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From numbers to words

Usually integers are represented by finite words while real numbers are represented by infinite
words.

▶ In base 10: 148 → 148, 1
3 → 0.3333 · · ·, π → 3.141592 · · ·

▶ In base 2: 148 → 10010100, 1
3 → 0.01010101 · · ·, π → 11.001001000011 · · ·

The basic consideration is as follows: properties of numbers are translated into combinatorial
properties of their representations.



Recognizable sets of integers

A subset X of N is recognizable with respect to a given numeration system S,
or S-recognizable, if the language

{repS(n) : n ∈ X}

is regular, i.e., is accepted by a finite automaton.

▶ The set 2N of even non-negative integers is 2-recognizable.
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1
0

1
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▶ The set {2n : n ∈ N} of powers of 2 is 2-recognizable.

1

0



Changing the system

▶ The set 2N of even non-negative integers is 3-recognizable.

2

1

0, 2
1

1

0, 2

In fact, the set 2N is b-recognizable for all integer bases b.

▶ The set {2n : n ∈ N} of powers of 2 is not 3-recognizable.

This is a consequence of Cobham’s theorem.



Cobham’s theorem

Two integers k and ℓ are multiplicatively independent if km = ℓn and m, n ∈ N implies
m = n = 0.

Theorem (Cobham 1969)
Let b and b′ be multiplicatively independent integer bases. If a subset of N is simultaneously
b-recognizable and b′-recognizable, then it is a finite union of arithmetic progressions (possibly
finite).

2N ∪ (3N + 2) ∪ {3}

• • • • • • • • • • • • • • • • • • • • • • •
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...



From words to numbers

On the other hand, infinite words may also represent sets of numbers:
the characteristic sequence of a subset of N is a binary infinite word.

▶ The set 2N gives the periodic infinite word 10101010 · · ·

▶ The set {2n : n ∈ N} gives the aperiodic infinite word 011010001000000010000 · · ·

Exercise: Show that the characteristic sequence of a subset of N is ultimately periodic, that is,
of the form uvvv · · · , if and only if it is a finite union of arithmetic progressions (possibly
finite).

2N ∪ (3N + 2) ∪ {3}

• • • • • • • • • • • • • • • • • • • • • • •
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

For this reason, we also talk about ultimately periodic sets of integers.



Linking recognizable sets and automatic sequences

For an integer base b ≥ 2, a subset X of N is b-recognizable if and only if its characteristic
sequence is b-automatic: there exists a DFAO that on input repb(n) ouputs 1 if n ∈ X , and
outputs 0 otherwise.

For example, the DFAO

0, 2
1

0, 2

11 0

generates the periodic sequence
1010101010 · · ·

when reading 3-representations of integers, which corresponds to the subset of even
non-negative integers

{0, 2, 4, 6, 8, . . .}.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01

This infinite word is 2-automatic since it is generated by the DFAO
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10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0110

This infinite word is 2-automatic since it is generated by the DFAO
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10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

011010

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

0110100110

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

011010011001

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001100101 · · ·

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ(δ(q0, repS(n)))

▶ The Thue-Morse word 01101001100101 · · · is a fixed point of the substitution

0 7→ 01

1 7→ 10.

To get the Thue-Morse word, apply those rules iteratively from 0:

01101001100101 · · ·

This infinite word is 2-automatic since it is generated by the DFAO

0
1

0

10 1

when reading integers in base 2.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

0

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

01

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

010

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001010

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

01001010010

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001001 · · ·

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



▶ The Fibonacci sequence 0100101001001 · · · is the fixed point of the substitution

0 7→ 01

1 7→ 0.

To get the Fibonacci word, apply those rules iteratively from 0:

0100101001001 · · ·

The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0
1

00 1

when reading the Zeckendorf representations of the integers.



A range of numeration systems

▶ Unary representations

A natural number n is represented by the finite word rep1(n) = an where a is any fixed
symbol.

Exercise: Show that the 1-recognizable subsets of N are exactly the ultimately periodic
sets.

▶ Binary representations

· · · 16 8 4 2 1
· · · a4 a3 a2 a1 a0

0
1 1

1 0 2
1 1 3

1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

1 0 0 0 8

We have n =
∑ℓ−1

i=0 ai 2i with aℓ−1 = 1, and we write rep2(n) = aℓ−1 · · · a0.



▶ Integer base representations

Let b ≥ 2 be an integer. A natural number n is represented by the finite word
repb(n) = aℓ−1 · · · a0 obtained from the greedy algorithm:

n =
ℓ−1∑
i=0

ai bi .

The greedy algorithm only imposes to have a nonzero leading digit aℓ−1.

Thus, the set of all greedy representations is

{1, . . . , b − 1}{0, · · · , b − 1}∗ ∪ {ε}.



▶ Zeckendorf representations

Let F = (Fi )i≥0 = (1, 2, 3, 5, 8, . . .) be the sequence obtained from the rules:

F0 = 1, F1 = 2 and Fi+2 = Fi+1 + Fi for i ≥ 0.

Again, we can use the greedy algorithm in order to produce a sequence of digits
aℓ−1 · · · a0 such that n =

∑ℓ−1
i=0 ai Fi :

· · · 8 5 3 2 1
· · · a4 a3 a2 a1 a0 n

0
1 1

1 0 2
1 0 0 3
1 0 1 4

1 0 0 0 5
1 0 0 1 6
1 0 1 0 7

1 0 0 0 0 8

In addition to having a nonzero leading digit aℓ−1, the greedy algorithm imposes that
the valid representations do not contain two consecutive 1’s.

The set of all greedy representations is

1{0, 01}∗ ∪ {ε}.

[Zeckendorf 1972]



▶ Positional representations

Let U = (Ui )i≥0 be a base sequence, that is, an increasing sequence of integers such
that U0 = 1 and the quotients Ui+1

Ui
are bounded.

A natural number n is represented by the finite word

repU(n) = aℓ−1 · · · a0

obtained from the greedy algorithm:

n =
ℓ−1∑
i=0

ai Ui .

A description of the numeration language

LU = 0∗{repU(n) : n ∈ N}

strongly depends on the base sequence U.

Given such a system U, other choices of representations could be made, such as the lazy
algorithm for instance.

Knuth 1981, Fraenkel 1985



Representing integers
via an integer

base sequence U

Representing real numbers
via a real base β

Which link?



Representing real numbers in base 3

Any x ∈ [0, 1) can be decomposed in a unique way as

x =
∞∑
i=1

ai
3i

where ai ∈ {0, 1, 2} and ai ai+1ai+2 · · · ̸= 2ω for all i .

We write d3(x) = a1a2a3 · · · .

Define D3 = {d3(x) : x ∈ [0, 1)}.

The topological closure of D3 is called the 3-shift:

S3 = {w ∈ {0, 1, 2}ω : Fac(w) ⊆ Fac(D3)} = {0, 1, 2}ω .

Straightforward but crucial observation: Fac(S3) = L3.



Representing real numbers in base φ

Let φ = 1+
√

5
2 (the golden mean).

Any x ∈ [0, 1) can be decomposed in a unique way as

x =
∞∑
i=1

ai
φi

where ai ∈ {0, 1}, ai ai+1 ̸= 11 and ai ai+1ai+2 · · · ̸= (10)ω for all i .

We write dφ(x) = a1a2a3 · · · .

Define Dφ = {dφ(x) : x ∈ [0, 1)}.

The topological closure of Dφ is called the φ-shift:

Sφ = {w ∈ {0, 1}ω : Fac(w) ⊆ Fac(Dφ)} = {0, 1}ω \ {0, 1}∗11{0, 1}ω .

Straightforward but crucial observation: Fac(Sφ) = NF .



Representing real numbers via real bases β > 1

Let β > 1 be real number (called the base).

We may represent any x ∈ [0, 1] by using the following greedy algorithm.

For all i ≥ 1, let ai be the greatest integer a such that

i−1∑
j=1

aj

βj +
a
βi ≤ x .

We get that
∞∑
i=1

ai
βi = x .

The infinite word dβ(x) = a1a2 · · · is called the β-expansion of x .

Only finitely many digits are used, namely 0, 1, . . . , ⌊β⌋.

[Rényi 1959]



The β-shift

For β > 1, we let Dβ = {dβ(x) : x ∈ [0, 1)}.

The β-shift is the topological closure of Dβ :

Sβ = {w ∈ {0, . . . , ⌈β⌉ − 1}ω : Fac(w) ⊆ Fac(Dβ)}.



Parry’s characterization of elements in the β-shift

In Parry’s theorem, the β-expansion and the quasi-greedy β-expansion of 1 play crucial roles.

The quasi-greedy β-expansion of 1 is

d∗
β(1) = lim

x→1−
dβ(x).

Combinatorial definition:

▶ If dβ(1) does not end with a tail of zeros, then we simply have d∗
β(1) = dβ(1).

▶ If dβ(1) = d1 · · · dℓ0ω with dℓ ̸= 0, in which case we say that dβ(1) is finite,
then d∗

β(1) = (d1 · · · dℓ−1(dℓ − 1))ω .

Theorem (Parry 1960)

Sβ = {w ∈ {0, . . . , ⌈β⌉ − 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex d∗
β(1)}.

[Parry 1960]



Parry’s descriptions of the 3-shift and the φ-shift

For β = 3, we get d3(1) = 30ω and d∗
3 (1) = 2ω . So Parry’s theorem gives

S3 = {w ∈ {0, 1, 2}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex 2ω}.

For β = φ, we get dφ(1) = 110ω and d∗
φ(1) = (10)ω . So Parry’s theorem gives

Sφ = {w ∈ {0, 1}ω : ∀i ≥ 1, wi wi+1 · · · ≤lex (10)ω}.



The β-shift Sβ is called sofic if Fac(Sβ) is a regular language.

As a consequence of Parry’s characterization, we get:

Corollary
The β-shift is sofic if and only if d∗

β(1) is an ultimately periodic word.

0, . . . , t1 − 1

t1

0, . . . , t2 − 1

t2 tm

0, . . . , tm − 1

tm+1

0, . . . , tm+1 − 1
tm+2

0, . . . , tm+2 − 1

tm+n

The Parry automaton associated with β where d∗
β(1) = t1 . . . tm(tm+1 · · · tm+n)ω .

Such numbers and automata are named after Parry:

▶ A real base β > 1 is a called Parry number if d∗
β(1) is an ultimately periodic word.

▶ The drawn automaton is called the Parry automaton associated with β



The Parry automata for 3, φ and φ2

For β = 3, since d∗
3 (1) = 2ω , we get

0, 1, 2

For β = φ, since d∗
φ(1) = (10)ω , we get

0

0

1

For β = φ2, since d∗
φ(1) = 21ω , we get

0, 1 1

0

2



Bertrand numeration systems

Let U be a positional numeration system.

Two desirable properties of the numeration language LU = 0∗repU(N) are:

▶ LU is prefix-closed if all prefixes of words in LU also belong to LU .

▶ LU is prolongable if for all w in LU , the word w0 also belongs to LU .

We say that U is a Bertrand numeration system if LU is both prefix-closed and prolongable.

Equivalently: ∀w ∈ A∗
U , w ∈ LU ⇐⇒ w0 ∈ LU .

[Bertrand-Mathis 1989]
[Bruyère & Hansel 1997]



Canonical Bertrand systems associated with a real base β

For a real number β > 1, define

Ui = a1Ui−1 + a2Ui−2 + · · · + ai U0 + 1, ∀i ≥ 0

where (ai )i≥1 is given by d∗
β(1).

The so-obtained sequence U = (Ui )i≥0 defines a positional numeration system for
representing integers.

This numeration system is Bertrand, and it has β as a dominant root, meaning that

lim
i→∞

Ui+1
Ui

= β.

Moreover, we have the language equality

LU = Fac(Sβ).

Thanks to Parry’s characterization, we see that

LU is regular ⇐⇒ β is a Parry number.

[Bertrand-Mathis 1989]



Canonical Bertrand systems associated with 3, φ and φ2

For β = 3, since d∗
3 (1) = 2ω , we get Ui = 2Ui−1 + 2Ui−2 + · · · + 2U0 + 1.

This gives U0 = 1, U1 = 2U0 + 1 = 3, U2 = 2U1 + 2U0 + 1 = 9,
U3 = 2U2 + 2U1 + 2U0 + 1 = 27...

For β = φ, since d∗
φ(1) = (10)ω , we get

Ui =

{
Ui−1 + Ui−3 + · · · + U1 + 1, if i ≡ 0 (mod 2);
Ui−1 + Ui−3 + · · · + U0 + 1, if i ≡ 1 (mod 2).

This gives U0 = 1, U1 = U0 + 1 = 2, U2 = U1 + 1 = 3, U3 = U2 + U0 + 1 = 5,
U4 = U3 + U1 + 1 = 8...

For β = φ2, since d∗
φ2 (1) = 21ω , we get Ui = 2Ui−1 + Ui−2 + · · · + U0 + 1.

This gives U0 = 1, U1 = 2U0 + 1 = 3, U2 = 2U1 + U0 + 1 = 8,
U3 = 2U2 + U1 + U0 + 1 = 21...



Non-Bertrand systems
Define

Ui = a1Ui−1 + a2Ui−2 + · · · + ai U0 + 1, ∀i ≥ 0

with the sequence of coefficients given by

(ai )i≥1 = 10110ω .

This system is again linked with the Golden ratio φ since 1
φ

+ 1
φ3 + 1

φ4 = 1. It has φ as a

dominant root : limi→∞
Ui+1

Ui
= φ.

We have

U0 = 1, U1 = U0 + 1 = 2, U2 = U1 + 1 = 3, U3 = U2 + U0 + 1 = 5,

Ui = Ui−1 + Ui−3 + Ui−4 + 1, i ≥ 4

so that U = (1, 2, 3, 5, 9, 15, 24, 39, . . .).

This system is not Bertrand since for example, 1100, 11000 ∈ LU but 11, 110, 110000 /∈ LU ,
showing that LU is neither prefix-closed nor prolongable.

In fact, we have

Ui+2 =

{
Ui+1 + Ui , if i ≡ 2, 3 (mod 4);
Ui+1 + Ui + 1, if i ≡ 0, 1 (mod 4).



The canonical Bertrand system U associated with β has the property that

repU(Ui − 1) = Pref i (d∗
β(1)), for all i ≥ 0.

Proposition (Hollander 1998)
Let U be a positional numeration system such that Ui+1

Ui
= β > 1.

▶ If dβ(1) = d∗
β(1) is not finite, then

lim
i→∞

repU(Ui − 1) = d∗
β(1).

▶ If dβ(1) = d1 · · · dℓ0ω with dℓ ̸= 0, then for all n ≥ 0 and all large enough i, there exists
k ≥ 0 such that

Prefn(repU(Ui − 1)) = Prefn((d1 · · · dℓ−1(dℓ − 1))kd1 · · · dℓ0ω).

[Hollander 1998]



The Zeckendorf system F = (1, 2, 3, 5, 8, 13, 21, 34, . . .), which is the canonical Bertrand
system associated with φ satisfies

repF (1) = 1, repF (2) = 10, repF (4) = 101, repF (7) = 1010, repF (11) = 10101, . . .

that is
repF (Fi − 1) = Pref i (d∗

φ(1)) = Pref i ((10)ω).

The non-Bertrand system U = (1, 2, 3, 5, 9, 15, 24, 39, . . .) we’ve seen before (still with the
dominant root φ) is such that

repU(1) = 1, repU(2) = 10, repU(4) = 101, repU(8) = 1100, repU(14) = 11000, . . .

that is

repU(Ui − 1) =

{
Pref i ((10)ω), if i ≡ 0, 1 (mod 4);
Pref i (110ω), if i ≡ 2, 3 (mod 4).



A characterization of Bertrand numeration systems

Proposition (C., Cisternino & Stipulanti 2022)
Let U be a positional numeration system such that lim

i→∞

Ui+1
Ui

= β > 1.

If lim
i→∞

repU(Ui − 1) exists, then it is either d∗
β(1) or dβ(1).

Theorem (C., Cisternino & Stipulanti 2022)
A positional numeration system U is Bertrand if and only if one of the following conditions is
satisfied.

1. We have repU(Ui − 1) = Pref i (10ω) for all i ≥ 0.

2. There exists β > 1 such that repU(Ui − 1) = Pref i (d∗
β(1)) for all i ≥ 0.

3. There exists β > 1 such that repU(Ui − 1) = Pref i (dβ(1)) for all i ≥ 0.

[C., Cisternino & Stipulanti 2022]



Regularity of LU

A fundamental question is the following:

▶ Given a positional system U, can we decide if the numeration language LU is regular?

▶ And even more precisely, can characterize those systems U giving rise to a regular
numeration language LU?

A necessary condition is that the sequence U = (Ui )i≥0 is linear, i.e., it must satisfy a linear
recurrence relation with integer coefficients: there exist integers c1, . . . , ck such that

Ui = c1Ui−1 + c2Ui−2 · · · + ckUi−k , for all i ≥ k.

The characteristic polynomial of the recurrence relation is

Xk − c1Xk−1 − c2Xk−2 − · · · − ck .



This question was studied by Hollander in the case of linear systems with a dominant root,
i.e., such that the limit limi→∞

Ui+1
Ui

exists and is greater than 1.

A clever observation he made was that is sufficient to study the regularity of the language
made of words of maximal length.

Proposition (Hollander 1998)
LU is regular ⇐⇒ Max(LU) := {repU(Ui − 1) : i ≥ 0} is regular.

He also showed the following necessary condition:

Proposition (Hollander 1998)
If U has a dominant root β > 1 and if LU is regular, then β is a Parry number.



In order to give Hollander’s full statement, we need to introduce the notion of β-polynomials.
Suppose that d∗

β(1) = t1 . . . tm(tm+1 · · · tm+n)ω , then the polynomial

Pβ,m,n =

(
Xm+n −

m+n∑
i=1

ti Xm+n−i

)
−

(
Xm −

m∑
i=1

ti Xm−i

)
.

is called a β-polynomial.
For m, n minimal, we get the canonical β-polynomial, simply denoted Pβ .

▶ If d∗
β(1) = 21ω , then m = n = 1 and

Pβ = (X2 − 2X − 1) − (X − 2) = X2 − 3X + 1.

▶ If d∗
β(1) = (10)ω , then m = 0, n = 2 and

Pβ = (X2 − X − 0) − (X0) = X2 − X − 1.

In the case where dβ(1) = d1 . . . dℓ0ω is finite (with dℓ ̸= 0), it is easy to see that

Pβ = Xℓ −
ℓ∑

i=1

ti Xℓ−i .



Theorem (Hollander 1998)
Let U be a linear numeration system with a dominant root β > 1.

▶ If LU is regular, then β is a Parry number.

▶ Case where dβ(1) = d∗
β(1).

▶ LU is regular if and only if U satisfies a recurrence relation of characteristic polynomial
Pβ,m,n for some m, n.

▶ Case where dβ(1) = d1 . . . dℓ0ω with dℓ ̸= 0.

▶ If U satisfies a recurrence relation of characteristic polynomial Pβ,m,n for some m, n, then
LU is regular.

▶ If LU is regular, then the base sequence U satisfies a recurrence relation of characteristic
polynomial of the form (Xℓ − 1)Pβ,m,n for some m, n.



β-integers and sturmian words

A real number x ≥ 0 is a β-integer if its β-expansion is of the form

dβ(x) = an−1 · · · a0.0ω with n ∈ N.

The set of all β-integers is denoted by Nβ .

Lemma
This set is unbounded and discrete, i.e., it has no accumulation point in R.

Proof
The β-expansion of a β-integer smaller than βn is of the form am−1 · · · a0.0ω with m ≤ n.
Since ai < β for each i , there are only finitely many β-expansions having this property.

Let (xk)k∈N be the increasing sequence of β-integers:

Nβ = {xk : k ∈ N}.

[Gazeau 1997]
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Distances between consecutive β-integers

For β = φ, there are only two possible distances ∆0 = 1 and ∆1 = 1
φ

= φ − 1.

The distances xk+1 − xk between consecutive β-integers are coded by the Fibonacci word
0100101001001010 · · · .

0 1 φ φ2 φ2+1 φ3 φ3+1 φ3+φ φ4 φ4+1 φ4+φ φ4+φ2 φ4+φ2+1φ4+φ2+1

0 1 0 0 1 0 1 0 0 1 0 0



Theorem
The sequence (xk+1 − xk)k≥0 of distances between consecutive β-integers takes only finitely
many values if and only if the base β is a Parry number, in which case the corresponding
infinite word is a fixed point of a primitive substitution.

Let d∗
β(1) = t1t2t3 · · · . The possible distances are given by

∆i = valβ(0.ti+1ti+2ti+3 · · · ) =
∞∑

k=1

ti+k
βk .

By letting wk = i if xk+1 − xk = ∆i , the infinite word wβ = w0w1w2 · · · encodes the distances
between β-integers.

If d∗
β(1) = t1 · · · tm(tm+1 · · · tm+n)ω for minimal m, n, then there are exactly m + n distinct

distances, and wβ is written over the alphabet {0, . . . , m + n − 1}.

The infinite word wβ is the fixed point of the Parry substitution

0 7→ 0t1 1

1 7→ 0t2 2

...

m+n−2 7→ 0tm+n−1 (m+n−1)

m+n−1 7→ 0tm+n m.

[Fabre 1995]



Combinatorial properties of wβ

The factor complexity of an infinite word w is the function C(n) counting the number of
factors of length n in w.

Aperiodic words with factor complexity C(n) = n + 1 are called sturmian.

For example, the Fibonacci word f = 01001010010010100101001001010 · · · is sturmian:

Fac1(f) = {0, 1}

Fac2(f) = {00, 01, 10}

Fac3(f) = {001, 010, 100, 101}

Fac4(f) = {0010, 0100, 0101, 1001, 1010}

▶ wβ is sturmian if and only if β is a quadratic Parry number.

▶ In the case where dβ(1) is finite, Arnoux-Rauzy words wβ are characterized in [Frougny,
Masakova, Pelantova 2004].

▶ wβ with affine factor complexity C(n) = an + b are characterized in [Bernat, Masakova,
Pelantova 2007].



Current work:

▶ Regularity in the non dominant root case.

▶ Cantor real numeration systems, in particular, alternating real bases.

▶ In this context, generalized β-integers can be coded by words of other types, called
S-adic words.



Thank you!
Merci !


