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I. Automati sequenes and reognizable sets



Integer bases

Let b ≥ 2 be an integer (the integer base).

A natural number n is represented by the �nite word

rep

b

(n) = ℓ · · · 10

over the alphabet A

b

= {0, 1, . . . , b − 1} obtained from the greedy

algorithm:

n =

ℓ
∑

i=0



i

b

i .



b-automati sequenes

Take b = 2 and onsider the following DFAO:

0 1

0 0

1

1

For eah n, the DFAO reads rep

2

(n) and outputs 0 or 1 aording to the

last state that is reahed.

We obtain the Thue-Morse sequene

01101001100101101001011001101001 · · ·



b-automati sequenes

A sequene x : N
d → N is said to be b-automati if there exists a DFAO

with input alphabet A

b

suh that for eah n ∈ N
d

, x(n) is the symbol

outputted by the DFAO after reading rep

b

(n).

Two remarks:

◮
A b-automati sequene an take only �nitely many values.

◮
We an work in any dimension d :

rep

2
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10



 =





101

11

1010





0
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0011

1010
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0

0

1
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0
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b-reognizable sets of integers

A set X ⊆ N
d

is b-reognizable if the language

rep

b

(X ) = {rep
b

(n) : n ∈ X}

is regular.

It is equivalent to say that its harateristi sequene χ
X

: N
d → {0, 1} is

b-automati: there exists a DFAO that on input rep

b

(n) ouputs 1 if

n ∈ X , and outputs 0 otherwise.

The set of evil numbers {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, . . .}, i.e. the
natural numbers having an even number of 1 in base 2, is 2-reognizable.

Its harateristi sequene is the Thue-Morse sequene.



Cobham-Semenov theorem

Semi-linear sets of N
d

are �nite unions of sets of the form

p

0

+ p

1

N+ · · ·+ pℓ N

where p

0

,p
1

, . . . ,pℓ ∈ N
d

.

Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipliatively independent integer bases.

If a subset of N
d

is simultaneously b-reognizable and b

′
-reognizable,

then it is semi-linear.



Alternative de�nitions of b-reognizable sets

There exist several equivalent de�nitions of b-reognizable sets of

integers using

◮
logi

◮
b-uniform morphisms

◮
�niteness of the b-kernel

◮
algebrai formal series

◮
reognizable/rational formal series

See the survey of Bruyère-Hansel-Mihaux-Villemaire.



II. Charaterizing b-reognizable sets via logi



De�nable sets

Theorem (Bühi 1960, Bruyère 1985)

A subset X of N
d

is b-reognizable i� it is b-de�nable.



De�nable sets

Let S be a logial struture whose domain is S .

A set X ⊆ S

d

is de�nable in S if there exists a �rst-order formula

ϕ(x
1

, . . . , x
d

) of S suh that

X = {(s
1

, . . . , s
d

) ∈ S

d : S � ϕ(s
1

, . . . , s
d

)}.

A �rst-order formula is de�ned reursively from

◮
variables x

1

, x
2

, x
3

, . . . desribing elements of the domain S

◮
the equality =

◮
the relations and funtions given in the struture S

◮
the onnetives ¬,∨,∧, =⇒ , ⇐⇒

◮
the quanti�ers ∀, ∃ on variables.



Presburger arithmeti 〈N,+〉

x ≤ y is de�nable by (∃z) (x + z = y). Not true in 〈Z,+〉.

x = 0 is de�nable by x + x = x . OK in 〈Z,+〉.

x = 1 is de�nable by x 6= 0∧ ((∀y) (y = 0∨ x ≤ y)). Not true in 〈Z,+〉.

Indutively, x =  is de�nable for every  ∈ N.

The sets aN+b are de�nable: aN+b = {x : (∃y) (x = a · y + b)} where

a · y stands for y + y + · · · y (a times).

In fat, a subset X ⊆ N is de�nable in 〈N,+〉 i� it is a �nite union of

arithmeti progressions, or equivalently, ultimately periodi.

A subset X ⊆ N
d

is de�nable in 〈N,+〉 i� it is semi-linear.



b-de�nable sets

A set X ⊆ N
d

is b-de�nable if it is de�nable in the struture 〈N,+,V
b

〉,
where

◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

b

(x) is the unary funtion de�ned as the largest power of b

dividing x if x ≥ 1 and V

b

(0) = 1.

For example, the set X = {x ∈ N : x is a power of b} is de�nable by

V

b

(x) = x .

It an be shown that the strutures 〈N,+,V
b

〉 and 〈N,+,P
b

〉 are not

equivalent, where P

b

(x) is 1 if x is a power of b and 0 otherwise.



The Bühi-Bruyère theorem

Theorem (Bühi 1960, Bruyère 1985)

A subset X of N
d

is b-reognizable i� it is b-de�nable. Moreover, both

diretions are e�etive.

Sketh of the proof.

◮
From a DFA aepting rep

b

(X ), onstrut a �rst-order formula ϕ of

the struture 〈N,+,V
b

〉 de�ning X , i.e. suh that

X = {(n
1

, . . . , n
d

) ∈ N
d : ϕ(n

1

, . . . , n
d

) is true}.

◮
Conversely, given a �rst-order formula ϕ of the struture 〈N,+,V

b

〉
de�ning X , build a DFA aepting rep

b

(X ).
This part is done by indution on the length of the formula ϕ.



Corollary

The �rst order theory of 〈N,+,V
b

〉 is deidable

Proof.

◮
We have to show that, given any losed �rst-order formula of

〈N,+,V
b

〉, we an deide whether it is true or false in N.

◮
Sine there is no onstant in the struture, a losed formula of

〈N,+,V
b

〉 is neessarily of the form ∃xϕ(x) or ∀xϕ(x).

◮
The set

Xϕ = {n ∈ N : 〈N,+,V
b

〉 � ϕ(n)}

is b-de�nable, so it is b-reognizable by the Bühi-Bruyère theorem.

This means that we an e�etively onstrut a DFA aepting

rep

b

(Xϕ).



◮
The losed formula ∃xϕ(x) is true if rep

b

(Xϕ) is nonempty, and

false otherwise.

◮
As the emptiness of the language aepted by a DFA is deidable,

we an deide if ∃xϕ(x) is true.

◮
The ase ∀xϕ(x) redues to the previous one sine ∀xϕ(x) is
logially equivalent to ¬∃x¬ϕ(x). We an onstrut a DFA

aepting the base-b representations of

X¬ϕ = N \Xϕ.

The language it aepts is empty i� the formula ∀xϕ(x) is true.



III. Appliations to deidability questions for automati

sequenes



Corollary

If we an express a property P(n) using quanti�ers, logial operations,

addition, subtration, omparison, and elements of some b-automati

sequenes, then ∃nP(n), ∃∞nP(n) and ∀nP(n) are deidable.



In partiular, what about the property x(i) = x(j)?

If x : N
d → N is a b-automati sequene then, for all letters a ourring

in x , the subsets x

−1(a) of Nd

are b-reognizable.

Hene they are de�nable by some �rst-order formulae ψ
a

of 〈N,+,V
b

〉
(by Bühi-Bruyère theorem): ψ

a

(n) is true i� x(n) = a.

Therefore, we an express x(i) = x(j) by the �rst-order formula

ϕ(x
1

, . . . , x
d

, y
1

, . . . , y
d

) of 〈N,+,V
b

〉:

ϕ(i, j) ≡
∨

a

(ψ
a

(i) ∧ ψ
a

(j)).



Appliations

Consider the property of having an overlap.

A (unidimensional) sequene x has an overlap beginning at position i i�

(∃ℓ ≥ 1) (∀j ≤ ℓ) x(i + j) = x(i + ℓ+ j).

Now suppose that x is b-automati.

Given a DFAO M

1

generating x , we �rst reate an NFA M

2

that on input

(i , ℓ) aepts if (∃j ≤ ℓ) x(i + j) 6= x(i + j + ℓ).

To do this, M

2

guesses the base-b representation of j digit-by-digit,

veri�es that j ≤ ℓ, omputes i + j and i + j + ℓ on the �y, and aepts if

x(i + j) 6= x(i + j + ℓ).



We now onvert M

2

to a DFA M

3

using the subset onstrution, and

inverse the �nal status of eah state. Thus, M

3

aepts those pairs (i , ℓ)
suh that (∀j ≤ ℓ) x(i + j) = x(i + j + ℓ).

Now we reate an NFA M

4

that on input i guesses ℓ ≥ 1 and aepts i�

M

3

aepts (i , ℓ).

As we an deide if M

4

aepts anything, we have obtained:

Proposition

It is deidable if a b-automati sequene has an overlap.



Many deidability results for automati sequenes

◮
It is deidable whether a b-automati sequene has k-powers (for a

�xed k).

◮
It is deidable whether a b-automati sequene is ultimately

periodi.

◮
Given two b-automati sequenes x and y , it is deidable whether

Fa(x) ⊆ Fa(y).

◮
. . .



What about deiding if a b-automati sequene is Toeplitz?

The prediate

∀n ∃p ≥ 1 ∀ℓ x(n) = x(n + ℓp)

is not a �rst order formula in 〈N,+,V
b

〉. Why? Is this property

b-de�nable? What about the ase where the periods p are restrited to

powers of the base b?



A negative result by Shae�er

If x is an arbitrary b-automati sequene, then the prediate

“x [i , i + 2n− 1] is an abelian square�

is not expressible in the logial theory 〈N,+,V
b

〉.



Complexity issues

In the worst ase, we have a tower of exponentials:

2

2

·
·

·

2

n

where n is the number of states of the given DFAO and the height of the

tower is the number of alternating quanti�ers if the �rst-order prediate.

This proedure was implemented by Mousavi, giving birth the Walnut

software.

In pratie, Go, Henshall, Mousavi, Shallit and others were able to run

their programs in order to prove (and/or reprove) many results about

b-automati sequenes.



IV. Enumeration: ounting b-de�nable properties of

b-automati sequenes is b-regular



In fat, what we showed is

Proposition

Let x : N → N be a b-automati sequene and let y : N → N be de�ned

as y(i) = 1 if x has an overlap at position i , and y(i) = 0 otherwise.

Then y is b-automati.

In the same vein, we an prove that ounting b-de�nable properties of a

b-automati sequene give rise to a b-regular sequene.



b-regular sequenes

Let K be a ommutative semiring. A sequene x : N
d → K is

(K , b)-regular if there exist

◮
an integer m ≥ 1

◮
vetors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : ((A

b

)d )∗ → K

m×m

suh that

∀n ∈ N
d , x(n) = λµ

(

rep

b

(n)
)

γ.

The triple (λ, µ, γ) is alled a linear representation of x and m is its

dimension.



A useful result

Theorem

For any b-de�nable subset X of N
d+1

, the sequene a : N
d → N∪{∞}

de�ned by

a(n
1

, . . . , n
d

) = Card{m ∈ N : (n
1

, . . . , n
d

,m) ∈ X}

is (N∪{∞}, b)-regular. If moreover a(Nd ) ⊆ N, then a is (N, b)-regular.



Appliation to the fator omplexity

Corollary

For any b-automati sequene x : N → N, the fator omplexity of x is

(N, b)-regular.

◮
Let x : N → N be a b-automati sequene.

◮
For all n ∈ N, let p

x

(n) denote the number of length-n fators of x .

◮
Then p

x

(n) = #{i ∈ N : ∀j < i , x [j , j + n − 1] 6= x [i , i + n − 1]}.

◮
Consider X = {(i , n) ∈ N

2 : ∀j < i , x [j , j + n− 1] 6= x [i , i + n− 1]}.

◮
Sine x is b-automati, the set X is b-de�nable.

◮
By hoie of X , we have p

x

(n) = #{i ∈ N : (i , n) ∈ X}.

◮
From the previous theorem, x is (N, b)-regular.



An open problem

What about the ounting the number of retangular fators of size (m, n)
in a bidimensional b-automati sequene? Is the orresponding

bidimensional sequene (N, b)-regular?



V. Logi and non-standard numeration systems



Fibonai representations

Let F = (F
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be the sequene obtained from the

rules:

F

0

= 1, F
1

= 2 and F

i+2

= F

i+1

+ F

i

for i ≥ 0.

A natural number n is represented by the �nite word

rep

F

(n) = ℓ · · · 10

over the alphabet A

F

= {0, 1} obtained from the greedy algorithm:

n =
ℓ

∑

i=0



i

F

i

.

The greedy algorithm imposes, in addition to having a nonzero leading

digit ℓ, that the valid representations do not ontain two onseutive

digits 1. The set of all possible representations is

L
F

= 1{0, 01}∗ ∪ {ε}.



U-systems

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequene, that is, an

inreasing sequene of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = ℓ · · · 10

over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1} obtained from the greedy

algorithm:

n =
ℓ

∑

i=0



i

U

i

.

In this ase, we talk about U-automati sequenes and U-reognizable

sets of integers.



A logial framework for positional numeration systems

Two problems:

◮
In general, N is not U-reognizable.

◮
The addition is not reognized by �nite automaton.



Pisot systems

A Pisot number is an algebrai integer > 1 suh that all of its Galois

onjugates have absolute value < 1.

Working Hypothesis (WH) : U sati�es a linear reurrene whose

harateristi polynomial is the minimal polynomial of a Pisot number.

For suh systems, Frougny showed that N and the addition are

reognizable by �nite automata.



A logial framework for Pisot systems

U-de�nable sets are subsets of N
d

that are de�nable in the logial

struture 〈N,+,V
U

〉, where

◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

U

(x) is the unary funtion de�ned as the smallest U

i

orresponding

to a nonzero digit in rep

U

(x) if x ≥ 1, and V

U

(0) = 1.

Theorem (Bruyère-Hansel 1997)

Under WH, the U-reognizable sets of integers oinide with the

U-de�nable sets of integers.



Corollary

The �rst order theory of 〈N,+,V
U

〉 is deidable

This result implies that there exist algorithms to deide U-de�nable

properties for U-automati sequenes.

As an appliation, one an prove (and reprove, or verify) many results

about the Fibonai in�nite word

f = 01001010010010100101001001010010 · · ·

(whih is the �xed point of 0 7→ 01, 1 7→ 0).

0 1

0

1

0



Current work on enumeration (with Célia Cisternino and

Manon Stipulanti)

What is a U-regular sequene? Several hoies of de�nitions are possible.

In Manon Stipulanti's PhD thesis, it is proved that some sequene

Sϕ : N → N is F-regular by proving that there exist

◮
an integer m ≥ 1

◮
vetors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : {0, 01}∗ → K

m×m

suh that

∀n ∈ N, Sϕ(n) = λµ
(

0 rep

U

(n)
)

γ

where, in order to ompute µ
(

0 rep

U

(n)
)

, it is understood that 0 rep

U

(n)
is fatored into bloks of 0 and 01.



Natural hoies for U-regularity

A sequene x : N
d → K is (K ,U)-regular if there exist

◮
an integer m ≥ 1

◮
vetors λ ∈ K

1×m

and γ ∈ K

m×1

◮
a morphism of monoids µ : ((A

b

)d )∗ → K

m×m

suh that

C1 ∀n ∈ N
d , x(n) = λµ

(

rep

U

(n)
)

γ

C2 ∀w ∈ ((A
U

)d )∗, x(val
U

(w)) = λµ(w)γ.



Theorem (Cisternino-Charlier-Stipulanti)

Under WH, C1 ⇐⇒ C2.

Conjeture (analogue of the useful result)

Under WH, for any U-de�nable subset X of N
d+1

, the sequene

a : N
d → N∪{∞} de�ned by

a(n
1

, . . . , n
d

) = Card{m ∈ N : (n
1

, . . . , n
d

,m) ∈ X}

is (N∪{∞},U)-regular. If moreover a(Nd ) ⊆ N, then a is (N,U)-regular.



Related works on real numbers

In general real numbers are represented by in�nite words.

In this ontext, we onsider Bühi automata. An in�nite word is aepted

when the orresponding path goes in�nitely many times through an

aepting state.

We talk about ω-languages and ω-regular languages.



β-reognizable and β-de�nable subsets of Rd

◮
Notion of β-reognizability of subsets of R

d

, where β > 1 is a real

base.

◮
For β = 1+

√
5

2

, the ω-language of the (quasi-greedy)

β-representations of [0, 1] is aepted by

1

0

0

◮
First order theory 〈R,+,≤,Zβ ,Xβ〉 leading to a notion of

β-de�nability.

◮
For β Pisot, β-reognizability oinide with β-de�nability.

◮
For β Pisot, the �rst order theory of 〈R,+,≤,Zβ ,Xβ〉 is deidable.



Deiding topologial properties

For β Pisot, the following properties of β-reognizable subsets X of R
d

are deidable:

◮
X has a nonempty interior:

(∃x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is open:

(∀x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is losed: OK as R

d \X is b-reognizable.

◮
. . .
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