide with the classical β -integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_B = \mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_i$ are integers.
- The set \mathbb{N}_B is unbounded and has no accumulation point in \mathbb{R} .

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

 $d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$ with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

- ▶ In the case where $\beta_n = \beta$ for all $n \in \mathbb{N}$, the *B*-integers coincide with the classical β -integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_B = \mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_i$ are integers.
- The set \mathbb{N}_B is unbounded and has no accumulation point in \mathbb{R} .

Proof of dicreteness: The *B*-expansion of a *B*-integer smaller than $\beta_{n-1} \cdots \beta_0$ is of the form $a_{m-1} \cdots a_0 \bullet 0^{\omega}$ with $m \le n$. Since $a_i < \beta_i$ for each *i*, there are only finitely many *B*-expansions having this property.

A real number $x \ge 0$ is a *B*-integer if its *B*-expansion is of the form

$$d_B(x) = a_{n-1} \cdots a_0 \bullet 0^{\omega}$$
 with $n \in \mathbb{N}$.

The set of all *B*-integers is denoted by \mathbb{N}_B .

- ▶ In the case where $\beta_n = \beta$ for all $n \in \mathbb{N}$, the *B*-integers coincide with the classical β -integers introduced in [Gazeau 1997].
- We have $\mathbb{N}_B = \mathbb{N}$ if and only if all products $\prod_{i=0}^{n} \beta_i$ are integers.
- The set \mathbb{N}_B is unbounded and has no accumulation point in \mathbb{R} .

Proof of dicreteness: The *B*-expansion of a *B*-integer smaller than $\beta_{n-1} \cdots \beta_0$ is of the form $a_{m-1} \cdots a_0 \bullet 0^{\omega}$ with $m \le n$. Since $a_i < \beta_i$ for each *i*, there are only finitely many *B*-expansions having this property.

Let $(x_k)_{k \in \mathbb{N}}$ be the increasing sequence of *B*-integers:

$$\mathbb{N}_B = \{x_k : k \in \mathbb{N}\}.$$

For every $n \in \mathbb{N}$, we define $M_{B,n} = \max\{x \in \mathbb{N}_B : x < \beta_{n-1} \cdots \beta_0\}$.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all $n \in \mathbb{N}$, if we write $d^*_{S^n(B)}(1) = d_{n,1}d_{n,2}d_{n,3}\cdots$, then $d_B(M_{B,n}) = d_{n,1}\cdots d_{n,n} \bullet 0^{\omega}$.

For every $n \in \mathbb{N}$, we define $M_{B,n} = \max\{x \in \mathbb{N}_B : x < \beta_{n-1} \cdots \beta_0\}$.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all $n \in \mathbb{N}$, if we write $d^*_{S^n(B)}(1) = d_{n,1}d_{n,2}d_{n,3}\cdots$, then $d_B(M_{B,n}) = d_{n,1}\cdots d_{n,n} \bullet 0^{\omega}$.

 $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$

Since $d_B^*(1) = 20(01)^{\omega} = 20010101 \cdots$ and $d_{S(B)}^*(1) = (10)^{\omega} = 101010 \cdots$, we can compute the numbers $M_{B,n}$ as follows:

n	$d_B(M_{B,n})$	$M_{B,n}$
0	ε	0
1	1	1
2	20	$\frac{5+\sqrt{13}}{3}$
3	101	$\frac{5+\sqrt{13}}{2}$
4	2001	$\frac{17+4\sqrt{13}}{3}$
5	10101	$8+2\sqrt{13}$
6	200101	$\frac{109+29\sqrt{13}}{6}$
7	1010101	$26+7\sqrt{13}$

・ロト・西ト・川下・山下・山下・ 一下・ しょう

Let us now compute the first *B*-integers x_k :

k	x _k	$d_B(x_k)$	k	x_k	$d_B(x_k)$	k	Xk	$d_B(x_k)$
0	0	ε	12	8.03	1100	24	16.64	100001
1	1	1	13	9.03	1101	25	17.07	100010
2	1.43	10	14	9.47	2000	26	18.07	100011
3	2.43	11	15	10.47	2001	27	18.51	100020
4	2.86	20	16	10.90	10000	28	18.94	100100
5	3.30	100	17	11.90	10001	29	19.94	100101
6	4.30	101	18	12.34	10010	30	20.38	101000
7	4.73	1000	19	13.34	10011	31	21.38	101001
8	5.73	1001	20	13.77	10020	32	21.81	101010
9	6.17	1010	21	14.21	10100	33	22.81	101011
10	7.17	1011	22	15.21	10101	34	23.25	101020
11	7.60	1020	23	15.64	100000	35	23.68	101100

 $d^*_B(1)=20010101\cdots$, $d^*_{S(B)}(1)=101010\cdots$

・ロ・・母・・ヨ・・ヨ・ シック

9/22

- How many values can be taken by $x_{k+1} x_k$?
- What are the possible values?

- How many values can be taken by $x_{k+1} x_k$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$\Delta_{B,n} = \beta_{n-1} \cdots \beta_0 - M_{B,n}$$

accordingly to the first position $n \ge 0$ where their B-expansions differ (from left to right).

- How many values can be taken by $x_{k+1} x_k$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$\Delta_{B,n} = \beta_{n-1} \cdots \beta_0 - M_{B,n}$$

accordingly to the first position $n \ge 0$ where their B-expansions differ (from left to right).

Note that:

- $\Delta_{B,0} = 1$ and $\Delta_{B,n} < 1$ for all $n \neq 0$.
- lt may happen that $\Delta_{B,n} = \Delta_{B,n'}$ even though $n \neq n'$.

- How many values can be taken by $x_{k+1} x_k$?
- What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

$$\Delta_{B,n} = \beta_{n-1} \cdots \beta_0 - M_{B,n}$$

accordingly to the first position $n \ge 0$ where their B-expansions differ (from left to right).

Note that:

- $\Delta_{B,0} = 1$ and $\Delta_{B,n} < 1$ for all $n \neq 0$.
- lt may happen that $\Delta_{B,n} = \Delta_{B,n'}$ even though $n \neq n'$.

We consider the infinite sequence

$$w_B = (w_k)_{k \in \mathbb{N}}$$

where

$$w_k = n$$

if $d_B(x_k)$ and $d_B(x_{k+1})$ differ at index n and not at greater indices.

$$B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$$

We can compute a prefix of w_B by looking at the first position where consecutive *B*-integers differ:

k	x_k	$d_B(x_k)$	w _B	k	Xk	$d_B(x_k)$	w _B	k	x_k	$d_B(x_k)$	w _B
0	0	ε	0	12	8.03	1100	0	24	16.64	100001	1
1	1	1	1	13	9.03	1101	3	25	17.07	100010	0
2	1.43	10	0	14	9.47	2000	0	26	18.07	100011	1
3	2.43	11	1	15	10.47	2001	4	27	18.51	100020	2
4	2.86	20	2	16	10.90	10000	0	28	18.94	100100	0
5	3.30	100	0	17	11.90	10001	1	29	19.94	100101	3
6	4.30	101	3	18	12.34	10010	0	30	20.38	101000	0
7	4.73	1000	0	19	13.34	10011	1	31	21.38	101001	1
8	5.73	1001	1	20	13.77	10020	2	32	21.81	101010	0
9	6.17	1010	0	21	14.21	10100	0	33	22.81	101011	1
10	7.17	1011	1	22	15.21	10101	5	34	23.25	101020	2
11	7.60	1020	2	23	15.64	100000	0	35	23.68	101100	0

 $w_B = 010120301012030401012050101203010120 \cdots$

The sequence w_B is S-adic

Proposition

We have $\psi_B(w_{S(B)}) = w_B$ where ψ_B is the substitution over \mathbb{N} defined by

 $\psi_B \colon \mathbb{N} \to \mathbb{N}^*, \ n \mapsto 0^{a_{n+1}}(n+1)$

where a_n is the least significant digit of $d_B(M_{B,n})$.

By the term substitution, we mean that $\psi_B(w_0w_1w_2\cdots) = \psi_B(w_0)\psi_B(w_1)\psi_B(w_2)\cdots$.

The sequence w_B is S-adic

Proposition

We have $\psi_B(w_{S(B)}) = w_B$ where ψ_B is the substitution over $\mathbb N$ defined by

```
\psi_B \colon \mathbb{N} \to \mathbb{N}^*, \ n \mapsto 0^{a_{n+1}}(n+1)
```

where a_n is the least significant digit of $d_B(M_{B,n})$.

By the term substitution, we mean that $\psi_B(w_0w_1w_2\cdots) = \psi_B(w_0)\psi_B(w_1)\psi_B(w_2)\cdots$. Corollary

- For an alternate base $B = (\beta_{p-1}, \dots, \beta_0)$, the sequence w_B is fixed by the composition $\psi_B \circ \cdots \circ \psi_{S^{p-1}(B)}$.
- ▶ In general, the sequence w_B is the S-adic sequence given by the sequence of substitutions $(\psi_{S^n(B)})_{n \in \mathbb{N}}$ applied on the letter 0:

$$w_B = \lim_{n \to +\infty} \psi_B \circ \psi_{S(B)} \circ \cdots \circ \psi_{S^n(B)}(0).$$

Computing $\psi_B \colon \mathbb{N} \to \mathbb{N}^*, \ n \mapsto 0^{a_{n+1}}(n+1)$ for $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$

We get that

$$d_B(M_{B,2n})$$
 and $d_{S(B)}(M_{S(B),2n+1})$ are prefixes of $d_B^*(1)=20010101\cdots$

and

$$d_B(M_{B,2n+1})$$
 and $d_{S(B)}(M_{S(B),2n})$ are prefixes of $d^*_{S(B)}(1)) = 101010\cdots$.

We then obtain the two substitutions

$$\psi_B \colon \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 2 \\ n \mapsto 0(n+1) & \text{for } n \ge 2 \end{cases} \quad \text{and} \quad \psi_{S(B)} \colon \begin{cases} 0 \mapsto 001 \\ n \mapsto n+1 & \text{for } n \ge 1 \end{cases}$$

and their composition

$$\Phi_B = \varphi_B \circ \varphi_{\mathcal{S}(B)} \colon \begin{cases} 0 \mapsto 01012 \\ n \mapsto 0(n+2) & \text{ for } n \ge 1 \end{cases}$$

fixes w_B:

 $w_B = \Phi_B^{\omega}(0) = (01012)(03)(01012)(03)(04)(01012)(05)(01012)(03)(01012)(03)(04)\cdots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

More can be said for alternate bases

Theorem (C., Cisternino, Masáková & Pelantová 2024+)

Let $B = (\beta_{p-1}, ..., \beta_0)$ be an alternate base. There are finitely many possible distances between consecutive B-integers if and only if the base B is Parry, meaning that $d_{S^i(B)}^*(1)$ is eventually periodic for each *i*.

For such a base *B*, we can encode the distances between consecutive *B*-integers by a sequence taking only finitely many values.

For $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, we consider the writings

$$d^*_B(1) = 20(01)^\omega, \quad d^*_{S(B)}(1) = (10)^\omega = 10(10)^\omega.$$

in order to obtain common preperiods and periods multiple that are multiple of p = 2, and the projection

$$\pi \colon \mathbb{N} \to \{0, 1, 2, 3\}, \ n \mapsto \begin{cases} n, & \text{if } n \in \{0, 1\}; \\ 2, & \text{if } n \ge 2, even; \\ 3, & \text{if } n \ge 2, odd. \end{cases}$$

14/22

The projected sequence $v_B = \pi(w_B)$ also codes the distances between consecutive *B*-integers: $v_k = v_{k'} \implies x_{k+1} - x_k = x_{k'+1} - x_{k'}$.

k	x_k	$d_B(x_k)$	w _B	v _B	k	x_k	$d_B(x_k)$	w _B	v _B	k	x_k	$d_B(x_k)$	w _B	v _B
0	0	ε	0	0	12	8.03	1100	0	0	24	16.64	100001	1	1
1	1	1	1	1	13	9.03	1101	3	3	25	17.07	100010	0	0
2	1.43	10	0	0	14	9.47	2000	0	0	26	18.07	100011	1	1
3	2.43	11	1	1	15	10.47	2001	4	2	27	18.51	100020	2	2
4	2.86	20	2	2	16	10.90	10000	0	0	28	18.94	100100	0	0
5	3.30	100	0	0	17	11.90	10001	1	1	29	19.94	100101	3	3
6	4.30	101	3	3	18	12.34	10010	0	0	30	20.38	101000	0	0
7	4.73	1000	0	0	19	13.34	10011	1	1	31	21.38	101001	1	1
8	5.73	1001	1	1	20	13.77	10020	2	2	32	21.81	101010	0	0
9	6.17	1010	0	0	21	14.21	10100	0	0	33	22.81	101011	1	1
10	7.17	1011	1	1	22	15.21	10101	5	3	34	23.25	101020	2	2
11	7.60	1020	2	2	23	15.64	100000	0	0	35	23.68	101100	0	0

 $w_B = 010120301012030401012050101203010120\cdots$

 $v_B = 010120301012030201012030101203010120\cdots$

The two projected substitutions over the finite alphabet $\{0, 1, 2, 3\}$ are

$$\varphi_B \colon \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 2 \\ 2 \mapsto 03 \\ 3 \mapsto 02 \end{cases} \quad \text{and} \quad \varphi_{S(B)} \colon \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 2. \end{cases}$$

and their composition

$$\Phi_B = \varphi_B \circ \varphi_{\mathcal{S}(B)} : \begin{cases} 0 \mapsto 01012 \\ 1 \mapsto 03 \\ 2 \mapsto 02 \\ 3 \mapsto 03 \end{cases}$$

is a primitive substitution that fixes v_B :

 $v_B = \Phi_B^{\omega}(0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02)\cdots$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

The two projected substitutions over the finite alphabet $\{0, 1, 2, 3\}$ are

$$\varphi_B \colon \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 2 \\ 2 \mapsto 03 \\ 3 \mapsto 02 \end{cases} \quad \text{and} \quad \varphi_{S(B)} \colon \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 2. \end{cases}$$

and their composition

$$\Phi_B = \varphi_B \circ \varphi_{S(B)} \colon \begin{cases} 0 \mapsto 01012 \\ 1 \mapsto 03 \\ 2 \mapsto 02 \\ 3 \mapsto 03 \end{cases}$$

is a primitive substitution that fixes v_B :

 $v_B = \Phi_B^{\omega}(0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02)\cdots$

NB: For an arbitrary sustitution φ with a fixed point $\varphi^{\omega}(a)$, we don't necessarily have $\pi(\varphi^{\omega}(a)) = (\pi \circ \varphi)^{\omega}(a)$.

Suppose that all $d_{S^{i}(B)}(1)$ have the same preperiod ℓ and period m, which are multiple of p. We define a projection

$$\pi \colon \mathbb{N} \to \{0, \ldots, \ell + m - 1\}, \ n \mapsto \begin{cases} n, & \text{if } 0 \le n \le \ell + m - 1; \\ \ell + ((n - \ell) \mod m), & \text{if } n \ge \ell + m. \end{cases}$$

Then we consider the projected sequence $v_B = \pi(w_B)$ and the substitution φ_B defined by $\varphi_B(n) = \pi(\psi_B(n))$ for $n \in \{0, \ldots, \ell + m - 1\}$.

Theorem (C., Cisternino, Masáková & Pelantová 2024+)

The composition $\varphi_B \circ \varphi_{S(B)} \circ \cdots \circ \varphi_{S^{p-1}(B)}$ is a primitive substitution which fixes v_B .

A graph associated with $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$ is built from the quasi-greedy expansions $d_B^*(1) = 20(01)^{\omega}$ and $d_{S(B)}^*(1) = 10(10)^{\omega}$.

- We can see the subtitutions φ_B and $\varphi_{S(B)}$ in this graph.
- ► The primitiveness of the composition \(\varphi_B \circ \varphi_{S(B)}\) can be obtained from the properties of the graph.

A sequence $a_1 a_2 a_3 \cdots a_{i+n-1}$ for all n.

Proposition (C., Cisternino, Masáková & Pelantová 2024+)

Let $B = (\beta_{p-1}, \dots, \beta_0)$ be a Parry alternate base. The sequence v_B is sturmian if and only if one of the following cases is satisfied.

Case 1. p = 1 and $d_{B}^{*}(1) = (d0)^{\omega}$ with $d \ge 1$.

Case 2. p = 1 and $d_{B}^{*}(1) = (d + 1)d^{\omega}$ with $d \ge 1$.

Case 3. p = 2, $d_B^*(1) = (d0)^{\omega}$ and $d_{S(B)}^*(1) = (e0)^{\omega}$ with $d, e \ge 1$.

In all cases, one can derive frequencies ρ_0 , ρ_1 of letters 0 and 1 in the sturmian sequence v_B from the primitive substitution.

We write $x = [a_0, a_1, a_2, ...]$ if

and $a_0 \in \mathbb{Z}$ and $a_n \in \mathbb{N}_{\geq 1}$ for every n > 0.

If the sequence a_0, a_1, a_2, \ldots is eventually periodic, then we use the notation

$$[a_0, a_1, \ldots, a_i, \overline{a_{i+1}, a_{i+2}, \ldots, a_{i+k}}].$$

Proposition (Continued)

Case 1. We have $(\rho_0, \rho_1) = \left(\frac{\beta_0}{\beta_0+1}, \frac{1}{\beta_0+1}\right)$ and $\rho_0 = [0, 1, \overline{d}]$. Case 2. We have $(\rho_0, \rho_1) = \left(\frac{\beta_0-1}{\beta_0}, \frac{1}{\beta_0}\right)$ and $\rho_0 = [0, \overline{1, d}]$. Case 3. We have $(\rho_0, \rho_1) = \left(\frac{\beta_1}{\beta_1+1}, \frac{1}{\beta_1+1}\right)$ and $\rho_0 = [0, 1, \overline{e, d}]$. Surprisingly, one can obtain a sturmian sequence v_B with frequency $\rho_0 = [0, \overline{1, a}]$ in different numeration systems.

- For p = 1, this is only possible for a = 1 and the real bases τ and τ^2 where $\tau = \frac{1+\sqrt{5}}{2}$.
 - τ belongs to Case 1 with d = 1.
 - τ^2 belongs to Case 2 with d = 1.
- If we allow p ∈ {1,2} then there are infinitely many pairs of numeration systems giving the same frequency ρ₀ = [0, 1, a].

For a = 2, we obtain the real base $(2 + \sqrt{3})$. The sequence v_B is fixed by the substitution $0 \mapsto 0001$ and $1 \mapsto 001$.

•
$$p = 2$$
 with $d_B^*(1) = (10)^{\omega}$ and $d_{S(B)}^*(1) = (a0)^{\omega}$.

For a = 2, we get the alternate base $B = (\beta_1, \beta_0) = (\frac{1+\sqrt{3}}{2}, 1 + \sqrt{3})$. The sequence v_B is fixed by another substitution, namely, $0 \mapsto 0010$ and $1 \mapsto 001$.

Minimal alphabet

In our specific example $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, since $\Delta_{B,1} = \Delta_{B,2} = \Delta_{B,3}$, the image

$$\sigma(v_B) = 0101101010110101 \cdots$$

under the projection

$$\sigma \colon \{0,1,2,3\}^* o \{0,1\}^*, \; egin{cases} 0 \mapsto 0 \ 1,2,3 \mapsto 1 \ 1,2,3 \mapsto 1 \end{cases}$$

contains enough information to encode the distances between consecutive B-integers.

This new infinite sequence $\sigma(v_B)$ is the fixed point of the projected substitution

$$\begin{cases} 0 \mapsto 01011 \\ 1 \mapsto 01. \end{cases}$$

and hence is sturmian.

Minimal alphabet

In our specific example $B = \left(\frac{1+\sqrt{13}}{2}, \frac{5+\sqrt{13}}{6}\right)$, since $\Delta_{B,1} = \Delta_{B,2} = \Delta_{B,3}$, the image

$$\sigma(v_B) = 01011010101010101 \cdots$$

under the projection

$$\sigma \colon \{0,1,2,3\}^* o \{0,1\}^*, \; egin{cases} 0 \mapsto 0 \ 1,2,3 \mapsto 1 \ 1,2,3 \mapsto 1 \end{cases}$$

contains enough information to encode the distances between consecutive B-integers.

This new infinite sequence $\sigma(v_B)$ is the fixed point of the projected substitution

$$\begin{cases} 0 \mapsto 01011 \\ 1 \mapsto 01. \end{cases}$$

and hence is sturmian.