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BackgroundLet's start with classical k-ary numeration system, k ≥ 2:
n =

∑̀

i=0

di k
i, d` 6= 0, repk(n) = d` · · · d0 ∈ {0, . . . , k − 1}∗A set X ⊆ N is k-recognizable, if the language

repk(X) = {repk(x) : x ∈ X}is regular, i.e. accepted by a �nite automaton.



BackgroundExamples of k-recognizable sets
I In base 2, the even integers: rep2(2N) = 1{0, 1}∗0 ∪ {ε}

I In base 2, the powers of 2: rep2({2i|i ∈ N}) = 10∗

I In base 2, the Thue-Morse set:
{n ∈ N : rep2(n) contains an even numbers of 1s}

I Given a k-automatic sequence (xn)n≥0 over an alphabet Σ,then, for all σ ∈ Σ, the set {i ∈ N : xi = σ} is k-recognizable.



BackgroundDivisibility criteriaIf X ⊆ N is ultimately periodic, then X is k-recognizable ∀k ≥ 2.
X = (3N+ 1) ∪ (2N + 2) ∪ {3}, Preperiod = 4, Period = 6

χX = � � � � | � � � � � � � � � � � � · · ·Two integers k, ` ≥ 2 are multiplicatively independent if
km = `n ⇒ m = n = 0.Theorem (Cobham 1969)Let k, ` ≥ 2 be multiplicatively independent integers.If X ⊆ N is k- and `-recognizable, then X is ultimately periodic.



Start for this workTheorem (J. Honkala 1986)It is decidable if a k-recognizable set is ultimately periodic.Sketch of Honkala's decision procedure:
I The input is a DFA AX accepting repk(X).
I The number of states of AX produces an upper bound on thepossible (minimal) preperiod and period for X.
I Consequently, there are �nitely many candidates to check.
I For each pair (a, p) of candidates, produce a DFA for allpossible corresponding ultimately periodic sets and compare itwith AX .



Non standard numeration systems
I A numeration system (NS) is an increasing sequence ofintegers U = (Un)n≥0 such that

I U0 = 1 and
I CU := sup

n≥0

dUn+1/Une < +∞.
I U is linear if it satis�es a linear recurrence relation over Z.
I Let n ∈ N. A word w = w`−1 · · ·w0 over N represents n if

`−1
∑

i=0

wi Ui = n.

I In this case, we write valU (w) = n.



Greedy representations
I A representation w = w`−1 · · ·w0 of an integer is greedy if

∀j,

j−1
∑

i=0

wi Ui < Uj .

I In that case, w ∈ {0, 1, . . . , CU − 1}∗.
I repU (n) is the greedy representation of n with w`−1 6= 0.
I X ⊆ N is U -recognizable ∆

⇔ repU (X) is accepted by a �niteautomaton.
I repU (N) is the numeration language.



Example (Zeckendorf system)It is based on the sequence F = (Fi)i≥0 = (1, 2, 3, 5, 8, 13, . . .)de�ned by F0 = 1, F1 = 2 and Fi+2 = Fi+1 + Fi for all i ≥ 0.1 1 8 10000 15 1000102 10 9 10001 16 1001003 100 10 10010 17 1001014 101 11 10100 18 1010005 1000 12 10101 19 1010016 1001 13 100000 20 1010107 1010 14 100001 21 1000000The �pattern� 11 is forbidden, AF = {0, 1}.



The `-bonacci numeration system
0

1 1 1

0

0

0

I Un+` = Un+`−1 + Un+`−2 + · · ·+ Un

I Ui = 2i, i ∈ {0, . . . , `− 1}

I AU accepts all words that do not contain 1`.



A decision problemPropositionLet U = (Ui)i≥0 be a NS s.t. N is U -recognizable. Any ultimatelyperiodic X ⊆ N is U -recognizable and a DFA accepting repU (X)can be obtained e�ectively.NB: If N is U -recognizable, then U is linear.Periodicity problem: Given U s.t. N is U -recognizable and a
U -recognizable set X ⊆ N. Is it decidable if X is ultimatelyperiodic ?



First part: an upper bound on the period�Pseudo-result�Let X be ultimately periodic with period pX .Any DFA accepting repU (X) has at least f(pX) states,where f is increasing.�Pseudo-corollary�Let X ⊆ N be a U -recognizable set of integers s.t. repU (X) isaccepted by a d-state DFA.If X is ultimately periodic with period pX , then
f(pX) ≤ d with{ d �xed

f increasing.
⇒ The number of candidates for the period is bounded from above.



A technical hypothesis :
lim

i→+∞
Ui+1 − Ui = +∞. (1)Most systems are built on an exponential sequence (Ui)i≥0.LemmaLet U = (Ui)i≥0 be a NS satisfying (1). If w is a greedy

U -representation, then so is 10rw for all r large enough.



Let NU (m) ∈ {1, . . . ,m} denotes the number of values that aretaken in�nitely often by the sequence (Ui mod m)i≥0.Example (Zeckendorf system)
(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .), so NF (4) = 4.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .), so NF (11) = 7.If U = (Ui)i≥0 is a linear system of order k, then, for all m ≥ 2, wehave

k
√

πU (m) ≤ NU (m) ≤ πU (m),where πU (m) denotes the minimal period of (Ui mod m)i≥0.



Theorem (C-Rigo 2008)Let U be a NS satisfying (1). If X ⊆ N is an ultimately periodic
U -recognizable set of period pX , then any DFA accepting repU (X)has at least NU (pX) states.CorollaryLet U be a NS satisfying (1). Assume that

lim
m→+∞

NU (m) = +∞.Then the period of an ultimately periodic set X ⊆ N s.t. repU (X)is accepted by a d-state DFA is bounded by the smallest integer Ms.t. NU (m) > d for all m ≥ M , which is e�ectively computable.



PropositionIf U = (Ui)i≥0 satis�es a recurrence relation of the kind
Ui+k = a1Ui+k−1 + · · ·+ akUi, (2)with ak = ±1, then lim

m→+∞
NU (m) = +∞.PropositionLet U = (Ui)i≥0 be an increasing sequence satisfying (2). Thefollowing assertions are equivalent:

I lim
m→+∞

NU (m) = +∞;
I for all prime divisors p of ak, lim

v→+∞
NU (p

v) = +∞.



A characterizationLet QU (x) denote the characteristic polynomial of the shortestrecurrence relation satis�ed by U ; and let PU (x) = xkQU(
1
x
),where k = deg(QU (x)).Theorem (Bell-C-Fraenkel-Rigo 2009)We have NU (p

v) → +∞ as v → +∞ if and only if
PU (x) = A(x)B(x)with A(x), B(x) ∈ Z[x] such that:

I B(x) ≡ 1 (mod pZ[x]);
I A(x) has no repeated roots and all its roots are roots of unity.



Logical approachTheorem (Muchnik 1991)The ultimate periodicity problem is decidable for all NS with aregular numeration language, provided that addition is recognizable.Example (Ui+4 = 3Ui+3 + 2Ui+2 + 3Ui for all i ≥ 0,
(U0, U1, U2, U3) = (1, 2, 3, 4))Addition is not computable by a �nite automaton (due to Frougny).Nevertheless, NU (3

v) → +∞ as v → +∞ because
PU = 1− 3x− 2x2 − 3x4cannot be factorized as A · B with two factors satisfying thehypotheses of the characterization mentioned above.



One of the main arguments for the decidability
Theorem (C-Rigo 2008)Let U be a NS satisfying (1) and X ⊆ N be an ultimately periodic
U -recognizable set of period pX . If 1 occurs in�nitely many timesin (Ui mod pX)i≥0 then any DFA accepting repU (X) has at least
pX states.



Idea of the proof with the Zeckendorf systemTheorem (Zeckendorf system)Let X ⊆ N be ultimately periodic with period pX (and preperiod
aX). Any DFA accepting repF (X) has at least pX states.

I w−1L = {u : wu ∈ L} ↔ states of minimal automaton of L
I (Fi mod pX)i≥0 is purely periodic.
I If i, j ≥ aX and i 6≡ j (mod pX) then there exists t < pX s.t.either i+ t ∈ X and j + t 6∈ X, or i+ t 6∈ X and j + t ∈ X.
I ∃n1, . . . , npX , ∀t, 0 ≤ t < pX , the words

10npX · · · 10n210n10| repF (pX−1)|−| repF (t)| repF (t)are greedy F -representations.



Idea of the proof with the Zeckendorf system
I Moreover n1, . . . , npX can be chosen s.t. ∀j, 1 ≤ j ≤ pX ,

valF (10
nj · · · 10n1+| repF (pX−1)|) ≡ j (mod pX)and valF (10

n1+| repF (pX−1)|) ≥ aX .

I For i, j ∈ {1, . . . , pX}, i 6= j, the words
10ni · · · 10n1 and 10nj · · · 10n1will generate di�erent states in the minimal automaton of

repF (X). This can be shown by concatenating some word oflength | repF (pX − 1)|.



w−1L = {u : wu ∈ L} ↔ states of minimal automaton of L
X = (11N+ 3) ∪ {2}, aX = 3, pX = 11, | repF (10)| = 5Working in (Fi mod 11)i≥0 :
· · · 2 1 1 0 1 10 2 8 5 3 2 1 1 0 1 10 2 8 5 3 2 11 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 1 0 1+2 ∈ X1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2+2 /∈ X

⇒ (105)−1 repF (X) 6= (109105)−1 repF (X)



Second part: an upper bound on the preperiodFor a sequence U = (Ui)i≥0 of integers, if (Ui mod m)i≥0 isultimately periodic, we denote its (minimal) preperiod by ιU (m).Theorem (C-Rigo 2008)Let U = (Ui)i≥0 be a linear numeration system. Let X ⊆ N beultimately periodic with period pX and preperiod aX . Then anyDFA accepting repU(X) has at least
| repU (aX − 1)| − ιU (pX) states.If pX is bounded, then the number of states grows as aX grows.



A Decision Procedure
Theorem (C-Rigo 2008)It is decidable if a U -recognizable set is ultimately periodic fornumeration systems U = (Ui)i≥0 s.t.

I N is U -recognizable;
I lim

i→+∞
Ui+1 − Ui = +∞;

I lim
m→+∞

NU (m) = +∞.



Further workRemarkWhenever gcd(a1, . . . , ak) = g ≥ 2, we have Ui ≡ 0 (mod gn) forall n ≥ 1 and for all i large enough; hence NU (m) 6→ +∞.Examples
I Integer bases: Un+1 = k Un

I Un+2 = 2Un+1 + 2Un

a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b) . . .



Some related referencesLearn more about linear recurrent sequences mod m . . .
I H.T. Engstrom, On sequences de�ned by linear recurrencerelations, Trans. Amer. Math. Soc. 33 (1931).
I M. Ward, The characteristic number of a sequence of integerssatisfying a linear recursion relation, Trans. Amer. Math. Soc.35 (1933).
I M. Hall, An isomorphism between linear recurring sequencesand algebraic rings, Trans. Amer. Math. Soc. 44 (1938).
I G. Rauzy, Relations de récurrence modulo m, SéminaireDelange-Pisot, 1963/1964.



Transition to state complexity
Main ideas for an automata-resolution of the periodicity problem:

I If X ⊆ N is ultimately periodic, then the state complexity ofthe associated minimal DFA should grow with the period andpreperiod of X.
I Analyse the inner structure of DFAs accepting the

U -representations of mN+r.



F -representations of even numbers
0

1 0 0

1

0

10

1

0

0

0

13 8 5 3 2 1

1 0 2

1 0 1 4

1 0 0 1 6

1 0 0 0 0 8

1 0 0 1 0 10

1 0 1 0 1 12...


