# Systèmes de numération pour les réels et pour les entiers : introduction illustrée et quelques exemples d'applications

#### Émilie Charlier

Département de mathématique, Université de Liège, Belgique

AFRIMATH, Abidjan 3 avril 2025

#### From numbers to words

Usually integers are represented by finite words while real numbers are represented by infinite words.

- ln base 10: 148  $\rightarrow$  148,  $\frac{1}{3} \rightarrow$  0.3333 $\cdots$ ,  $\pi \rightarrow$  3.141592 $\cdots$
- ▶ In base 2: 148  $\rightarrow$  10010100,  $\frac{1}{3} \rightarrow$  0.01010101  $\cdots$ ,  $\pi \rightarrow$  11.001001000011  $\cdots$

The basic consideration is as follows: properties of numbers are translated into combinatorial properties of their representations.

# Recognizable sets of integers

A subset X of  $\mathbb N$  is recognizable with respect to a given numeration system S, or S-recognizable, if the language

$$\{\operatorname{rep}_S(n):n\in X\}$$

is regular, i.e., is accepted by a finite automaton.

► The set 2N of even non-negative integers is 2-recognizable.



▶ The set  $\{2^n : n \in \mathbb{N}\}$  of powers of 2 is 2-recognizable.



# Changing the system

▶ The set 2N of even non-negative integers is 3-recognizable.



In fact, the set  $2\mathbb{N}$  is *b*-recognizable for all integer bases *b*.

▶ The set  $\{2^n : n \in \mathbb{N}\}$  of powers of 2 is not 3-recognizable.

This is a consequence of Cobham's theorem.

#### Cobham's theorem

Two integers k and  $\ell$  are multiplicatively independent if  $k^m = \ell^n$  and  $m, n \in \mathbb{N}$  implies m = n = 0.

## Theorem (Cobham 1969)

Let b and b' be multiplicatively independent integer bases. If a subset of  $\mathbb N$  is simultaneously b-recognizable and b'-recognizable, then it is a finite union of arithmetic progressions (possibly finite).

$$2\mathbb{N} \cup (3\mathbb{N}+2) \cup \{3\}$$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

#### From words to numbers

On the other hand, infinite words may also represent sets of numbers: the characteristic sequence of a subset of  $\mathbb N$  is a binary infinite word.

- ▶ The set  $2\mathbb{N}$  gives the periodic infinite word  $10101010\cdots$
- ▶ The set  $\{2^n : n \in \mathbb{N}\}$  gives the aperiodic infinite word 01101000100000010000 · · ·

Exercise: Show that the characteristic sequence of a subset of  $\mathbb{N}$  is ultimately periodic, that is, of the form  $uvvv\cdots$ , if and only if it is a finite union of arithmetic progressions (possibly finite).

$$2\mathbb{N} \cup \textbf{(}3\mathbb{N} + 2\textbf{)} \cup \{3\}$$

For this reason, we also talk about ultimately periodic sets of integers.

## Linking recognizable sets and automatic sequences

For an integer base  $b \geq 2$ , a subset X of  $\mathbb N$  is b-recognizable if and only if its characteristic sequence is b-automatic: there exists a DFAO that on input  $\operatorname{rep}_b(n)$  ouputs 1 if  $n \in X$ , and outputs 0 otherwise.

#### For example, the DFAO



generates the periodic sequence

1010101010 . . .

when reading 3-representations of integers, which corresponds to the subset of even non-negative integers

$$\{0, 2, 4, 6, 8, \ldots\}.$$

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

► The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

0

A sequence  $f\colon \mathbb{N}\to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A}=(Q,q_0,\delta,A,\tau,B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

<u>0</u>1

A sequence  $f\colon \mathbb{N}\to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A}=(Q,q_0,\delta,A,\tau,B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

 $0\underline{1}10$ 

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

 $01\underline{1}010$ 

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

 $011\underline{0}1001$ 

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

 $0110\underline{1}00110$ 

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

 $01101\underline{0}011001$ 

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_{S}(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0\mapsto 01$$

$$1\mapsto 10.$$

To get the Thue-Morse word, apply those rules iteratively from 0:

$$011010\underline{0}1100101\cdots$$

A sequence  $f: \mathbb{N} \to B$  is called automatic with respect to a numeration system S, or S-automatic, if there exists a DFA0  $\mathcal{A} = (Q, q_0, \delta, A, \tau, B)$  such that

$$\forall n \in \mathbb{N}, \quad f(n) = \tau(\delta(q_0, \operatorname{rep}_S(n)))$$

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

$$0 \mapsto 01$$

$$1\mapsto 10. \\$$

To get the Thue-Morse word, apply those rules iteratively from 0:

$$011010\underline{0}1100101\cdots$$

This infinite word is 2-automatic since it is generated by the DFAO



when reading integers in base 2.



$$0\mapsto 01$$

$$1\mapsto 0.$$

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

0

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

<u>0</u>1

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

0<u>1</u>0

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

 $01\underline{0}01$ 

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

 $010\underline{0}101$ 

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

 $0100\underline{1}010$ 

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

 $01001\underline{0}1001$ 

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

 $010010\underline{1}0010$ 

$$0\mapsto 01$$

$$1\mapsto 0.$$

To get the Fibonacci word, apply those rules iteratively from 0:

$$0100101\underline{0}01001\cdots$$

$$0\mapsto 01$$

$$1\mapsto 0$$
.

To get the Fibonacci word, apply those rules iteratively from 0:

$$0100101001001 \cdots$$

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO



when reading the Zeckendorf representations of the integers.

## A range of numeration systems

#### Unary representations

A natural number n is represented by the finite word  $\operatorname{rep}_1(n) = a^n$  where a is any fixed symbol.

Exercise: Show that the 1-recognizable subsets of  $\ensuremath{\mathbb{N}}$  are exactly the ultimately periodic sets.

#### Binary representations

| <br>16             | 8                     | 4                     | 2     | 1                     |             |
|--------------------|-----------------------|-----------------------|-------|-----------------------|-------------|
| <br>a <sub>4</sub> | <b>a</b> <sub>3</sub> | <b>a</b> <sub>2</sub> | $a_1$ | <i>a</i> <sub>0</sub> |             |
|                    |                       |                       |       |                       | 0           |
|                    |                       |                       |       | 1                     | 1           |
|                    |                       |                       | 1     | 0                     | 1 2 3       |
|                    |                       |                       | 1     | 1                     | 3           |
|                    |                       | 1                     | 0     | 0                     | 4           |
|                    |                       | 1                     | 0     | 1                     | 5           |
|                    |                       | 1                     | 1     | 0                     | 5<br>6<br>7 |
|                    |                       | 1                     | 1     | 1                     | 7           |
|                    | 1                     | 0                     | 0     | 0                     | 8           |

We have  $n=\sum_{i=0}^{\ell-1}a_i2^i$  with  $a_{\ell-1}=1$ , and we write  $\operatorname{rep}_2(n)=a_{\ell-1}\cdots a_0$ .

#### Integer base representations

Let  $b \ge 2$  be an integer. A natural number n is represented by the finite word  $\operatorname{rep}_b(n) = a_{\ell-1} \cdots a_0$  obtained from the greedy algorithm:

$$n=\sum_{i=0}^{\ell-1}a_ib^i.$$

The greedy algorithm only imposes to have a nonzero leading digit  $a_{\ell-1}$ .

Thus, the set of all greedy representations is

$$\{1,\ldots,b-1\}\{0,\cdots,b-1\}^*\cup\{\varepsilon\}.$$

#### Zeckendorf representations

Let  $F = (F_i)_{i>0} = (1, 2, 3, 5, 8, ...)$  be the sequence obtained from the rules:

$$F_0 = 1$$
,  $F_1 = 2$  and  $F_{i+2} = F_{i+1} + F_i$  for  $i \ge 0$ .

Again, we can use the greedy algorithm in order to produce a sequence of digits  $a_{\ell-1}\cdots a_0$  such that  $n=\sum_{i=0}^{\ell-1}a_iF_i$ :

| <br>8          | 5           | 3                     | 2     | 1          |     |
|----------------|-------------|-----------------------|-------|------------|-----|
| <br><b>a</b> 4 | <b>a</b> 3  | <b>a</b> <sub>2</sub> | $a_1$ | <b>a</b> 0 | n   |
|                |             |                       |       |            | 0   |
|                |             |                       |       | 1          | 1   |
|                |             |                       | 1     | 0          | 2   |
|                |             | 1                     | 0     | 0          | 2 3 |
|                |             | 1                     | 0     | 1          | 4   |
|                | 1           | 0                     | 0     | 0          | 5   |
|                | 1           | 0                     | 0     | 1          | 6   |
|                | 1<br>1<br>0 | 0                     | 1     | 0          | 7   |
| 1              | 0           | 0                     | 0     | 0          | 8   |

In addition to having a nonzero leading digit  $a_{\ell-1}$ , the greedy algorithm imposes that the valid representations do not contain two consecutive 1's.

The set of all greedy representations is

$$1\{0,01\}^* \cup \{\varepsilon\}.$$



#### Positional representations

Let  $U=(U_i)_{i\geq 0}$  be a base sequence, that is, an increasing sequence of integers such that  $U_0=1$  and the quotients  $\frac{U_{i+1}}{U_i}$  are bounded.

A natural number n is represented by the finite word

$$\operatorname{rep}_{U}(n)=a_{\ell-1}\cdots a_0$$

obtained from the greedy algorithm:

$$n=\sum_{i=0}^{\ell-1}a_iU_i.$$

A description of the numeration language

$$L_U = 0^* \{ \operatorname{rep}_U(n) : n \in \mathbb{N} \}$$

strongly depends on the base sequence U.

Given such a system U, other choices of representations could be made, such as the lazy algorithm for instance.

Knuth 1981. Fraenkel 1985



# Representing real numbers in base 3

Any  $x \in [0,1)$  can be decomposed in a unique way as

$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$$

where  $a_i \in \{0, 1, 2\}$  and  $a_i a_{i+1} a_{i+2} \cdots \neq 2^{\omega}$  for all i.

We write  $d_3(x) = a_1 a_2 a_3 \cdots$ .

Define  $D_3 = \{d_3(x) : x \in [0,1)\}.$ 

The topological closure of  $D_3$  is called the 3-shift:

$$S_3 = \{ \mathbf{w} \in \{0,1,2\}^\omega : \operatorname{Fac}(\mathbf{w}) \subseteq \operatorname{Fac}(D_3) \} = \{0,1,2\}^\omega.$$

Straightforward but crucial observation:  $Fac(S_3) = L_3$ .

# Representing real numbers in base $\varphi$

Let  $\varphi = \frac{1+\sqrt{5}}{2}$  (the golden mean).

Any  $x \in [0,1)$  can be decomposed in a unique way as

$$x = \sum_{i=1}^{\infty} \frac{a_i}{\varphi^i}$$

where  $a_i \in \{0,1\}$ ,  $a_i a_{i+1} \neq 11$  and  $a_i a_{i+1} a_{i+2} \cdots \neq (10)^{\omega}$  for all i.

We write  $d_{\varphi}(x) = a_1 a_2 a_3 \cdots$ .

Define  $D_{\varphi} = \{d_{\varphi}(x) : x \in [0,1)\}.$ 

The topological closure of  $D_{\varphi}$  is called the  $\varphi$ -shift:

$$\mathcal{S}_{\varphi} = \{\mathbf{w} \in \{0,1\}^{\omega} : \operatorname{Fac}(\mathbf{w}) \subseteq \operatorname{Fac}(\mathcal{D}_{\varphi})\} = \{0,1\}^{\omega} \setminus \{0,1\}^* 11 \{0,1\}^{\omega}.$$

Straightforward but crucial observation:  $\operatorname{Fac}(S_{\varphi}) = \mathcal{N}_{F}$ .

# Representing real numbers via real bases $\beta>1$

Let  $\beta > 1$  be real number (called the base).

We may represent any  $x \in [0,1]$  by using the following greedy algorithm.

For all  $i \geq 1$ , let  $a_i$  be the greatest integer a such that

$$\sum_{j=1}^{i-1} \frac{a_j}{\beta^j} + \frac{a}{\beta^i} \le x.$$

We get that

$$\sum_{i=1}^{\infty} \frac{a_i}{\beta^i} = x.$$

The infinite word  $d_{\beta}(x) = a_1 a_2 \cdots$  is called the  $\beta$ -expansion of x.

Only finitely many digits are used, namely  $0, 1, \ldots, \lfloor \beta \rfloor$ .

[Rényi 1959]

# The $\beta$ -shift

For 
$$\beta > 1$$
, we let  $D_{\beta} = \{d_{\beta}(x) : x \in [0, 1)\}.$ 

The  $\beta$ -shift is the topological closure of  $D_{\beta}$ :

$$S_{\beta} = \{ \mathbf{w} \in \{0, \dots, \lceil \beta \rceil - 1 \}^{\omega} : \operatorname{Fac}(\mathbf{w}) \subseteq \operatorname{Fac}(D_{\beta}) \}.$$

# Parry's characterization of elements in the $\beta$ -shift

In Parry's theorem, the  $\beta$ -expansion and the quasi-greedy  $\beta$ -expansion of 1 play crucial roles.

The quasi-greedy  $\beta$ -expansion of 1 is

$$d_{\beta}^*(1) = \lim_{x \to 1^-} d_{\beta}(x).$$

#### Combinatorial definition:

- ▶ If  $d_{\beta}(1)$  does not end with a tail of zeros, then we simply have  $d_{\beta}^*(1) = d_{\beta}(1)$ .
- If  $d_{\beta}(1) = d_1 \cdots d_{\ell} 0^{\omega}$  with  $d_{\ell} \neq 0$ , in which case we say that  $d_{\beta}(1)$  is finite, then  $d_{\beta}^*(1) = (d_1 \cdots d_{\ell-1}(d_{\ell}-1))^{\omega}$ .

## Theorem (Parry 1960)

$$S_{\beta} = \{\mathbf{w} \in \{0, \dots, \lceil \beta \rceil - 1\}^{\omega} : \forall i \geq 1, \ w_i w_{i+1} \dots \leq_{\operatorname{lex}} d_{\beta}^*(1)\}.$$

[Parry 1960]



# Parry's descriptions of the 3-shift and the $\varphi$ -shift

For 
$$\beta=3$$
, we get  $d_3(1)=30^\omega$  and  $d_3^*(1)=2^\omega$ . So Parry's theorem gives 
$$\mathcal{S}_3=\{w\in\{0,1,2\}^\omega:\forall i\geq 1,\ w_iw_{i+1}\cdots\leq_{\mathrm{lex}}2^\omega\}.$$

For 
$$\beta=\varphi$$
, we get  $d_{\varphi}(1)=110^{\omega}$  and  $d_{\varphi}^*(1)=(10)^{\omega}$ . So Parry's theorem gives 
$$S_{\varphi}=\{w\in\{0,1\}^{\omega}:\forall i\geq 1,\ w_iw_{i+1}\cdots\leq_{\mathrm{lex}}(10)^{\omega}\}.$$

The  $\beta$ -shift  $S_{\beta}$  is called sofic if  $Fac(S_{\beta})$  is a regular language.

As a consequence of Parry's characterization, we get:

## Corollary

The  $\beta$ -shift is sofic if and only if  $d^*_{\beta}(1)$  is an ultimately periodic word.



The Parry automaton associated with  $\beta$  where  $d^*_{\beta}(1)=t_1\dots t_m(t_{m+1}\cdots t_{m+n})^{\omega}$ .

Such numbers and automata are named after Parry:

- A real base  $\beta > 1$  is a called Parry number if  $d^*_{\beta}(1)$  is an ultimately periodic word.
- lacktriangle The drawn automaton is called the Parry automaton associated with eta

# The Parry automata for 3, $\varphi$ and $\varphi^2$

For  $\beta=3$ , since  $d_3^*(1)=2^\omega$ , we get

For  $\beta=arphi$ , since  $d_{arphi}^{st}(1)=(10)^{\omega}$ , we get



For  $\beta = \varphi^2$ , since  $d_{\varphi}^*(1) = 21^{\omega}$ , we get



## Bertrand numeration systems

Let U be a positional numeration system.

Two desirable properties of the numeration language  $L_U = 0^* \operatorname{rep}_U(\mathbb{N})$  are:

- $ightharpoonup L_U$  is prefix-closed if all prefixes of words in  $L_U$  also belong to  $L_U$ .
- $ightharpoonup L_{II}$  is prolongable if for all w in  $L_{II}$ , the word w0 also belongs to  $L_{II}$ .

We say that U is a Bertrand numeration system if  $L_U$  is both prefix-closed and prolongable.

Equivalently:  $\forall w \in A_U^*$ ,  $w \in L_U \iff w0 \in L_U$ .

[Bertrand-Mathis 1989] [Bruyère & Hansel 1997]

## Canonical Bertrand systems associated with a real base $\beta$

For a real number  $\beta > 1$ , define

$$U_i = a_1 U_{i-1} + a_2 U_{i-2} + \cdots + a_i U_0 + 1, \quad \forall i \geq 0$$

where  $(a_i)_{i>1}$  is given by  $d_{\beta}^*(1)$ .

The so-obtained sequence  $U=(U_i)_{i\geq 0}$  defines a positional numeration system for representing integers.

This numeration system is Bertrand, and it has  $\beta$  as a dominant root, meaning that

$$\lim_{i\to\infty}\frac{U_{i+1}}{U_i}=\beta.$$

Moreover, we have the language equality

$$L_U = \operatorname{Fac}(S_\beta).$$

Thanks to Parry's characterization, we see that

 $L_U$  is regular  $\iff \beta$  is a Parry number.

[Bertrand-Mathis 1989]



# Canonical Bertrand systems associated with 3, $\varphi$ and $\varphi^2$

For 
$$\beta=3$$
, since  $d_3^*(1)=2^\omega$ , we get  $U_i=2U_{i-1}+2U_{i-2}+\cdots+2U_0+1$ . This gives  $U_0=1$ ,  $U_1=2U_0+1=3$ ,  $U_2=2U_1+2U_0+1=9$ ,  $U_3=2U_2+2U_1+2U_0+1=27...$ 

For  $\beta=\varphi$ , since  $d_{\varphi}^*(1)=(10)^{\omega}$ , we get

$$U_{i} = \begin{cases} U_{i-1} + U_{i-3} + \dots + U_{1} + 1, & \text{if } i \equiv 0 \pmod{2}; \\ U_{i-1} + U_{i-3} + \dots + U_{0} + 1, & \text{if } i \equiv 1 \pmod{2}. \end{cases}$$

This gives  $U_0 = 1$ ,  $U_1 = U_0 + 1 = 2$ ,  $U_2 = U_1 + 1 = 3$ ,  $U_3 = U_2 + U_0 + 1 = 5$ ,  $U_4 = U_3 + U_1 + 1 = 8...$ 

For 
$$\beta=\varphi^2$$
, since  $d_{\varphi^2}^*(1)=21^\omega$ , we get  $U_i=2U_{i-1}+U_{i-2}+\cdots+U_0+1$ . This gives  $U_0=1$ ,  $U_1=2U_0+1=3$ ,  $U_2=2U_1+U_0+1=8$ ,  $U_3=2U_2+U_1+U_0+1=21...$ 

## Non-Bertrand systems

Define

$$U_i = a_1 U_{i-1} + a_2 U_{i-2} + \cdots + a_i U_0 + 1, \quad \forall i \geq 0$$

with the sequence of coefficients given by

$$(a_i)_{i\geq 1}=10110^{\omega}.$$

This system is again linked with the Golden ratio  $\varphi$  since  $\frac{1}{\varphi}+\frac{1}{\varphi^3}+\frac{1}{\varphi^4}=1$ . It has  $\varphi$  as a dominant root :  $\lim_{i\to\infty}\frac{U_{i+1}}{U_i}=\varphi$ .

We have

$$U_0 = 1$$
,  $U_1 = U_0 + 1 = 2$ ,  $U_2 = U_1 + 1 = 3$ ,  $U_3 = U_2 + U_0 + 1 = 5$ ,  $U_i = U_{i-1} + U_{i-3} + U_{i-4} + 1$ ,  $i \ge 4$ 

so that U = (1, 2, 3, 5, 9, 15, 24, 39, ...).

This system is not Bertrand since for example,  $1100, 11000 \in L_U$  but  $11, 110, 110000 \notin L_U$ , showing that  $L_U$  is neither prefix-closed nor prolongable.

In fact, we have

$$U_{i+2} = \begin{cases} U_{i+1} + U_i, & \text{if } i \equiv 2, 3 \pmod{4}; \\ U_{i+1} + U_i + 1, & \text{if } i \equiv 0, 1 \pmod{4}. \end{cases}$$

The canonical Bertrand system U associated with  $\beta$  has the property that

$$\operatorname{rep}_U(U_i-1)=\operatorname{Pref}_i(d^*_\beta(1)),\quad \text{for all } i\geq 0.$$

## Proposition (Hollander 1998)

Let U be a positional numeration system such that  $\frac{U_{i+1}}{U_i}=\beta>1$ .

• If  $d_{\beta}(1) = d_{\beta}^*(1)$  is not finite, then

$$\lim_{i \to \infty} \operatorname{rep}_U(U_i - 1) = d^*_{\beta}(1).$$

If  $d_{\beta}(1) = d_1 \cdots d_{\ell} 0^{\omega}$  with  $d_{\ell} \neq 0$ , then for all  $n \geq 0$  and all large enough i, there exists k > 0 such that

$$\operatorname{Pref}_n(\operatorname{rep}_U(U_i-1))=\operatorname{Pref}_n((d_1\cdots d_{\ell-1}(d_\ell-1))^kd_1\cdots d_\ell0^\omega).$$

[Hollander 1998]



The Zeckendorf system  $F=(1,2,3,5,8,13,21,34,\ldots)$ , which is the canonical Bertrand system associated with  $\varphi$  satisfies

$$\operatorname{rep}_{\digamma}(1) = 1, \ \operatorname{rep}_{\digamma}(2) = 10, \ \operatorname{rep}_{\digamma}(4) = 101, \ \operatorname{rep}_{\digamma}(7) = 1010, \ \operatorname{rep}_{\digamma}(11) = 10101, \dots$$

that is

$$\operatorname{rep}_{\mathsf{F}}(\mathsf{F}_i-1)=\operatorname{Pref}_i(d_\varphi^*(1))=\operatorname{Pref}_i((10)^\omega).$$

The non-Bertrand system  $U=(1,2,3,5,9,15,24,39,\ldots)$  we've seen before (still with the dominant root  $\varphi$ ) is such that

$$\operatorname{rep}_U(1) = 1$$
,  $\operatorname{rep}_U(2) = 10$ ,  $\operatorname{rep}_U(4) = 101$ ,  $\operatorname{rep}_U(8) = 1100$ ,  $\operatorname{rep}_U(14) = 11000$ , ...

that is

$$\operatorname{rep}_U(U_i-1) = egin{cases} \operatorname{Pref}_i((10)^\omega), & ext{if } i \equiv 0,1 \pmod 4; \\ \operatorname{Pref}_i(110^\omega), & ext{if } i \equiv 2,3 \pmod 4. \end{cases}$$

# A characterization of Bertrand numeration systems

## Proposition (C., Cisternino & Stipulanti 2022)

Let U be a positional numeration system such that  $\lim_{i \to \infty} \frac{U_{i+1}}{U_i} = \beta > 1$ .

If  $\lim_{i\to\infty} \operatorname{rep}_U(U_i-1)$  exists, then it is either  $d_\beta^*(1)$  or  $d_\beta(1)$ .

## Theorem (C., Cisternino & Stipulanti 2022)

A positional numeration system U is Bertrand if and only if one of the following conditions is satisfied.

- 1. We have  $\operatorname{rep}_{II}(U_i 1) = \operatorname{Pref}_i(10^{\omega})$  for all  $i \geq 0$ .
- 2. There exists  $\beta > 1$  such that  $\operatorname{rep}_U(U_i 1) = \operatorname{Pref}_i(d^*_{\beta}(1))$  for all  $i \geq 0$ .
- 3. There exists  $\beta > 1$  such that  $\operatorname{rep}_U(U_i 1) = \operatorname{Pref}_i(d_{\beta}(1))$  for all  $i \geq 0$ .

[C., Cisternino & Stipulanti 2022]

# Regularity of $L_U$

#### A fundamental question is the following:

- $\triangleright$  Given a positional system U, can we decide if the numeration language  $L_U$  is regular?
- And even more precisely, can characterize those systems U giving rise to a regular numeration language L<sub>U</sub>?

A necessary condition is that the sequence  $U=(U_i)_{i\geq 0}$  is linear, i.e., it must satisfy a linear recurrence relation with integer coefficients: there exist integers  $c_1,\ldots,c_k$  such that

$$U_i = c_1 U_{i-1} + c_2 U_{i-2} \cdots + c_k U_{i-k}$$
, for all  $i \ge k$ .

The characteristic polynomial of the recurrence relation is

$$X^{k} - c_1 X^{k-1} - c_2 X^{k-2} - \cdots - c_k$$
.

This question was studied by Hollander in the case of linear systems with a dominant root, i.e., such that the limit  $\lim_{i \to \infty} \frac{u_{i+1}}{u_i}$  exists and is greater than 1.

A clever observation he made was that is sufficient to study the regularity of the language made of words of maximal length.

## Proposition (Hollander 1998)

 $L_U$  is regular  $\iff \operatorname{Max}(L_U) := \{\operatorname{rep}_U(U_i - 1) : i \geq 0\}$  is regular.

He also showed the following necessary condition:

## Proposition (Hollander 1998)

If U has a dominant root  $\beta > 1$  and if L<sub>U</sub> is regular, then  $\beta$  is a Parry number.

In order to give Hollander's full statement, we need to introduce the notion of  $\beta$ -polynomials. Suppose that  $d^*_{\beta}(1) = t_1 \dots t_m (t_{m+1} \cdots t_{m+n})^{\omega}$ , then the polynomial

$$P_{\beta,m,n} = \left(X^{m+n} - \sum_{i=1}^{m+n} t_i X^{m+n-i}\right) - \left(X^m - \sum_{i=1}^m t_i X^{m-i}\right).$$

is called a  $\beta$ -polynomial.

For m, n minimal, we get the canonical  $\beta$ -polynomial, simply denoted  $P_{\beta}$ .

If  $d_{\beta}^*(1) = 21^{\omega}$ , then m = n = 1 and

$$P_{\beta} = (X^2 - 2X - 1) - (X - 2) = X^2 - 3X + 1.$$

• If  $d_{\beta}^{*}(1) = (10)^{\omega}$ , then m = 0, n = 2 and

$$P_{\beta} = (X^2 - X - 0) - (X^0) = X^2 - X - 1.$$

In the case where  $d_{\beta}(1)=d_1\dots d_{\ell}0^{\omega}$  is finite (with  $d_{\ell}\neq 0$ ), it is easy to see that

$$P_{\beta} = X^{\ell} - \sum_{i=1}^{\ell} t_i X^{\ell-i}.$$

## Theorem (Hollander 1998)

Let U be a linear numeration system with a dominant root  $\beta > 1$ .

- ▶ If  $L_U$  is regular, then  $\beta$  is a Parry number.
- Case where  $d_{\beta}(1) = d_{\beta}^*(1)$ .
  - L<sub>U</sub> is regular if and only if U satisfies a recurrence relation of characteristic polynomial  $P_{\beta,m,n}$  for some m, n.
- Case where  $d_{\beta}(1) = d_1 \dots d_{\ell} 0^{\omega}$  with  $d_{\ell} \neq 0$ .
  - ▶ If U satisfies a recurrence relation of characteristic polynomial  $P_{\beta,m,n}$  for some m, n, then  $L_U$  is regular.
  - If  $L_U$  is regular, then the base sequence U satisfies a recurrence relation of characteristic polynomial of the form  $(X^{\ell}-1)P_{\beta,m,n}$  for some m,n.

# $\beta$ -integers and sturmian words

A real number  $x \ge 0$  is a  $\beta$ -integer if its  $\beta$ -expansion is of the form

$$d_{\beta}(x) = a_{n-1} \cdots a_0.0^{\omega}$$
 with  $n \in \mathbb{N}$ .

The set of all  $\beta$ -integers is denoted by  $\mathbb{N}_{\beta}$ .

# $\beta$ -integers and sturmian words

A real number  $x \ge 0$  is a  $\beta$ -integer if its  $\beta$ -expansion is of the form

$$d_{\beta}(x) = a_{n-1} \cdots a_0.0^{\omega}$$
 with  $n \in \mathbb{N}$ .

The set of all  $\beta$ -integers is denoted by  $\mathbb{N}_{\beta}$ .

#### Lemma

This set is unbounded and discrete, i.e., it has no accumulation point in  $\mathbb{R}$ .

#### Proof

The  $\beta$ -expansion of a  $\beta$ -integer smaller than  $\beta^n$  is of the form  $a_{m-1}\cdots a_0.0^\omega$  with  $m\leq n$ .

Since  $a_i < \beta$  for each i, there are only finitely many  $\beta$ -expansions having this property.

# $\beta$ -integers and sturmian words

A real number  $x \ge 0$  is a  $\beta$ -integer if its  $\beta$ -expansion is of the form

$$d_{\beta}(x) = a_{n-1} \cdots a_0.0^{\omega}$$
 with  $n \in \mathbb{N}$ .

The set of all  $\beta$ -integers is denoted by  $\mathbb{N}_{\beta}$ .

#### Lemma

This set is unbounded and discrete, i.e., it has no accumulation point in  $\mathbb{R}$ .

#### Proof

The  $\beta$ -expansion of a  $\beta$ -integer smaller than  $\beta^n$  is of the form  $a_{m-1} \cdots a_0.0^{\omega}$  with  $m \le n$ . Since  $a_i < \beta$  for each i, there are only finitely many  $\beta$ -expansions having this property.

Let  $(x_k)_{k\in\mathbb{N}}$  be the increasing sequence of  $\beta$ -integers:

$$\mathbb{N}_{\beta} = \{x_k : k \in \mathbb{N}\}.$$

[Gazeau 1997]



# Distances between consecutive $\beta$ -integers

For  $\beta=\varphi$ , there are only two possible distances  $\Delta_0=1$  and  $\Delta_1=\frac{1}{\varphi}=\varphi-1$ .

The distances  $x_{k+1}-x_k$  between consecutive  $\beta$ -integers are coded by the Fibonacci word 0100101001001010  $\cdots$ .



#### Theorem

The sequence  $(x_{k+1}-x_k)_{k\geq 0}$  of distances between consecutive  $\beta$ -integers takes only finitely many values if and only if the base  $\beta$  is a Parry number, in which case the corresponding infinite word is a fixed point of a primitive substitution.

Let  $d_{\beta}^*(1) = t_1 t_2 t_3 \cdots$ . The possible distances are given by

$$\Delta_i = \operatorname{val}_{\beta}(0.t_{i+1}t_{i+2}t_{i+3}\cdots) = \sum_{k=1}^{\infty} \frac{t_{i+k}}{\beta^k}.$$

By letting  $w_k=i$  if  $x_{k+1}-x_k=\Delta_i$ , the infinite word  $\mathbf{w}_\beta=w_0w_1w_2\cdots$  encodes the distances between  $\beta$ -integers.

If  $d_{\beta}^*(1) = t_1 \cdots t_m (t_{m+1} \cdots t_{m+n})^{\omega}$  for minimal m, n, then there are exactly m+n distinct distances, and  $\mathbf{w}_{\beta}$  is written over the alphabet  $\{0, \ldots, m+n-1\}$ .

The infinite word  $\mathbf{w}_{\beta}$  is the fixed point of the Parry substitution

$$0 \mapsto 0^{t_1} 1$$

$$1 \mapsto 0^{t_2} 2$$

$$\vdots$$

$$m+n-2 \mapsto 0^{t_{m+n-1}} (m+n-1)$$

$$m+n-1 \mapsto 0^{t_{m+n}} m.$$

# Combinatorial properties of $\mathbf{w}_{\beta}$

The factor complexity of an infinite word  $\mathbf{w}$  is the function C(n) counting the number of factors of length n in  $\mathbf{w}$ .

Aperiodic words with factor complexity C(n) = n + 1 are called sturmian.

$$\begin{split} &\mathrm{Fac}_1(\mathbf{f}) = \{0,1\} \\ &\mathrm{Fac}_2(\mathbf{f}) = \{00,01,10\} \\ &\mathrm{Fac}_3(\mathbf{f}) = \{001,010,100,101\} \\ &\mathrm{Fac}_4(\mathbf{f}) = \{0010,0100,0101,1001,1010\} \end{split}$$

- $\mathbf{w}_{\beta}$  is sturmian if and only if  $\beta$  is a quadratic Parry number.
- In the case where  $d_{\beta}(1)$  is finite, Arnoux-Rauzy words  $\mathbf{w}_{\beta}$  are characterized in [Frougny, Masakova, Pelantova 2004].
- $\mathbf{w}_{\beta}$  with affine factor complexity C(n) = an + b are characterized in [Bernat, Masakova, Pelantova 2007].

#### Current work:

- ▶ Regularity in the non dominant root case.
- ► Cantor real numeration systems, in particular, alternating real bases.
- ightharpoonup In this context, generalized β-integers can be coded by words of other types, called S-adic words.

# Thank you! Merci!