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From numbers to words

Usually integers are represented by finite words while real numbers are represented by infinite

words.
» In base 10: 148 — 148, % — 0.3333:-:, m — 3.141592--.
» In base 2: 148 — 10010100, 1 5 0.01010101-- -, m™—11.001001000011 - - -

3

The basic consideration is as follows: properties of numbers are translated into combinatorial

properties of their representations.



Recognizable sets of integers
A subset X of N is recognizable with respect to a given numeration system S,
or S-recognizable, if the language
{reps(n) : n € X}

is regular, i.e., is accepted by a finite automaton.

P> The set 2N of even non-negative integers is 2-recognizable.
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»> The set {2" : n € N} of powers of 2 is 2-recognizable.



Changing the system

» The set 2N of even non-negative integers is 3-recognizable.

In fact, the set 2N is b-recognizable for all integer bases b.

> The set {2" : n € N} of powers of 2 is not 3-recognizable.

This is a consequence of Cobham'’s theorem.



Cobham'’s theorem

Two integers k and ¢ are multiplicatively independent if k™ = ¢" and m,n € N implies
m=n=0.

Theorem (Cobham 1969)

Let b and b’ be multiplicatively independent integer bases. If a subset of N is simultaneously

b-recognizable and b’-recognizable, then it is a finite union of arithmetic progressions (possibly
finite).
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From words to numbers

On the other hand, infinite words may also represent sets of numbers:

the characteristic sequence of a subset of N is a binary infinite word.
» The set 2N gives the periodic infinite word 10101010 - -

»> The set {2" : n € N} gives the aperiodic infinite word 011010001000000010000 - - -

Exercise: Show that the characteristic sequence of a subset of N is ultimately periodic, that is,
of the form uvvv -- -, if and only if it is a finite union of arithmetic progressions (possibly
finite).

2NU (3N +2) U {3}
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012345678910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

For this reason, we also talk about ultimately periodic sets of integers.



Linking recognizable sets and automatic sequences

For an integer base b > 2, a subset X of N is b-recognizable if and only if its characteristic
sequence is b-automatic: there exists a DFAO that on input rep,(n) ouputs 1 if n € X, and

outputs 0 otherwise.

For example, the DFAO

0,2 0,2
1
—
1 1 0
generates the periodic sequence
1010101010 - -

when reading 3-representations of integers, which corresponds to the subset of even

non-negative integers
{0,2,4,6,8,...}.



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.



Automatic sequences
A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that
vneN, f(n)=7(5(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0110



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

011010



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0110100110



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

011010011001



Automatic sequences

A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, 0, A, 7, B) such that

Vn €N, f(n)=1(6(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001100101 - - -



Automatic sequences
A sequence f: N — B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, qo, , A, T, B) such that
vneN, f(n)=7(5(qo,reps(n)))

» The Thue-Morse word 01101001100101 - - - is a fixed point of the substitution
0—01
1— 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001100101 - - -

This infinite word is 2-automatic since it is generated by the DFAO

when reading integers in base 2.



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

010



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001010



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001010010



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001001 - - -



» The Fibonacci sequence 0100101001001 - - - is the fixed point of the substitution

0— 01
1—0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001001 - - -

The Fibonacci sequence 0100101001001 - - - is generated by the DFAO

when reading the Zeckendorf representations of the integers.



A range of numeration systems

» Unary representations

A natural number n is represented by the finite word rep;(n) = a” where a is any fixed
symbol.

Exercise: Show that the 1-recognizable subsets of N are exactly the ultimately periodic
sets.

» Binary representations

16| 8| 4|21
a4 | as | ax | a1 | ao

OoORrRKRHKRR
ORrFROORK
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1

£—1 i .
We have n = Zi:o a;2' with ap_1 = 1, and we write rep,(n) = ag—1 - - - ao.



» Integer base representations

Let b > 2 be an integer. A natural number n is represented by the finite word
repy(n) = ag_1 - - - ap obtained from the greedy algorithm:

-1
n= E aib'.
i=0

The greedy algorithm only imposes to have a nonzero leading digit ap_1.

Thus, the set of all greedy representations is

{1,...,b—1}{0,--- ,b—1}* U {e}.



» Zeckendorf representations

Let F = (Fi)i»0 = (1,2,3,5,8,...) be the sequence obtained from the rules:

Fo=1, L =2 and F,'+2 = F,'+1+F,' for i > 0.

Again, we can use the greedy algorithm in order to produce a sequence of digits

1

ag_1---ag such that n = Zf:o aiFi:
8 5 3 2 1
as | a3 | ax | a1 |a|[ n
0
1 1
1 0 2
1 0 0 3
1 0 1 4
1 0 0 0 5
1|10|0|1|6®6
1 0 1 0 7
1 0 0 0 0 8

In addition to having a nonzero leading digit a;,_1, the greedy algorithm imposes that

the valid representations do not contain two consecutive 1's.

The set of all greedy representations is

1{0,01}* U {}.

[Zeckendorf-1972]



» Positional representations

Let U = (U;)i>0 be a base sequence, that is, an increasing sequence of integers such

that Up = 1 and the quotients 21

¢ are bounded.
i

A natural number n is represented by the finite word
repy(n) = ag—1---ao

obtained from the greedy algorithm:

A description of the numeration language
Ly = 0"{repy(n): n € N}
strongly depends on the base sequence U.

Given such a system U, other choices of representations could be made, such as the lazy

algorithm for instance.

Knuth 1981, Fraenkel 1985



Representing integers -
P . .g & Representing real numbers
via an integer

via a real base 8

base sequence U

Which link?



Representing real numbers in base 3

Any x € [0,1) can be decomposed in a unique way as

oo
-3

i=1

where a; € {0,1,2} and ajajy1ai+2 -+ # 2% for all /.

We write d3(x) = ajapaz - - -.

Define D3 = {d3(x) : x € [0,1)}.

The topological closure of Dj is called the 3-shift:

S3 ={w € {0,1,2}* : Fac(w) C Fac(D3)} = {0,1,2}*.

Straightforward but crucial observation: Fac(S3) = Ls.



Representing real numbers in base ¢

Let p = H‘f (the golden mean).

Any x € [0,1) can be decomposed in a unique way as

)
=25
Pl
i=1

where a; € {0,1}, ajaj+1 # 11 and ajajr1ait2 - - - # (10)« for all i.

We write dy(x) = arapaz - - -
Define Dy, = {dy,(x) : x € [0,1)}.
The topological closure of Dy, is called the -shift:

S, = {w € {0,1}* : Fac(w) C Fac(D,)} = {0,1}* \ {0,1}*11{0, 1}*.

Straightforward but crucial observation: Fac(S,) = NE.



Representing real numbers via real bases 5 > 1
Let 8 > 1 be real number (called the base).
We may represent any x € [0, 1] by using the following greedy algorithm.

For all i > 1, let a; be the greatest integer a such that

i—1

2 + 2 <x
g BT
j=1
We get that
oo
ai
B
i=1
The infinite word ds(x) = ajap - - - is called the B-expansion of x.

Only finitely many digits are used, namely 0,1,...,|3].

[Rényi 1959]



The (-shift

For B > 1, we let Dg = {dg(x) : x € [0,1)}.
The 3-shift is the topological closure of Dg:

Sg={we{0,...,[B] —1}* : Fac(w) C Fac(Dg)}.



Parry's characterization of elements in the (§-shift

In Parry’s theorem, the B-expansion and the quasi-greedy [-expansion of 1 play crucial roles.
The quasi-greedy [-expansion of 1 is

d3(1) = tim ds(x).

x—=17

Combinatorial definition:
> If dg(1) does not end with a tail of zeros, then we simply have d(1) = dg(1).

> If dg(1) = dy--- dy0“ with dy # 0, in which case we say that dg(1) is finite,
then dj(1) = (ch - -~ dp—1(de — 1))*.

Theorem (Parry 1960)
Sp={we{0,...,[B] = 1}¥ : Vi > 1, wiwis1--- <jex d5(1)}

[Parry 1960]



Parry's descriptions of the 3-shift and the @-shift

For 8 =3, we get d3(1) = 30% and dj (1) = 2*. So Parry’s theorem gives

S3 = {W S {0, 1,2}W Vi> 1, wiwigr - <lex 2“}}.

For B = ¢, we get d,(1) = 110% and dj(1) = (10)“. So Parry's theorem gives

S, ={we{0,1}¥:Vi>1, wiwi1--- <jex (10)*}.



The B-shift Sg is called sofic if Fac(Sg) is a regular language.
As a consequence of Parry’s characterization, we get:

Corollary

The B-shift is sofic if and only if dg(l) is an ultimately periodic word.

The Parry automaton associated with 5 where dg(l) =t1...tm(tmt1- " tmn)®.
Such numbers and automata are named after Parry:

> A real base 5 > 1 is a called Parry number if d;(l) is an ultimately periodic word.

» The drawn automaton is called the Parry automaton associated with



The Parry automata for 3, ¢ and ?
For B = 3, since d3*(1) = 2%, we get
0,1,2

-6

For B = ¢, since d(1) = (10)*, we get

0
~Q——0

For 8 = ¢?, since dj(1) = 21*, we get



Bertrand numeration systems

Let U be a positional numeration system.
Two desirable properties of the numeration language Ly = 0*repy(N) are:
> Ly is prefix-closed if all prefixes of words in Ly also belong to L.

» Ly is prolongable if for all w in Ly, the word w0 also belongs to L.

We say that U is a Bertrand numeration system if Ly is both prefix-closed and prolongable.

Equivalently: Vw € AY,, w € Ly < w0 € Ly.

[Bertrand-Mathis 1989]
[Bruyere & Hansel 1997]



Canonical Bertrand systems associated with a real base (3

For a real number 8 > 1, define
U=aU_i1+aU_2+---+alg+1, Vi>0
where (a;)i>1 is given by d;(l).

The so-obtained sequence U = (U;);>o defines a positional numeration system for
representing integers.

This numeration system is Bertrand, and it has 8 as a dominant root, meaning that

U.
lim —1 — 3.
i—oo U,‘
Moreover, we have the language equality
LU = FaC(Sﬁ)

Thanks to Parry’s characterization, we see that
Ly is regular <= [ is a Parry number.

[Bertrand-Mathis 1989]



Canonical Bertrand systems associated with 3,  and (2

For 3 = 3, since dj (1) = 2, we get U; = 2U;—1 +2U;—2 +--- +2Up + 1.
This gives Uy =1, Uy =2Up+1 =3, U =2U; +2Up+1 =9,

Us =2U; +2U; +2Ug +1 =27...
For 8 = ¢, since d(1) = (10)~, we get

U1+ U-_3+---+U+1, ifi=0 (mod2);
U_1+U—3+--+U+1, ifi=1 (mod?2).

U =

Thisgives Uy =1, U1 =Up+1=2, Upb=U1+1=3, Us=Ua+Up+1=5,
Uy=Us+ U +1=8...

For 8 = 2, since d%5(1) =21¢, we get Uj =2U; 1+ Uia+ -+ Up + 1.

This gives Up =1, Uy =2Up+1=3, U =2U;1 + Uy +1 =38,
Us=2U+ Ui +Up+1=21...



Non-Bertrand systems
Define
U=aU_1+aU_2+---+alU+1, Vi>0

with the sequence of coefficients given by

(a;);ZI = 10110%.

1

This system is again linked with the Golden ratio ¢ since Z + =5+ 1

o =1 lthasypasa
. . U;
dominant root : lim; 0o <+ =
i
We have

Up=1, Ui=U+1=2 Up=U+1=3, U =U-+U-+1=5,
U=U_1+U_s3+U_s+1, i>4

so that U = (1,2,3,5,9,15,24,39,...).

This system is not Bertrand since for example, 1100, 11000 € Ly but 11,110,110000 ¢ L,

showing that Ly is neither prefix-closed nor prolongable.

In fact, we have
Uit1 + Ui, ifi=23 (mod 4);

U2 =
Uwn+ U +1, ifi=0,1 (mod 4).



The canonical Bertrand system U associated with 8 has the property that
repy(Uj — 1) = Pref;(dj(1)), forall i > 0.

Proposition (Hollander 1998)

Let U be a positional numeration system such that % =p>1
> Ifdg(l) = d;(l) is not finite, then

lim repy(U; — 1) = dj(1).
1— 00

> Ifdg(1) =dy - d0¥ with dp # 0, then for all n > 0 and all large enough i, there exists
k > 0 such that

Prefn(repy (Ui — 1)) = Prefa((dy - - - de—1(de — 1))¥dh - - - dp0®).

[Hollander 1998]



The Zeckendorf system F = (1,2,3,5,8,13,21,34,...), which is the canonical Bertrand
system associated with ¢ satisfies

repr(1) =1, repp(2) = 10, repp(4) = 101, repg(7) = 1010, repg(11) = 10101, ...

that is
repg(F; — 1) = Pref;(d;(1)) = Pref;((10)*).

The non-Bertrand system U = (1,2,3,5,9,15,24,39,...) we've seen before (still with the

dominant root ¢) is such that
repy(1) = 1, repy(2) = 10, repy(4) = 101, repy(8) = 1100, rep(14) = 11000, ...
that is

Pref;((10)~), ifi=0,1 (mod 4);

repy(U; — 1) =
Pref;(110¢), if i=2,3 (mod 4).



A characterization of Bertrand numeration systems

Proposition (C., Cisternino & Stipulanti 2022)

Let U be a positional numeration system such that lim % =p>1
i—oo 7!

If lim repy (Ui — 1) exists, then it is either dE(l) or dg(1).

i—o00

Theorem (C., Cisternino & Stipulanti 2022)
A positional numeration system U is Bertrand if and only if one of the following conditions is

satisfied.
1. We have repy(U; — 1) = Pref;(10%) for all i > 0.
2. There exists 8 > 1 such that rep, (Ui — 1) = Pref,—(d;(l)) for all i > 0.

3. There exists 8 > 1 such that repy(U; — 1) = Pref;(dg(1)) for all i > 0.

[C., Cisternino & Stipulanti 2022]



Regularity of Ly

A fundamental question is the following:

» Given a positional system U, can we decide if the numeration language L is regular?

» And even more precisely, can characterize those systems U giving rise to a regular

numeration language Ly?

A necessary condition is that the sequence U = (U;);>¢ is linear, i.e., it must satisfy a linear

recurrence relation with integer coefficients: there exist integers ci, ..., ¢k such that
U=cqlU_1+cU_2 -+ cU_y, foralli>k.
The characteristic polynomial of the recurrence relation is

Xk — C]_Xk_1 — C2Xk_2 — o — Ck.



This question was studied by Hollander in the case of linear systems with a dominant root,

i.e., such that the limit lim;_ oo Ul"f_l exists and is greater than 1.
1

A clever observation he made was that is sufficient to study the regularity of the language
made of words of maximal length.

Proposition (Hollander 1998)
Ly is regular <= Max(Ly) := {repy(Ui — 1) : i > 0} is regular.
He also showed the following necessary condition:

Proposition (Hollander 1998)

If U has a dominant root 3 > 1 and if Ly is regular, then 3 is a Parry number.



In order to give Hollander's full statement, we need to introduce the notion of 3-polynomials.

Suppose that d;(l) =t1...tm(tmt+1 - tmtn)*, then the polynomial

m+n

m
Pﬂ,m,n — Xm+n _ Z tiXm+n7i —_ | xm_ Z timei
i=1

i=1

is called a [3-polynomial.
For m, n minimal, we get the canonical S-polynomial, simply denoted Pgs.

> If dg(l) =21%, then m=n=1 and

Pg=(X?-2X-1)— (X —2) = X>-3X + 1.

> If dz(1) = (10)*, then m =0, n = 2 and

Ps=(X?-X-0)—-(X)=X>-X-1.

In the case where dg(1) = dy ... d,0% is finite (with dp # 0), it is easy to see that

£
Py =X' = X!,
i=1



Theorem (Hollander 1998)

Let U be a linear numeration system with a dominant root 8 > 1.
» If Ly is regular, then (3 is a Parry number.

> Case where dg(1) = dg(l).
» Ly is regular if and only if U satisfies a recurrence relation of characteristic polynomial

Pg,m,n for some m, n.

» Case where dg(1) = di ... d,0% with dp # 0.

» If U satisfies a recurrence relation of characteristic polynomial Pg . » for some m, n, then
Ly is regular.
» If Ly is regular, then the base sequence U satisfies a recurrence relation of characteristic

polynomial of the form (X* — 1)Pg. m , for some m, n.



[-integers and sturmian words

A real number x > 0 is a [S-integer if its S-expansion is of the form
dg(x) = ap—1---a0.0¥ with neN.

The set of all B-integers is denoted by Nj.



[-integers and sturmian words

A real number x > 0 is a (-integer if its S-expansion is of the form

dg(x) = ap—1---a0.0¥ with neN.

The set of all B-integers is denoted by Nj.

Lemma

This set is unbounded and discrete, i.e., it has no accumulation point in R.

Proof

The B-expansion of a B-integer smaller than 8" is of the form ap,_—1 -+ a9.0% with m < n.

Since aj < B for each i, there are only finitely many S-expansions having this property. O



[-integers and sturmian words

A real number x > 0 is a (-integer if its S-expansion is of the form
dg(x) = ap—1---a0.0¥ with neN.

The set of all B-integers is denoted by Nj.

Lemma
This set is unbounded and discrete, i.e., it has no accumulation point in R.
Proof

The B-expansion of a B-integer smaller than 8" is of the form ap,_—1 -+ a9.0% with m < n.

Since aj < B for each i, there are only finitely many S-expansions having this property. O
Let (xx)ken be the increasing sequence of B-integers:
Ng = {xx : k € N}.

[Gazeau 1997]



Distances between consecutive [3-integers

For 8 = ¢, there are only two possible distances Ag =1 and A; = é =¢p—1

The distances xx11 — xx between consecutive -integers are coded by the Fibonacci word
0100101001001010- - -.

0 1 0 0 1 0 1 0 0 1 0 0
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Theorem

The sequence (xx11 — Xk )k>0 of distances between consecutive [3-integers takes only finitely
many values if and only if the base B is a Parry number, in which case the corresponding
infinite word is a fixed point of a primitive substitution.

Let d;(l) = titpt3---. The possible distances are given by

S

titk
A= Valﬁ(o.t;+1fi+2t,'+3 cee ) = Z %{Lk
k=1

By letting wy, = i if xx11 — xx = A, the infinite word wg = wowiw; - - - encodes the distances

between [-integers.
If dE(l) =t tm(tms1 - tmen)® for minimal m, n, then there are exactly m + n distinct
distances, and wg is written over the alphabet {0,...,m+ n—1}.
The infinite word wg is the fixed point of the Parry substitution
0~ 0"1
1+ 022

m+n—2 +— 0fm+n—1(m+n—1)

m+n—1 1+ 0fmtnm.



Combinatorial properties of wg
The factor complexity of an infinite word w is the function C(n) counting the number of
factors of length n in w.
Aperiodic words with factor complexity C(n) = n+ 1 are called sturmian.

For example, the Fibonacci word f = 01001010010010100101001001010- - - is sturmian:

Facy (f) = {0, 1}

Facy(f) = {00,01, 10}

Facs(f) = {001,010, 100,101}

Facy4(f) = {0010, 0100, 0101, 1001, 1010}

> wg is sturmian if and only if 3 is a quadratic Parry number.

» In the case where dg(1) is finite, Arnoux-Rauzy words wg are characterized in [Frougny,
Masakova, Pelantova 2004].

> wg with affine factor complexity C(n) = an+ b are characterized in [Bernat, Masakova,
Pelantova 2007].



Current work:
» Regularity in the non dominant root case.
» Cantor real numeration systems, in particular, alternating real bases.

» In this context, generalized B-integers can be coded by words of other types, called

S-adic words.



Thank youl!
Merci !



