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Sets of numbers and their representations

In this ourse we will be interested in sets of numbers.

In omputer siene, we are onerned by the question: how do we

have suh sets at our disposal?

This is why numeration systems ome into play.

The basi onsideration is as follows: properties of numbers are

translated into syntatial (or ombinatorial) properties of their

representations.



Simple sets of numbers

Are the following sets of naturals simple ?

◮
X

1

= {n2 : n ∈ N}
◮

X

2

= {n ∈ N : n is prime}
◮

X

3

= {n ∈ N : n is even}
◮

X

4

= {2n : n ∈ N}
◮

X

5

= {n ∈ N : ∃m ∈ N, n2 + n + 1 = 3m}
◮

X

6

= {n ∈ N : ∃m ∈ N, n2 + n + 1 = 3m

2}
Non-trivial properties of numbers are dependent of the base, or the

hosen numeration system.



Combinatoris on words

Numbers are represented by words.

Usually integers are represented by �nite words while real numbers

are represented by in�nite words.

This is not true anymore when we onsider non-standard

numeration systems. . .

On the other hand, in�nite words may also represent sets of

numbers: the harateristi sequene of X ⊆ N is a binary in�nite

word.

This notion an be extended to subsets of N
d

.



Reognizable sets of integers

A subset X of N is reognizable w.r.t. a numeration system if the

language

{rep(n) : n ∈ X} ⊆ A

∗

is aepted by a �nite automaton.

Multidimensional ase:

A subset X of N
d

is reognizable w.r.t. a numeration system if the

language

{(rep(n
1

), . . . , rep(n
d

)) : (n
1

, . . . , n
d

) ∈ X}# ⊆ ((A ∪ {#})d )∗,

where the padding symbol # is not ontained in the numeration

alphabet A, is aepted by a �nite automaton.



Produts of free monoids

If A

1

, . . . ,A
d

are �nite alphabets then

◮
For all i , A

∗
i

are free monoids.

◮
For d ≥ 2, A

∗
1

× · · · × A

∗
d

is a monoid (for omponentwise

onatenation) whih is not free:

for d = 2, one has (a
1

, a
2

) = (a
1

, ε)(ε, a
2

).

◮ (A
1

× · · · × A

d

)∗ is a free monoid � letters are elements of

A

1

× · · · × A

d

.

◮ (A
1

× · · · × A

d

)∗ is a submonoid of A

∗
1

× · · · × A

∗
d

.



◮ N is a free monoid.

◮ N
d

is a monoid whih is not free.

◮
Question: How to represent subsets of N

d

?

◮
If X ⊆ N

d

then {(rep(n
1

), . . . , rep(n
d

)) : (n
1

, . . . , n
d

) ∈ X} is

not a language.

Example (d=3)
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Depending on the ontext, we an interpret this word di�erently.

For example, we an see this word as the binary representation of

the triplet (5,9,1). In the Fibonai numeration system, it is (4,6,1).



A range of numeration systems

Integer base representations

Let b ≥ 2 be an integer. A natural number n is represented by the

�nite word rep

b

(n) = ℓ · · · 10 over the alphabet

A

b

= {0, 1, . . . , b − 1} obtained from the greedy algorithm:

n =

ℓ
∑

i=0



i

b

i .

The greedy algorithm only imposes to have a nonzero leading digit

ℓ and the set of all possible representations is

L
b

= {1, . . . , b − 1}{0, · · · , b − 1}∗ ∪ {ε}.

In this ase, we talk about b-reognizable sets of N
d

.



Alternative de�nitions of b-reognizable sets

There exist several equivalent de�nitions of b-reognizable sets of

integers using

◮
logi

◮
uniform morphisms

◮
�niteness of the b-kernel

◮
algebrai formal series

◮
reognizable/rational formal series

See the survey of Bruyère-Hansel-Mihaux-Villemaire.



Unary representations

A natural number n is represented by rep

1

(n) = a

n

, where a is any

letter. The set of all possible representations is L
1

= a

∗
.

In this ase, we talk about 1-reognizable sets of N
d

.

In dimension 1, they orrespond exatly to ultimately periodi sets

(easy to see).

In the multidimensional ase, it is more ompliated to apture the

essene of 1-reognizable sets.



Fibonai representations

Let F = (F
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be the sequene obtained from

the rules:

F

0

= 1, F
1

= 2 and F

i+2

= F

i+1

+ F

i

for i ≥ 0.

A natural number n is represented by the �nite word

rep

F

(n) = ℓ · · · 10 over the alphabet A

F

= {0, 1} obtained from

the greedy algorithm:

n =
ℓ

∑

i=0



i

F

i

.

The greedy algorithm imposes, in addition to having a nonzero

leading digit ℓ, that the valid representations do not ontain two

onseutive digits 1. The set of all possible representations is

L
F

= 1{0, 01}∗ ∪ {ε}.



Positional representations

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequene, that is, an

inreasing sequene of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = ℓ · · · 10 over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1}
obtained from the greedy algorithm:

n =

ℓ
∑

i=0



i

U

i

.

In this ase, we talk about U-reognizable sets of integers.



The set of all possible representations is denoted by

L
U

= {rep
U

(n) : n ∈ N}.

Of ourse a desription of the numeration language L
U

highly

depends on the base sequene U.

Given suh a system U, other hoies of representations ould be

made: lazy algorithm, or even, onsidering all possible

representations of a given integer.



Part 1

First order theory in base b and automata



b-reognizable sets of integers

Fix an integer b ≥ 2.

We let rep

b

(n
1

, . . . , n
d

) = (rep
b

(n
1

), . . . , rep
b

(n
d

))#.

A set X ⊆ N
d

is b-reognizable if the language

rep

b

(X ) = {rep
b

(n
1

, . . . , n
d

) : (n
1

, . . . , n
d

) ∈ X}

is regular.

For d = 1, this is equivalent to say that its harateristi sequene

χ
X

∈ {0, 1}N is b-automati: there exists a DFAO that on input

rep

b

(n) ouputs 1 if n ∈ X , and outputs 0 otherwise.



Example

The DFAO

0 1

0, 1

1

0

generates the sequene

011010111 · · ·

when reading 2-representations of integers, whih orresponds to

the subset of integers

{1, 2, 4, 6, 7, 8, . . .}.



Cobham-Semenov theorem

Semi-linear sets of N
d

are �nite unions of sets of the form

p

0

+ p

1

N+ · · ·+ pℓN

where p

0

, p
1

, . . . , pℓ ∈ N
d

.

Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipliatively independent bases. If a subset of

N
d

is simultaneously b-reognizable and b

′
-reognizable, then it is

semi-linear.



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipliatively independent bases. If a subset of

N
d

is simultaneously b-reognizable and b

′
-reognizable, then it is

semi-linear.

As linear sets are b-reognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-reognizable for all b ≥ 2 i� it is semi-linear.



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipliatively independent bases. If a subset of

N
d

is simultaneously b-reognizable and b

′
-reognizable, then it is

semi-linear.

As linear sets are b-reognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-reognizable for all b ≥ 2 i� it is semi-linear.

NB: We an't replae b ≥ 2 by b ≥ 1!
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semi-linear.
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Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipliatively independent bases. If a subset of

N
d

is simultaneously b-reognizable and b

′
-reognizable, then it is

semi-linear.

As linear sets are b-reognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-reognizable for all b ≥ 2 i� it is semi-linear.

NB: We an't replae b ≥ 2 by b ≥ 1!

The linear set X = {(n, 2n) : n ∈ N} = (1, 2)N is not 1-reognizable

sine the language

rep

1

(X ) = {(#n

a

n, a2n) : n ∈ N} = {(#, a)n(a, a)n : n ∈ N}

is not regular (apply the pumping lemma).



Charaterizing b-reognizable sets with logi

Theorem (Bühi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-reognizable i� it is

b-de�nable.



De�nable sets

Let S be a logial struture whose domain is D and let n ≥ 1. A

set X ⊆ D

n

is de�nable in S if there exists a �rst-order formula

ϕ(x
1

, . . . , x
n

) of S, so that, for all (d
1

, . . . , d
n

) ∈ D

n

, ϕ(d
1

, . . . , d
n

)
is true i� (d

1

, . . . , d
n

) ∈ X :

X = {(d
1

, . . . , d
n

) ∈ D

n : S � ϕ(d
1

, . . . , d
n

)}.

A �rst-order formula is de�ned reursively from

◮
variables x

1

, x
2

, x
3

, . . . desribing elements of the domain D

◮
the equality =

◮
the relations and funtions given in the struture S

◮
the onnetives ∨,∧, =⇒ , ⇐⇒ ,¬

◮
the quanti�ers ∀,∃ on variables.



Presburger arithmeti 〈N,+〉

x ≤ y is de�nable by (∃z) (x + z = y). Not true in 〈Z,+〉.
x = y is de�nable by x ≤ y ∧ y ≤ x . Not true in 〈Z,+〉.
x = 0 is de�nable by x + x = x . OK in 〈Z,+〉.
x = 1 is de�nable by (∀y) (y = 0 ∨ x ≤ y). Not true in 〈Z,+〉.
Indutively, x =  is de�nable for every  ∈ N.

The sets aN+b are de�nable: aN+b = {x : (∃y) (x = ay + b)}
where ay stands for y + y + · · · y (a times).

In fat, a subset X ⊆ N is de�nable in 〈N,+〉 i� it is a �nite union

of arithmeti progressions, or equivalently, ultimately periodi.

A subset X ⊆ N
d

is de�nable in 〈N,+〉 i� it is semi-linear.



b-de�nable sets

A set X ⊆ N
d

is b-de�nable if it is de�nable in the struture

〈N,+,V
b

〉, where
◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

b

(x) is the unary funtion de�ned as the largest power of b

dividing x if x ≥ 1 and V

b

(0) = 1.

For example, the set X = {x ∈ N : x is a power of b} is de�nable

by V

b

(x) = x .

It an be shown that the strutures 〈N,+,V
b

〉 and 〈N,+,P
b

〉 are
not equivalent, where P

b

(x) is 1 if x is a power of b and 0

otherwise.



Bühi-Bruyère's theorem

Theorem (Bühi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-reognizable i� it is

b-de�nable. Moreover, both diretions are e�etive.

Sketh of the proof.

◮
From an automaton aepting rep

b

(X ), onstrut a �rst-order

formula ϕ of the struture 〈N,+,V
b

〉 de�ning X , that is, suh

that ϕ(x
1

, . . . , x
d

) is true i� (x
1

, . . . , x
d

) ∈ X .

◮
Conversely, given a �rst-order formula ϕ of the struture

〈N,+,V
b

〉 de�ning X , build an automaton aepting the

language rep

b

(X ).



Bühi-Bruyère's theorem

Theorem (Bühi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-reognizable i� it is

b-de�nable. Moreover, both diretions are e�etive.

Sketh of the proof.

◮
From an automaton aepting rep

b

(X ), onstrut a �rst-order

formula ϕ of the struture 〈N,+,V
b

〉 de�ning X , that is, suh

that ϕ(x
1

, . . . , x
d

) is true i� (x
1

, . . . , x
d

) ∈ X .

◮
Conversely, given a �rst-order formula ϕ of the struture

〈N,+,V
b

〉 de�ning X , build an automaton aepting the

language rep

b

(X ).

Proof of the seond part on the board...



Corollary: The �rst order theory of 〈N,+,V
b

〉 is deidable

We have to show that, given any losed �rst-order formula of

〈N,+,V
b

〉, we an deide whether it is true or false in N.

Sine there is no onstant in the struture, a losed formula of

〈N,+,V
b

〉 is neessarily of the form ∃xϕ(x) or ∀xϕ(x).

The set

Xϕ = {x ∈ N : 〈N,+,V
b

〉 � ϕ(x)}
is b-de�nable, so it is b-reognizable by Bühi-Bruyère's theorem.

This means that we an e�etively onstrut a �nite automaton

aepting rep

b

(Xϕ).



The losed formula ∃xϕ(x) is true if rep

b

(Xϕ) is nonempty, and

false otherwise.

As the emptiness of the language aepted by a �nite automaton is

deidable, we an deide if ∃xϕ(x) is true.

The ase ∀xϕ(x) redues to the previous one sine ∀xϕ(x) is
logially equivalent to ¬∃x¬ϕ(x). We an again onstrut a �nite

automaton aepting the base-b representations of

X¬ϕ = {x ∈ N : 〈N,+,V
b

〉 6� ϕ(x)}.

The language it aepts is empty i� the formula ∀xϕ(x) is true.



Appliations to deidability questions for automati

sequenes

Corollary

If we an express a property P(n) of an integer n using quanti�ers,

logial operations, the operations of addition, subtration, and

omparison of integers or elements of a b-automati sequene x,

then ∃nP(n), ∃∞nP(n) and ∀nP(n) are deidable.

We just have to onvine ourselves that those properties P an all

be expressed by a �rst-order formula of 〈N,+,V
b

〉.



In partiular, what about the property x [i] = x [j]?

If x is b-automati then, for all letters a ourring in x , the subsets

x

−1(a) of N are b-reognizable.

Hene they are de�nable by some �rst-order formulae ψ
a

of

〈N,+,V
b

〉 (by Bühi-Bruyère theorem): ψ
a

(n) is true i� x [n] = a.

Therefore, we an express x [i ] = x [j ] by the �rst-order formula

ϕ(i , j) of 〈N,+,V
b

〉:

ϕ(i , j) ≡
∨

a

(ψ
a

(i) ∧ ψ
a

(j)).



In partiular, what about the property x [i] = x [j]?

In pratie, given a DFAO M omputing x , we an diretly

ompute a �nite automaton reognizing the pairs (i , j) ∈ N
2

suh

that x [i ] = x [j ].

We simply do the produt of automata M ×M, simulate i on the

�rst omponent and j on the seond omponent, and we aept if

the outputs of M after reading rep

b

(i) and rep

b

(j) are the same,

and rejet otherwise.



Appliations

Consider the property of having an overlap.

A sequene x = x [0]x [1] . . . has an overlap beginning at position i

i� (∃ℓ ≥ 1) (∀j ≤ ℓ) x [i + j ] = x [i + ℓ+ j ].

Now suppose that x is b-automati.

Given a DFAO M

1

generating x , we �rst reate an NFA M

2

that on

input (i , ℓ) aepts if (∃j ≤ ℓ) x [i + j ] 6= x [i + j + ℓ].

To do this, M

2

guesses the base-b representation of j ,

digit-by-digit, veri�es that j ≤ ℓ, omputes i + j and i + j + ℓ on

the �y, and aepts if x [i + j ] 6= x [i + j + ℓ].



We now onvert M

2

to a DFA M

3

using the subset onstrution,

and inverse the �nal status of eah state, obtaining a DFA M

3

whih aepts those pairs (i , ℓ) suh that

(∀j ≤ ℓ) x [i + j ] = x [i + j + ℓ].

Now we reate an NFA M

4

that on input i guesses ℓ ≥ 1 and

aepts if M

3

aepts (i , ℓ).

As we an deide if M

4

aepts anything, we have obtained that

Proposition

It is deidable if a b-automati sequene has an overlap.



Many deidability results for automati sequenes

◮
It is deidable whether a b-automati sequene has k-powers

(for a �xed k).

◮
It is deidable whether a b-automati sequene is ultimately

periodi.

◮
Given two b-automati sequenes x and y , it is deidable

whether Fa(x) ⊆ Fa(y).

◮
. . .



What about deiding whether a b-automati sequene is

Toeplitz (see Samuel Petite's leture)?

The prediate

∀n ∃p ≥ 1 ∀ℓ x [n] = x [n + ℓp]

is not a �rst order formula in 〈N,+,V
b

〉. Why? Is this property

b-de�nable? What about the ase where the periods p are

restrited to powers of the base b?



A negative result by Shae�er

If x is an arbitrary b-automati sequene, then the prediate

“x [i , i + 2n − 1] is an abelian square�

is not expressible in the logial theory 〈N,+,V
b

〉.



Complexity issues

This method for deiding �rst-order expressible properties of

b-automati sequenes is very bad in terms of omplexity.

In the worst ase, we have a tower of exponentials:

2

2

·

·

·

2

n

where n is the number of states of the given DFAO and the height

of the tower is the number of alternating quanti�ers if the

�rst-order prediate.

This proedure was implemented by Go, Henshall, Mousavi, and

Shallit. In pratie, they were able to run their programs in order to

prove (and reprove) many results about k-automati sequenes, in

a purely mehanial way.



Part 2

Enumeration: ounting �rst-order properties of b-automati

sequenes is b-regular

On the blakboard...



Part 3

Logi and other numeration systems



Positional numeration systems

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequene, that is, an

inreasing sequene of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = ℓ · · · 10 over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1}
obtained from the greedy algorithm:

n =
ℓ

∑

i=0



i

U

i

.

The set of all possible representations is denoted by

L
U

= {rep
U

(n) : n ≥ 0}.

In this ase, we talk about U-reognizable sets of integers.



A logial framework for positional numeration systems

Two problems:

◮
In general, N is not U-reognizable.

◮
The addition is not reognized by �nite automaton.



Pisot systems

A Pisot number is an algebrai integer > 1 suh that all of its

Galois onjugates have absolute value < 1.

Working Hypothesis : U sati�es a linear reurrene whose

harateristi polynomial is the minimal polynomial of a Pisot

number.

For suh systems, Frougny showed that N and the addition are

reognizable by �nite automata.



A logial framework for Pisot systems

U-de�nable sets are subsets of N
d

that are de�nable in the logial

struture 〈N,+,V
U

〉, where, for n ≥ 1, V

U

(n) denotes the smallest

U

i

ourring in rep

U

(n) with a nonzero oe�ient and V

U

(0) = 1.

Theorem (Bruyère-Hansel 1997)

Under WH, the U-reognizable sets of integers oinide with the

U-de�nable sets of integers.



Corollary: The �rst order theory of 〈N,+,V
U

〉 is deidable

This result implies that there exist algorithms to deide U-de�nable

properties for U-automati sequenes.

As an appliation, one an prove (and reprove, or verify) many

results about the Fibonai in�nite word

f = 01001010010010100101001001010010 · · ·

(whih is the �xed point of 0 7→ 01, 1 7→ 0).

0 1

0

1

0



Conrete appliations (among many others)

In a purely mehanial way, Mousavi, Shae�er and Shallit show:

◮
f is not ultimately periodi.

◮
f ontains no fourth powers.

◮
Charaterizations of squares, ubes, antisquares, palindromes,

antipalindromes of f.

◮
f is mirror-invariant.

◮
Fators of f: least periods of fators, unbordered fators,

Lyndon fators, speial fators . . .

◮
f is linearly reurrent.

◮
Computation of the ritial exponant and ie.

◮
The lexiographially least element in S(f) is 0f.

◮
. . .



Representing real numbers

In general real numbers are represented by in�nite words.

In this ontext, we onsider Bühi automata. An in�nite word is

aepted when the orresponding path goes in�nitely many times

through an aepting state.

We talk about ω-languages and ω-regular languages.



Regular languages vs ω-regular languages

Regular and ω-regular languages share some important properties:

they both are stable under

◮
omplementation

◮
�nite union

◮
�nite intersetion

◮
morphi image

◮
inverse image under a morphism.

Nevertheless, they di�er by some other aspets. One of them is

determinism.



Deterministi Bühi automata

As for DFAs, we an de�ne deterministi Bühi automata.

But one has to be areful as the family of ω-languages that are

aepted by deterministi Bühi automata is stritly inluded in

that of ω-regular languages.

Example

No deterministi Bühi automaton aepts the language aepted

by

a, b

b

b



β-representation of real numbers

Let β > 1 be a real number and let C ⊂ Z be an alphabet. For a

real number x , any in�nite word u = u

k

· · · u
1

u

0

⋆ u−1

u−2

· · · over

C ∪ {⋆} suh that

valβ(u) :=
∑

−∞<i≤k
u

i

βi = x

is a β-representation of x .

In general, this is not unique.



Example (β = 1+
√
5

2

, the golden ratio)

Consider x =
∑

i≥1

β−2i

.

As we also have x =
∑

i≥3

β−i , the words

u = 0 ⋆ 001111 · · ·

and

v = 0 ⋆ 0101010 · · ·
are both β-representations of x .



β-expansions of real numbers

For x ≥ 0, among all suh β-representations of x , we distinguish

the β-expansion

dβ(x) = x

k

· · · x
1

x

0

⋆ x−1

x−2

· · ·

whih is the in�nite word over Aβ = {0, . . . , ⌈β⌉ − 1} ontaining

exatly one symbol ⋆ and obtained by the greedy algorithm.

Reals in [0, 1) have a β-expansion of the form 0 ⋆ u with u ∈ A

ω
β .

In partiular dβ(0) = 0 ⋆ 0ω.



Parry's riterion

Theorem (Parry 1960)

An in�nite word u is suh that 0 ⋆ u
1

u

2

· · · is the β-expansion of a

real number in [0, 1) i� for all k ≥ 1, u

k

u

k+1

· · · <
lex

d

∗
β (1).

Here d

∗
β (1) denotes the lexiographially greatest w ∈ A

ω
β not

ending in 0

ω
suh that valβ(0 ⋆ w) = 1.



Example (β = 1+
√
5

2

, the Golden ratio)

We have seen that the words u = 0 ⋆ 001111 · · · and

v = 0 ⋆ 0101010 · · · are both β-representations of x =
∑

i≥1

β−2i

.

We have d

∗
β(1) = (10)ω.

Thanks to Parry's theorem, the β-expansions of real numbers in

[0, 1) are of the form 0 ⋆ u, where u ∈ {0, 1}ω does not ontain 11

as a fator.

So v is the β-expansion of x .



Representing negative numbers

In order to deal with negative numbers, a denotes the integer −a

for all a ∈ Z. Moreover we write

u v = u v , u ⋆ v = u ⋆ v and u = u.

For x < 0, the β-expansion of x is de�ned as

dβ(x) = dβ(−x).

We let Aβ = {0̄, 1̄, . . . , ⌈β⌉ − 1} and Ãβ = Aβ ∪ Aβ (with 0̄ = 0).



Multidimensional framework

Let β = 1+
√
5

2

.

Consider x = (x
1

, x
2

) = (1+
√
5

4

, 2+
√
5). We have

dβ(x) =
0 0 0 ⋆ 1 0 0 1 0 0 · · ·
1 0 1 ⋆ 0 1 0 1 0 1 · · ·

where the �rst β-expansion is padded with some leading zeroes.

With y = (x
1

, x
2

) = (1+
√
5

4

,−1

2

), we get

dβ(y) =
0 ⋆ 1 0 0 1 0 0 · · ·
0 ⋆ 0 1 0 0 1 0 · · ·



β-reognizable subsets of R
d

A set X ⊆ R
d

is β-reognizable if dβ(X ) is aepted by some Bühi

automaton.

Theorem

Let X ⊆ R
d

. The following are equivalent:

1. X is β-reognizable.

2. 0

∗
dβ(X ) is ω-regular.

3. For some map m : x → N, {0m(x)
dβ(x) : x ∈ X} is ω-regular.



Parry numbers

A Parry number is a real number β > 1 for whih d

∗
β(1) is

ultimately periodi.

Corollary (of Parry's theorem)

If β is a Parry number then dβ([0, 1)
d ) is aepted by a

deterministi Bühi automaton.

Example (β = 1+
√
5

2

, the Golden ratio)

The ω-language dβ([0, 1)) is aepted by

1

0

0



First order theory for mixed real and β-integer variables

A real number x is a β-integer if dβ(x) is of the kind u ⋆ 0ω. The

set of β-integers is denoted by Zβ.

A subset of R
d

is β-de�nable if it is de�nable by a �rst-order

formula of

〈R,+,≤,Zβ,Xβ〉,
where Xβ is the �nite olletion of binary prediates {Xβ,a : a ∈ Ãβ}
de�ned by Xβ,a(x , y) i� y = βi for some i ∈ Z, and

◮
either |x | < y and a = 0,

◮
or |x | ≥ y , i ≤ k and x

i

= a.



0 and 1 are β-de�nable

x = 0 is de�ned by x + x = x .

z = 1 an be de�ned in 〈R,+,≤,Zβ,Xβ〉 by the formula

z ∈ Zβ ∧
[

(∀x)
((

x ∈ Zβ ∧ x > 0

)

=⇒ x ≥ z

)]



The struture 〈R,+,≤, 1,Xβ〉
The property of being an integer power of β is de�nable in

〈R,+,≤, 1,Xβ〉 by the formula

x is a power of β ⇐⇒ (∃y) (Xβ,1(x , y) ∧ x = y) .

We an also de�ne the properties of being a positive or negative

power of β by adding x > 1 or x < 1 respetively.

Let b be a power of β. One an de�ne the next (or the previous)

power of β as follows:

b

′ = βb ⇐⇒ (b′ is a power of β)

∧ (b′ > b)

∧ (∀)(( is a power of β ∧  > b) =⇒  ≥ b

′).

Consequently, any onstant (positive or negative) power of β is

de�nable in 〈R,+,≤, 1,Xβ〉.



The two strutures 〈R,+,≤, 1,Xβ〉 and 〈R,+,≤,Zβ,Xβ〉
are equivalent.

The set Zβ an be de�ned in 〈R,+,≤, 1,Xβ〉 by the formula

z ∈ Zβ ⇔ (∀y)
[

(y is a negative power of β) =⇒ Xβ,0(z , y)
]

.



Multipliation (or division) by β is β-de�nable

y = βx ⇔ (∀b)
[

∧

a∈Ãβ

(Xβ,a(x , b) =⇒ Xβ,a(y , βb))
]

.

Note that Xβ,a(x , b) implies that b is an integer power of β.

Consequently, multipliation (or division) by a onstant power of β

is β-de�nable.



First order theory for mixed real and integer variables

Here we suppose that β = b ∈ N.

Theorem (Boigelot-Rassart-Wolper 1998)

A subset of R
d

is b-reognizable i� it is b-de�nable.

As the emptiness of an ω-regular language is deidable, we obtain

Corollary

The �rst order theory of 〈R,+,≤,Z,X
b

〉 is deidable.



Deiding topologial properties

The following properties of b-reognizable subsets X of R
d

are

deidable:

◮
X has a nonempty interior:

(∃x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is open:

(∀x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is losed: OK as R

d \X is b-reognizable.

◮
. . .



A Cobham theorem for real numbers

Theorem (Boigelot-Brusten-Bruyère-Jodogne-Leroux 2001,

2008, 2009)

Let b and b

′
be multipliatively independent integer bases.

A subset X ⊆ R
d

is simultaneously weakly b-reognizable and

b

′
-reognizable i� it is de�nable in 〈R,+,≤,Z〉.

For d = 1, this result is equivalent to

Theorem (Adamzewski-Bell 2011)

Let b, b′ ≥ 2 be multipliatively independent integers. A ompat

set X ⊆ [0, 1] is simultaneously b-self-similar and b

′
-self-similar i� it

is a �nite union of losed intervals with rational endpoints.



b-self-similarity

Let b ≥ 2 be an integer.

A ompat set X ⊂ [0, 1]d is b-self-similar if its b-kernel

{

(bkX − a) ∩ [0, 1]d : k ≥ 0, a = (a
1

, . . . , a
d

) ∈ Z
d ,

(∀i) 0 ≤ a

i

< b

k

}

is �nite.



Pasal's triangle modulo 2 is 2-self-similar.



Menger sponge is 3-self-similar.



Sets of integers de�nable in 〈R,+,≤,Z〉

A rational polyhedron is a region of R
d

delimited by a �nite

number of hyperplanes whose equations have integer oe�ients.

Any �nite union of rational polyhedra is b-self-similar.

As it admits the elimination of quanti�ers, a bounded subset

X ⊆ R
d

is de�nable in 〈R,+,≤,Z〉 is a �nite union of rational

polyhedra.

In partiular, for d = 1, a subset X ⊆ [0, 1] is de�nable in

〈R,+,≤,Z〉 i� it is a �nite union of losed intervals with rational

endpoints.



Linking b-self-similarity and b-reognizability

Theorem (C-Leroy-Rigo 2015)

A subset of [0, 1]d is b-self-similar i� it is weakly b-reognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b′ ≥ 2 be two multipliatively independent integers.

A ompat set X ⊂ [0, 1]d is simultaneously b-self-similar and

b

′
-self-similar i� it is a �nite union of rational polyhedra.

In fat, we proved the above link in the more general ase of a real

Pisot base β.



Charaterizing β-reognizable sets using logi

Theorem (C-Leroy-Rigo 2015)

◮
If β is Parry then every β-reognizable X ⊆ R

d

is β-de�nable.

◮
If β is Pisot then every β-de�nable X ⊆ R

d

is β-reognizable.

Again, the proof of the seond item is by indution on the length of

the formula de�ng X .

The indution step follows from the properties of ω-regular

languages: they are stable under omplementation, intersetion,

union, and projetion on omponents.

What we have to hek that the atomi formulas are all

β-reognizable.



Lemma 1: If β is Parry then R is β-reognizable.

Example (β = 1+
√
5

2

)

The following Bühi automaton aepts the ω-language

0

∗
dβ(x ∈ R : x ≥ 0}.

10

0

10

0

⋆

⋆

0

1

0

To handle negative numbers, we make the union of two suh

automata.



Lemma 2: If β is Pisot then the addition is β-reognizable.

Let C ⊂ Z be �nite. The normalization funtion is the funtion

νβ,C : C+ ⋆ Cω → Ãβ
+
⋆ Ãβ

ω

that maps any β-representation of a real number x onto dβ(x).

Theorem (Frougny 1992)

Let β be a Pisot number and C ⊂ Z be �nite. The normalization is

realizable by a (non-deterministi) letter-to-letter transduer T :

∀u ∈ C

ω ∃
1

v ∈ Aβ
ω (u, v) ∈ RT . Further, dβ(valβ(0 ⋆ u)) = 0 ⋆ v .

Corollary

If β is Pisot then the addition is β-reognizable.



Lemma 3: If β is Parry then {(x , y) ∈ R
2 : x < y} is

β-reognizable.

Proof.

It is reognized by the intersetion of the Bühi automaton

aepting dβ(R
2) with

{(a, b) ∈ Ãβ × Ãβ : a < b}

{(a, a) : a ∈ Ãβ ∪ {⋆}} (Ãβ × Ãβ) ∪ {(⋆, ⋆)}



Lemma 4: If β is Parry then Zβ is β-reognizable.

Proof.

The Bühi automaton reognizing Zβ is the intersetion of the one

reognizing R with the one aepting Ãβ
+
⋆ 0ω.



Lemma 5: If β is Parry then Xβ is β-reognizable.

Proof.

For eah a ∈ Ãβ, dβ(Xβ,a) is aepted by the intersetion of the

Bühi automaton aepting dβ(R
2) with

(a, 1)

(a, 1)

(⋆, ⋆) (⋆, ⋆)

{(a, 0) : a ∈ Ãβ} {(a, 0) : a ∈ Ãβ}

{(a, 0) : a ∈ Ãβ} {(a, 0) : a ∈ Ãβ}



Deidability

As a onsequene of this and the fat that emptiness of an

ω-language is deidable, we obtain

Corollary

The �rst order theory of 〈R,+,≤,Zβ,Xβ〉 is deidable.


