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Background

Let's start with classical k-ary numeration system, k > 2:

¢
n:Zdiki, dy #0, repp(n)=dy---dp€{0,...,k—1}"
i=0

A set X C N is k-recognizable, if the language

rep,(X) = {repy(z): z € X}

is regular, i.e. accepted by a finite automaton.



Background

Examples of k-recognizable sets
> In base 2, the even integers: repy(2N) = 1{0,1}*0 U {e}
> In base 2, the powers of 2: repy({2¢|i € N}) = 10*

> In base 2, the Thue-Morse set:
{n € N: repy(n) contains an even numbers of 1s}

» Given a k-automatic sequence (z,),>0 over an alphabet ¥,
then, for all 0 € ¥, the set {i € N: 2; = o} is k-recognizable.



Background

Divisibility criteria

If X C N is ultimately periodic, then X is k-recognizable Vk > 2.

X = (3N +1) U (2N + 2) U {3}, Preperiod = 4, Period = 6
xx=HHHEE  EEEEEN EEEEEE -

Two integers k, £ > 2 are multiplicatively independent if
kKM =0"= m=n=0.

Theorem (Cobham 1969)

Let k,¢ > 2 be multiplicatively independent integers.
If X C N is k- and (-recognizable, then X is ultimately periodic.



Start for this work

Theorem (J. Honkala 1986)

It is decidable if a k-recognizable set is ultimately periodic.

Sketch of Honkala's decision procedure:
» The input is a DFA Ay accepting rep(X).
» The number of states of Ax produces an upper bound on the
possible (minimal) preperiod and period for X.
» Consequently, there are finitely many candidates to check.

» For each pair (a,p) of candidates, produce a DFA for all

possible corresponding ultimately periodic sets and compare it
with Ax.



Non standard numeration systems

» A numeration system (NS) is an increasing sequence of
integers U = (Up,)n>0 such that
» Up=1 and
» Cy :=sup|Upt1/Un] < +o0.
n>0
» U is linear if it satisfies a linear recurrence relation over Z.
» Let n € N. A word w = wy_q - - - wp over N represents n if
/—1
i=0
> In this case, we write valy (w) = n.



Greedy representations

» A representation w = wy_1 - - - wq of an integer is greedy if

j—1

Vj, Zwi U, < Uj.
=0

v

In that case, w € {0,1,...,Cy — 1}*.

v

repy;(n) is the greedy representation of n with wy_q # 0.

X C Nis U-recognizable & repy; (X)) is accepted by a finite

v

automaton.

v

repy;(N) is the numeration language.



Example (Zeckendorf system)
It is based on the sequence F' = (F});>0 = (1,2,3,5,8,13,...)

defined by Fy =1, F1 =2 and F;,o = F; 11 + F; for all i > 0.

1 8 | 10000 || 15 | 100010

10 9| 10001 || 16 | 100100
100 || 10 | 10010 || 17 | 100101
101 || 11 | 10100 || 18 | 101000
1000 || 12 | 10101 || 19 | 101001
1001 || 13 | 100000 || 20 | 101010
1010 || 14 | 100001 || 21 | 1000000

~N O 1B W N

The “pattern” 11 is forbidden, Ar = {0, 1}.



The ¢-bonacci numeration system

» Unye = Unqo—1 + Uppp—2+ -+ Un
» U;=2,i€{0,...,0—1}

» Ay accepts all words that do not contain 1.



A decision problem

Proposition
Let U = (U;)i>0 be a NS s.t. N is U-recognizable. Any ultimately
periodic X C N is U-recognizable and a DFA accepting repy (X)

can be obtained effectively.

NB: If N is U-recognizable, then U is linear.

Periodicity problem: Given U s.t. N is U-recognizable and a
U-recognizable set X C N. Is it decidable if X is ultimately

periodic ?



First part: an upper bound on the period

“Pseudo-result”
Let X be ultimately periodic with period px.
Any DFA accepting rep;;(X) has at least f(px) states,

where f is increasing.

“Pseudo-corollary”

Let X C N be a U-recognizable set of integers s.t. repy(X) is
accepted by a d-state DFA.
If X is ultimately periodic with period px, then

d fixed

f increasing.

fpx) <d| with {

= The number of candidates for the period is bounded from above.



A technical hypothesis :

lim Ui—i—l — UZ' = +4o00.

i——400
Most systems are built on an exponential sequence (U;);>o.
Lemma

Let U = (U;)i>o0 be a NS satisfying (1). If w is a greedy
U -representation, then so is 10"w for all r large enough.



Let Ni(m) € {1,...,m} denotes the number of values that are

taken infinitely often by the sequence (U; mod m);>o.

Example (Zeckendorf system)
(F; mod 4) = (1,2,3,1,0,1,1,2,3,...), so Np(4) = 4.
(F; mod 11) = (1,2,3,5,8,2,10,1,0,1,1,2,3,...), so Np(11) = 7.

If U = (U;)i>0 is a linear system of order k, then, for all m > 2, we
have
vV (m) < Ny(m) < mp(m),

where 77 (m) denotes the minimal period of (U; mod m);>o.



Theorem (C-Rigo 2008)

Let U be a NS satisfying (1). If X C N is an ultimately periodic
U-recognizable set of period px, then any DFA accepting repy; (X)
has at least Ny (px) states.

Corollary
Let U be a NS satisfying (1). Assume that

lim Ny(m) = +oo.

m——+00

Then the period of an ultimately periodic set X C N s.t. repy(X)
is accepted by a d-state DFA is bounded by the smallest integer M
s.t. Ny(m) > d for all m > M, which is effectively computable.



Proposition

If U = (U;);>0 satisfies a recurrence relation of the kind
Uitk = arUipp—1 + - + a Ui,

with a, = £1, then lim Ny(m) = 4o0.
m——+0o0

Proposition
Let U = (U;)i>0 be an increasing sequence satisfying (2). The
following assertions are equivalent:

g ml—1>I—Il-100 NU(m) = +00;

» for all prime divisors p of ar,, lim Ny(p’) = +o0.
V—>+00



A characterization

Let Qi (z) denote the characteristic polynomial of the shortest
recurrence relation satisfied by U; and let P (2) = 2FQu(2),
where k£ = deg(Qu(x)).

Theorem (Bell-C-Fraenkel-Rigo 2009)

We have Ny (p¥) — +o0 as v — +oo if and only if

with A(z), B(x) € Z[z| such that:
» B(z) =1 (mod pZz));

» A(x) has no repeated roots and all its roots are roots of unity.



Logical approach

Theorem (Muchnik 1991)

The ultimate periodicity problem is decidable for all NS with a

regular numeration language, provided that addition is recognizable.

Example (U4 = 3U;y3 + 2U; o + 3U; for all i > 0,

(Uo, Uy, Us, Us) = (1,2,3,4))

Addition is not computable by a finite automaton (due to Frougny).
Nevertheless, Ni7(3V) — 400 as v — 400 because

Py =1-3z—22%— 3%

cannot be factorized as A - B with two factors satisfying the
hypotheses of the characterization mentioned above.



One of the main arguments for the decidability

Theorem (C-Rigo 2008)
Let U be a NS satisfying (1) and X C N be an ultimately periodic

U-recognizable set of period px. If 1 occurs infinitely many times
in (U; mod px )i>o then any DFA accepting repy;(X) has at least
px States.



Idea of the proof with the Zeckendorf system

Theorem (Zeckendorf system)

Let X C N be ultimately periodic with period px (and preperiod
ax). Any DFA accepting repp(X) has at least px states.

» w 'L = {u: wu € L} <> states of minimal automaton of L
> (F; mod px)i>o is purely periodic.

» If i, > ax and i £ j (mod pyx) then there exists t < px s.t.
eitheri+te X and j+t ¢ X, ori+t¢ X and j+1¢ € X.

> dni,...,npy, VE, 0 <t < px, the words
107x - .. 10721070l *ePr (Px —DI=lrepr ) popy (1)

are greedy F'-representations.



Idea of the proof with the Zeckendorf system

» Moreover ny,...,n,, can be chosen s.t. Vj, 1 < j <px,
ValF(lOnj e 10n1+‘repF(pX_l)‘) = j (mod pX)

and valp (101 +17ePrPx =l > g

» Fori,je{l,...,px}, i # j, the words
10™ ... 10™ and 10™ ... 10™

will generate different states in the minimal automaton of

repr(X). This can be shown by concatenating some word of

length [repy(px — 1)].



w™ L = {u: wu € L} « states of minimal automaton of L

X = (1IN+3)U{2}, ax =3, px =11, |repp(10)| =5
Working in (F; mod 11);>¢ :

-21(10110285321(10110285321

10000000000
10000000001 0O0OOOOOOOOO 2

1/0000000010|142c X
1/0000000001|{0000000010|242¢X

= (10°) L repp(X) # (10710°)  repp(X)



Second part: an upper bound on the preperiod

For a sequence U = (Uj;);>0 of integers, if (U; mod m);>¢ is

ultimately periodic, we denote its (minimal) preperiod by ¢/ (m).

Theorem (C-Rigo 2008)

Let U = (U;)i>o be a linear numeration system. Let X C N be
ultimately periodic with period px and preperiod ax. Then any
DFA accepting repy;(X) has at least

|repyr(ax —1)] — wy(px) states.

If px is bounded, then the number of states grows as ax grows.



A Decision Procedure

Theorem (C-Rigo 2008)

It is decidable if a U-recognizable set is ultimately periodic for

numeration systems U = (U;);>0 S.t.
» N is U-recognizable;

> lim U;p; — U; = 4o00;
i—~400

» lim Ny(m)=+oo.

m—+00



Further work

Remark
Whenever ged(aq,...,ax) = g > 2, we have U; =0 (mod ¢") for

all n > 1 and for all i large enough; hence Ny (m) 4 +oco.

Examples

> Integer bases: U,4+1 = kU,

> Upta = 2Up11 +2U,

a,b,2(a +b),2(2a + 3b),4(3a + 4b),4(8a + 11b) . ..



Some related references

Learn more about linear recurrent sequences mod m . ..

» H.T. Engstrom, On sequences defined by linear recurrence
relations, Trans. Amer. Math. Soc. 33 (1931).

» M. Ward, The characteristic number of a sequence of integers
satisfying a linear recursion relation, Trans. Amer. Math. Soc.
35 (1933).

» M. Hall, An isomorphism between linear recurring sequences
and algebraic rings, Trans. Amer. Math. Soc. 44 (1938).

» G. Rauzy, Relations de récurrence modulo m, Séminaire
Delange-Pisot, 1963/1964.



Transition to state complexity

Main ideas for an automata-resolution of the periodicity problem:

» If X C N is ultimately periodic, then the state complexity of
the associated minimal DFA should grow with the period and

preperiod of X.

» Analyse the inner structure of DFAs accepting the

U-representations of m N +r.



F-representations of even numbers

13 5 3 2 1
1 0] 2
1 0 1|14
1 00 1]6
00 0 O0f38
0 01 010
01 0 112




