A decision problem for ultimately periodic sets in non-standard numeration systems

Émilie Charlier

Université libre de Bruxelles

Decidability workshop, Amiens, 3 juillet 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background

Let's start with classical k-ary numeration system, $k \ge 2$:

$$n = \sum_{i=0}^{\ell} d_i \, k^i, \, d_\ell \neq 0, \quad \operatorname{rep}_k(n) = d_\ell \cdots d_0 \in \{0, \dots, k-1\}^*$$

A set $X \subseteq \mathbb{N}$ is *k*-recognizable, if the language

$$\operatorname{rep}_k(X) = \{\operatorname{rep}_k(x) \colon x \in X\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is regular, i.e. accepted by a finite automaton.

Background

Examples of k-recognizable sets

- ▶ In base 2, the even integers: $\operatorname{rep}_2(2\mathbb{N}) = 1\{0,1\}^* 0 \cup \{\varepsilon\}$
- ▶ In base 2, the powers of 2: $\operatorname{rep}_2(\{2^i | i \in \mathbb{N}\}) = 10^*$
- ▶ In base 2, the *Thue-Morse set*: $\{n \in \mathbb{N}: \operatorname{rep}_2(n) \text{ contains an even numbers of } 1s\}$
- Given a k-automatic sequence (x_n)_{n≥0} over an alphabet Σ, then, for all σ ∈ Σ, the set {i ∈ N: x_i = σ} is k-recognizable.

ション ふゆ くち くち くち くち

Background

Divisibility criteria

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

Two integers $k, \ell \ge 2$ are *multiplicatively independent* if $k^m = \ell^n \Rightarrow m = n = 0.$

Theorem (Cobham 1969)

Let $k, \ell \geq 2$ be multiplicatively independent integers. If $X \subseteq \mathbb{N}$ is k- and ℓ -recognizable, then X is ultimately periodic.

Start for this work

Theorem (J. Honkala 1986)

It is decidable if a k-recognizable set is ultimately periodic.

Sketch of Honkala's decision procedure:

- The input is a DFA \mathcal{A}_X accepting $\operatorname{rep}_k(X)$.
- ► The number of states of A_X produces an upper bound on the possible (minimal) preperiod and period for X.
- Consequently, there are finitely many candidates to check.
- For each pair (a, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with A_X.

Non standard numeration systems

- A numeration system (NS) is an increasing sequence of integers U = (U_n)_{n≥0} such that
 - ▶ $U_0 = 1$ and

$$C_U := \sup_{n \ge 0} \left[U_{n+1} / U_n \right] < +\infty.$$

- ▶ U is *linear* if it satisfies a linear recurrence relation over \mathbb{Z} .
- ▶ Let $n \in \mathbb{N}$. A word $w = w_{\ell-1} \cdots w_0$ over \mathbb{N} represents n if

$$\sum_{i=0}^{\ell-1} w_i U_i = n$$

• In this case, we write $\operatorname{val}_U(w) = n$.

Greedy representations

▶ A representation $w = w_{\ell-1} \cdots w_0$ of an integer is *greedy* if

$$\forall j, \ \sum_{i=0}^{j-1} w_i U_i < U_j.$$

- In that case, $w \in \{0, 1, \dots, C_U 1\}^*$.
- ▶ $\operatorname{rep}_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.
- ▶ $X \subseteq \mathbb{N}$ is *U*-recognizable \Leftrightarrow rep_{*U*}(*X*) is accepted by a finite automaton.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\operatorname{rep}_U(\mathbb{N})$ is the numeration language.

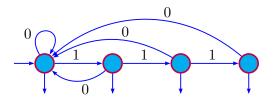
Example (Zeckendorf system)

It is based on the sequence $F = (F_i)_{i \ge 0} = (1, 2, 3, 5, 8, 13, ...)$ defined by $F_0 = 1$, $F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$ for all $i \ge 0$.

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

The "pattern" 11 is forbidden, $A_F = \{0, 1\}$.

The ℓ -bonacci numeration system



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

æ

•
$$U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$$

•
$$U_i = 2^i, i \in \{0, \dots, \ell - 1\}$$

• \mathcal{A}_U accepts all words that do not contain 1^{ℓ} .

A decision problem

Proposition

Let $U = (U_i)_{i \ge 0}$ be a NS s.t. \mathbb{N} is U-recognizable. Any ultimately periodic $X \subseteq \mathbb{N}$ is U-recognizable and a DFA accepting $\operatorname{rep}_U(X)$ can be obtained effectively.

NB: If \mathbb{N} is U-recognizable, then U is linear.

Periodicity problem: Given U s.t. \mathbb{N} is U-recognizable and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable if X is ultimately periodic ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

First part: an upper bound on the period

"Pseudo-result"

Let X be ultimately periodic with period p_X . Any DFA accepting $\operatorname{rep}_U(X)$ has at least $f(p_X)$ states, where f is increasing.

"Pseudo-corollary"

Let $X\subseteq\mathbb{N}$ be a U-recognizable set of integers s.t. $\operatorname{rep}_U(X)$ is accepted by a d-state DFA.

If X is ultimately periodic with period p_X , then

$$\boxed{f(p_X) \le d} \quad \text{with} \begin{cases} d \text{ fixed} \\ f \text{ increasing.} \end{cases}$$

 \Rightarrow The number of candidates for the period is bounded from above.

A technical hypothesis :

$$\lim_{i \to +\infty} U_{i+1} - U_i = +\infty.$$
(1)

Most systems are built on an exponential sequence $(U_i)_{i\geq 0}$.

Lemma

Let $U = (U_i)_{i \ge 0}$ be a NS satisfying (1). If w is a greedy U-representation, then so is $10^r w$ for all r large enough.

Let $N_U(m) \in \{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \ge 0}$.

Example (Zeckendorf system)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...)$, so $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...)$, so $N_F(11) = 7$.

If $U = (U_i)_{i \geq 0}$ is a linear system of order k, then, for all $m \geq 2$, we have

$$\sqrt[k]{\pi_U(m)} \le N_U(m) \le \pi_U(m),$$

where $\pi_U(m)$ denotes the minimal period of $(U_i \mod m)_{i\geq 0}$.

Theorem (C-Rigo 2008)

Let U be a NS satisfying (1). If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p_X , then any DFA accepting $\operatorname{rep}_U(X)$ has at least $N_U(p_X)$ states.

Corollary

Let U be a NS satisfying (1). Assume that

 $\lim_{m \to +\infty} N_U(m) = +\infty.$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ s.t. $\operatorname{rep}_U(X)$ is accepted by a *d*-state DFA is bounded by the smallest integer M s.t. $N_U(m) > d$ for all $m \ge M$, which is effectively computable.

Proposition If $U = (U_i)_{i>0}$ satisfies a recurrence relation of the kind

$$U_{i+k} = a_1 U_{i+k-1} + \dots + a_k U_i,$$
(2)

ション ふゆ くち くち くち くち

with
$$a_k = \pm 1$$
, then $\lim_{m \to +\infty} N_U(m) = +\infty$.

Proposition

Let $U = (U_i)_{i \ge 0}$ be an increasing sequence satisfying (2). The following assertions are equivalent:

$$\lim_{m \to +\infty} N_U(m) = +\infty;$$

▶ for all prime divisors p of a_k , $\lim_{v \to +\infty} N_U(p^v) = +\infty$.

A characterization

Let $Q_U(x)$ denote the characteristic polynomial of the shortest recurrence relation satisfied by U; and let $P_U(x) = x^k Q_U(\frac{1}{x})$, where $k = \deg(Q_U(x))$.

Theorem (Bell-C-Fraenkel-Rigo 2009) We have $N_U(p^v) \to +\infty$ as $v \to +\infty$ if and only if

$$P_U(x) = A(x)B(x)$$

with $A(x), B(x) \in \mathbb{Z}[x]$ such that:

• $B(x) \equiv 1 \pmod{p\mathbb{Z}[x]};$

► A(x) has no repeated roots and all its roots are roots of unity.

Logical approach

Theorem (Muchnik 1991)

The ultimate periodicity problem is decidable for all NS with a regular numeration language, provided that addition is recognizable.

Example
$$(U_{i+4} = 3U_{i+3} + 2U_{i+2} + 3U_i \text{ for all } i \ge 0, (U_0, U_1, U_2, U_3) = (1, 2, 3, 4))$$

Addition is not computable by a finite automaton (due to Frougny). Nevertheless, $N_U(3^v) \to +\infty$ as $v \to +\infty$ because

$$P_U = 1 - 3x - 2x^2 - 3x^4$$

cannot be factorized as $A \cdot B$ with two factors satisfying the hypotheses of the characterization mentioned above.

One of the main arguments for the decidability

Theorem (C-Rigo 2008)

Let U be a NS satisfying (1) and $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period p_X . If 1 occurs infinitely many times in $(U_i \mod p_X)_{i\geq 0}$ then any DFA accepting $\operatorname{rep}_U(X)$ has at least p_X states.

Idea of the proof with the Zeckendorf system

Theorem (Zeckendorf system)

Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_X (and preperiod a_X). Any DFA accepting $\operatorname{rep}_F(X)$ has at least p_X states.

- $w^{-1}L = \{u \colon wu \in L\} \leftrightarrow \text{ states of minimal automaton of } L$
- $(F_i \mod p_X)_{i \ge 0}$ is purely periodic.
- ▶ If $i, j \ge a_X$ and $i \ne j \pmod{p_X}$ then there exists $t < p_X$ s.t. either $i + t \in X$ and $j + t \notin X$, or $i + t \notin X$ and $j + t \in X$.
- ▶ $\exists n_1, \ldots, n_{p_X}, \ \forall t, \ 0 \leq t < p_X$, the words

 $10^{n_{p_X}} \cdots 10^{n_2} 10^{n_1} 0^{|\operatorname{rep}_F(p_X-1)| - |\operatorname{rep}_F(t)|} \operatorname{rep}_F(t)$

are greedy *F*-representations.

Idea of the proof with the Zeckendorf system

▶ Moreover n_1, \ldots, n_{p_X} can be chosen s.t. $\forall j, 1 \leq j \leq p_X$,

 $\operatorname{val}_F(10^{n_j}\cdots 10^{n_1+|\operatorname{rep}_F(p_X-1)|}) \equiv j \pmod{p_X}$

and $\operatorname{val}_F(10^{n_1+|\operatorname{rep}_F(p_X-1)|}) \ge a_X.$

For $i, j \in \{1, \dots, p_X\}$, $i \neq j$, the words

 $10^{n_i} \cdots 10^{n_1}$ and $10^{n_j} \cdots 10^{n_1}$

will generate different states in the minimal automaton of $\operatorname{rep}_F(X)$. This can be shown by concatenating some word of length $|\operatorname{rep}_F(p_X - 1)|$.

 $w^{-1}L = \{u : wu \in L\} \Leftrightarrow$ states of minimal automaton of L $X = (11\mathbb{N} + 3) \cup \{2\}, a_X = 3, p_X = 11, |\operatorname{rep}_F(10)| = 5$ Working in $(F_i \mod 11)_{i \geq 0}$:

2 1	1 0 1 10 2 8 5 3 2 1	10110285321	
		00000000000	1
1	0000000001	00000000000	2
	1	0000000010	$1+2 \in X$
1	$\begin{matrix} 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{matrix}$	00000000010	$2+2 \notin X$

 $\Rightarrow (10^5)^{-1} \operatorname{rep}_F(X) \neq (10^9 10^5)^{-1} \operatorname{rep}_F(X)$

Second part: an upper bound on the preperiod

For a sequence $U = (U_i)_{i \ge 0}$ of integers, if $(U_i \mod m)_{i \ge 0}$ is ultimately periodic, we denote its (minimal) preperiod by $\iota_U(m)$. Theorem (C-Rigo 2008) Let $U = (U_i)_{i \ge 0}$ be a linear numeration system. Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_X and preperiod a_X . Then any DFA accepting $\operatorname{rep}_U(X)$ has at least

 $|\operatorname{rep}_U(a_X-1)| - \iota_U(p_X)$ states.

If p_X is bounded, then the number of states grows as a_X grows.

Theorem (C-Rigo 2008)

It is decidable if a U-recognizable set is ultimately periodic for numeration systems $U = (U_i)_{i \ge 0}$ s.t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

▶ N is U-recognizable;

$$\lim_{i \to +\infty} U_{i+1} - U_i = +\infty;$$

$$\lim_{m \to +\infty} N_U(m) = +\infty.$$

Further work

Remark

Whenever $gcd(a_1, \ldots, a_k) = g \ge 2$, we have $U_i \equiv 0 \pmod{g^n}$ for all $n \ge 1$ and for all i large enough; hence $N_U(m) \not\to +\infty$.

Examples

• Integer bases:
$$U_{n+1} = k U_n$$

►
$$U_{n+2} = 2U_{n+1} + 2U_n$$

 $a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b) \dots$

Some related references

Learn more about linear recurrent sequences mod m ...

- ▶ H.T. Engstrom, On sequences defined by linear recurrence relations, *Trans. Amer. Math. Soc.* **33** (1931).
- M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, *Trans. Amer. Math. Soc.* 35 (1933).
- M. Hall, An isomorphism between linear recurring sequences and algebraic rings, *Trans. Amer. Math. Soc.* 44 (1938).
- G. Rauzy, Relations de récurrence modulo m, Séminaire Delange-Pisot, 1963/1964.

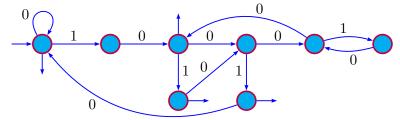
Main ideas for an automata-resolution of the periodicity problem:

 If X ⊆ N is ultimately periodic, then the state complexity of the associated minimal DFA should grow with the period and preperiod of X.

ション ふゆ くち くち くち くち

• Analyse the inner structure of DFAs accepting the U-representations of $m \mathbb{N} + r$.

F-representations of even numbers



13	8	5	3	2	1		
				1	0	2	
			1	0	1	4	
		1	0	0	1	6	
	1	0	0	0	0	8	
	1	0	0	1	0	8 10 12	
	1	0	1	0	1	12	
•		• 7	• •	≣≯	< ≣⇒		7