A decision problem for ultimately periodic sets in non-standard numeration systems

Émilie Charlier
Université libre de Bruxelles

Decidability workshop, Amiens, 3 juillet 2012

Background

Let's start with classical k-ary numeration system, $k \geq 2$:

$$
n=\sum_{i=0}^{\ell} d_{i} k^{i}, d_{\ell} \neq 0, \quad \operatorname{rep}_{k}(n)=d_{\ell} \cdots d_{0} \in\{0, \ldots, k-1\}^{*}
$$

A set $X \subseteq \mathbb{N}$ is k-recognizable, if the language

$$
\operatorname{rep}_{k}(X)=\left\{\operatorname{rep}_{k}(x): x \in X\right\}
$$

is regular, i.e. accepted by a finite automaton.

Background

Examples of k-recognizable sets

- In base 2 , the even integers: $\operatorname{rep}_{2}(2 \mathbb{N})=1\{0,1\}^{*} 0 \cup\{\varepsilon\}$
- In base 2, the powers of 2: $\operatorname{rep}_{2}\left(\left\{2^{i} \mid i \in \mathbb{N}\right\}\right)=10^{*}$
- In base 2, the Thue-Morse set:
$\left\{n \in \mathbb{N}\right.$: $\operatorname{rep}_{2}(n)$ contains an even numbers of 1 s$\}$
- Given a k-automatic sequence $\left(x_{n}\right)_{n \geq 0}$ over an alphabet Σ, then, for all $\sigma \in \Sigma$, the set $\left\{i \in \mathbb{N}: x_{i}=\sigma\right\}$ is k-recognizable.

Background

Divisibility criteria
If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

$$
\begin{gathered}
X=(3 \mathbb{N}+1) \cup(2 \mathbb{N}+2) \cup\{3\}, \text { Preperiod }=4 \text {, Period }=6 \\
\chi_{X}=\square \square \square \square \mid \square \square
\end{gathered}
$$

Two integers $k, \ell \geq 2$ are multiplicatively independent if
$k^{m}=\ell^{n} \Rightarrow m=n=0$.
Theorem (Cobham 1969)
Let $k, \ell \geq 2$ be multiplicatively independent integers. If $X \subseteq \mathbb{N}$ is k - and ℓ-recognizable, then X is ultimately periodic.

Start for this work

Theorem (J. Honkala 1986)
It is decidable if a k-recognizable set is ultimately periodic.

Sketch of Honkala's decision procedure:

- The input is a DFA \mathcal{A}_{X} accepting $\operatorname{rep}_{k}(X)$.
- The number of states of \mathcal{A}_{X} produces an upper bound on the possible (minimal) preperiod and period for X.
- Consequently, there are finitely many candidates to check.
- For each pair (a, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with \mathcal{A}_{X}.

Non standard numeration systems

- A numeration system (NS) is an increasing sequence of integers $U=\left(U_{n}\right)_{n \geq 0}$ such that
- $U_{0}=1$ and
- $C_{U}:=\sup _{n \geq 0}\left\lceil U_{n+1} / U_{n}\right\rceil<+\infty$.
- U is linear if it satisfies a linear recurrence relation over \mathbb{Z}.
- Let $n \in \mathbb{N}$. A word $w=w_{\ell-1} \cdots w_{0}$ over \mathbb{N} represents n if

$$
\sum_{i=0}^{\ell-1} w_{i} U_{i}=n
$$

- In this case, we write $\operatorname{val}_{U}(w)=n$.

Greedy representations

- A representation $w=w_{\ell-1} \cdots w_{0}$ of an integer is greedy if

$$
\forall j, \sum_{i=0}^{j-1} w_{i} U_{i}<U_{j}
$$

- In that case, $w \in\left\{0,1, \ldots, C_{U}-1\right\}^{*}$.
- $\operatorname{rep}_{U}(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.
- $X \subseteq \mathbb{N}$ is U-recognizable $\stackrel{\Delta}{\Leftrightarrow} \operatorname{rep}_{U}(X)$ is accepted by a finite automaton.
- $\operatorname{rep}_{U}(\mathbb{N})$ is the numeration language.

Example (Zeckendorf system)

It is based on the sequence $F=\left(F_{i}\right)_{i \geq 0}=(1,2,3,5,8,13, \ldots)$ defined by $F_{0}=1, F_{1}=2$ and $F_{i+2}=F_{i+1}+F_{i}$ for all $i \geq 0$.

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

The "pattern" 11 is forbidden, $A_{F}=\{0,1\}$.

The ℓ-bonacci numeration system

- $U_{n+\ell}=U_{n+\ell-1}+U_{n+\ell-2}+\cdots+U_{n}$
- $U_{i}=2^{i}, i \in\{0, \ldots, \ell-1\}$
- \mathcal{A}_{U} accepts all words that do not contain 1^{ℓ}.

A decision problem

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a NS s.t. \mathbb{N} is U-recognizable. Any ultimately periodic $X \subseteq \mathbb{N}$ is U-recognizable and a DFA accepting $\operatorname{rep}_{U}(X)$ can be obtained effectively.

NB: If \mathbb{N} is U-recognizable, then U is linear.

Periodicity problem: Given U s.t. \mathbb{N} is U-recognizable and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable if X is ultimately periodic?

First part: an upper bound on the period

"Pseudo-result"
Let X be ultimately periodic with period p_{X}.
Any DFA accepting $\operatorname{rep}_{U}(X)$ has at least $f\left(p_{X}\right)$ states, where f is increasing.
"Pseudo-corollary"
Let $X \subseteq \mathbb{N}$ be a U-recognizable set of integers s.t. $\operatorname{rep}_{U}(X)$ is accepted by a d-state DFA.
If X is ultimately periodic with period p_{X}, then

$$
f\left(p_{X}\right) \leq d \quad \text { with }\left\{\begin{array}{l}
d \text { fixed } \\
f \text { increasing } .
\end{array}\right.
$$

\Rightarrow The number of candidates for the period is bounded from above.

A technical hypothesis:

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty \tag{1}
\end{equation*}
$$

Most systems are built on an exponential sequence $\left(U_{i}\right)_{i \geq 0}$.

Lemma
Let $U=\left(U_{i}\right)_{i \geq 0}$ be a NS satisfying (1). If w is a greedy U-representation, then so is $10^{r} w$ for all r large enough.

Let $N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Zeckendorf system)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$, so $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$, so $N_{F}(11)=7$.

If $U=\left(U_{i}\right)_{i \geq 0}$ is a linear system of order k, then, for all $m \geq 2$, we have

$$
\sqrt[k]{\pi_{U}(m)} \leq N_{U}(m) \leq \pi_{U}(m)
$$

where $\pi_{U}(m)$ denotes the minimal period of $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Theorem (C-Rigo 2008)

Let U be a $N S$ satisfying (1). If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p_{X}, then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least $N_{U}\left(p_{X}\right)$ states.

Corollary

Let U be a NS satisfying (1). Assume that

$$
\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty
$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ s.t. $\operatorname{rep}_{U}(X)$ is accepted by a d-state DFA is bounded by the smallest integer M s.t. $N_{U}(m)>d$ for all $m \geq M$, which is effectively computable.

Proposition

If $U=\left(U_{i}\right)_{i \geq 0}$ satisfies a recurrence relation of the kind

$$
\begin{equation*}
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i} \tag{2}
\end{equation*}
$$

with $a_{k}= \pm 1$, then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be an increasing sequence satisfying (2). The following assertions are equivalent:

- $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$;
- for all prime divisors p of $a_{k}, \lim _{v \rightarrow+\infty} N_{U}\left(p^{v}\right)=+\infty$.

A characterization

Let $Q_{U}(x)$ denote the characteristic polynomial of the shortest recurrence relation satisfied by U; and let $P_{U}(x)=x^{k} Q_{U}\left(\frac{1}{x}\right)$, where $k=\operatorname{deg}\left(Q_{U}(x)\right)$.

Theorem (Bell-C-Fraenkel-Rigo 2009)
We have $N_{U}\left(p^{v}\right) \rightarrow+\infty$ as $v \rightarrow+\infty$ if and only if

$$
P_{U}(x)=A(x) B(x)
$$

with $A(x), B(x) \in \mathbb{Z}[x]$ such that:

- $B(x) \equiv 1(\bmod p \mathbb{Z}[x])$;
- $A(x)$ has no repeated roots and all its roots are roots of unity.

Logical approach

Theorem (Muchnik 1991)
The ultimate periodicity problem is decidable for all NS with a regular numeration language, provided that addition is recognizable.

Example $\left(U_{i+4}=3 U_{i+3}+2 U_{i+2}+3 U_{i}\right.$ for all $i \geq 0$, $\left.\left(U_{0}, U_{1}, U_{2}, U_{3}\right)=(1,2,3,4)\right)$
Addition is not computable by a finite automaton (due to Frougny). Nevertheless, $N_{U}\left(3^{v}\right) \rightarrow+\infty$ as $v \rightarrow+\infty$ because

$$
P_{U}=1-3 x-2 x^{2}-3 x^{4}
$$

cannot be factorized as $A \cdot B$ with two factors satisfying the hypotheses of the characterization mentioned above.

One of the main arguments for the decidability

Theorem (C-Rigo 2008)
Let U be a NS satisfying (1) and $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period p_{X}. If 1 occurs infinitely many times in $\left(U_{i} \bmod p_{X}\right)_{i \geq 0}$ then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least p_{X} states.

Idea of the proof with the Zeckendorf system

Theorem (Zeckendorf system)
Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_{X} (and preperiod a_{X}). Any DFA accepting rep ${ }_{F}(X)$ has at least p_{X} states.

- $w^{-1} L=\{u: w u \in L\} \leftrightarrow$ states of minimal automaton of L
- $\left(F_{i} \bmod p_{X}\right)_{i \geq 0}$ is purely periodic.
- If $i, j \geq a_{X}$ and $i \not \equiv j\left(\bmod p_{X}\right)$ then there exists $t<p_{X}$ s.t. either $i+t \in X$ and $j+t \notin X$, or $i+t \notin X$ and $j+t \in X$.
- $\exists n_{1}, \ldots, n_{p_{X}}, \forall t, 0 \leq t<p_{X}$, the words

$$
10^{n_{p_{X}}} \cdots 10^{n_{2}} 10^{n_{1}} 0^{\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|-\left|\operatorname{rep}_{F}(t)\right|} \operatorname{rep}_{F}(t)
$$

are greedy F-representations.

Idea of the proof with the Zeckendorf system

- Moreover $n_{1}, \ldots, n_{p_{X}}$ can be chosen s.t. $\forall j, 1 \leq j \leq p_{X}$,

$$
\operatorname{val}_{F}\left(10^{n_{j}} \cdots 10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) \equiv j \quad\left(\bmod p_{X}\right)
$$

and $\operatorname{val}_{F}\left(10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) \geq a_{X}$.

- For $i, j \in\left\{1, \ldots, p_{X}\right\}, i \neq j$, the words

$$
10^{n_{i}} \cdots 10^{n_{1}} \text { and } 10^{n_{j}} \cdots 10^{n_{1}}
$$

will generate different states in the minimal automaton of $\operatorname{rep}_{F}(X)$. This can be shown by concatenating some word of length $\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|$.
$w^{-1} L=\{u: w u \in L\} \leftrightarrow$ states of minimal automaton of L
$X=(11 \mathbb{N}+3) \cup\{2\}, a_{X}=3, p_{X}=11,\left|\operatorname{rep}_{F}(10)\right|=5$
Working in $\left(F_{i} \bmod 11\right)_{i \geq 0}$:

$$
\Rightarrow\left(10^{5}\right)^{-1} \operatorname{rep}_{F}(X) \neq\left(10^{9} 10^{5}\right)^{-1} \operatorname{rep}_{F}(X)
$$

Second part: an upper bound on the preperiod

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}$ is ultimately periodic, we denote its (minimal) preperiod by $\iota_{U}(m)$.

Theorem (C-Rigo 2008)
Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system. Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_{X} and preperiod a_{X}. Then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least

$$
\left|\operatorname{rep}_{U}\left(a_{X}-1\right)\right|-\iota_{U}\left(p_{X}\right) \text { states. }
$$

If p_{X} is bounded, then the number of states grows as a_{X} grows.

A Decision Procedure

Theorem (C-Rigo 2008)
It is decidable if a U-recognizable set is ultimately periodic for numeration systems $U=\left(U_{i}\right)_{i \geq 0}$ s.t.

- \mathbb{N} is U-recognizable;
- $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$;
- $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

Further work

Remark

Whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, we have $U_{i} \equiv 0\left(\bmod g^{n}\right)$ for all $n \geq 1$ and for all i large enough; hence $N_{U}(m) \nrightarrow+\infty$.

Examples

- Integer bases: $U_{n+1}=k U_{n}$
- $U_{n+2}=2 U_{n+1}+2 U_{n}$

$$
a, b, 2(a+b), 2(2 a+3 b), 4(3 a+4 b), 4(8 a+11 b) \ldots
$$

Some related references

Learn more about linear recurrent sequences mod $m \ldots$

- H.T. Engstrom, On sequences defined by linear recurrence relations, Trans. Amer. Math. Soc. 33 (1931).
- M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc. 35 (1933).
- M. Hall, An isomorphism between linear recurring sequences and algebraic rings, Trans. Amer. Math. Soc. 44 (1938).
- G. Rauzy, Relations de récurrence modulo m, Séminaire Delange-Pisot, 1963/1964.

Transition to state complexity

Main ideas for an automata-resolution of the periodicity problem:

- If $X \subseteq \mathbb{N}$ is ultimately periodic, then the state complexity of the associated minimal DFA should grow with the period and preperiod of X.
- Analyse the inner structure of DFAs accepting the U-representations of $m \mathbb{N}+r$.

F-representations of even numbers

